Carcharhinus Amboinensis ) and Three Whaler Species ( C

Total Page:16

File Type:pdf, Size:1020Kb

Carcharhinus Amboinensis ) and Three Whaler Species ( C Northern Australian sharks and rays: the sustainability of target and bycatch species, phase 2 PRINCIPAL INVESTIGATOR : John Salini Project No. 2002/064 John Salini, Rory McAuley, Steve Blaber, Rik Buckworth, Justin Chidlow, Neil Gribble, Jenny Ovenden, Stirling Peverell, Richard Pillans, John Stevens, Ilona Stobutzki, Chris Tarca, Terry Walker. January 15, 2007 FRDC Crispian Ashby, FRDC Programs Manager PO Box 222, Deakin West ACT 2600 Fisheries Research House, 25 Geils Court, Deakin Phone: 02 6285 0425; Fax: 02 6285 4421 Copyright Fisheries Research and Development Corporation and CSIRO Marine and Atmospheric Research 2006 This work is copyright. Except as permitted under the Copyright Act 1968 (Cth), no part of this publication may be reproduced by any process, electron ic or otherwise, without the specific written permission of the copyright owners. Neither may information be stored electronically in any form whatsoever without such permission. The Fisheries Research and Development Corporation plans, invests in and man ages fisheries research and development throughout Australia. It is a statutory authority within the portfolio of the federal Minister for Agriculture, Fisheries and Forestry, jointly funded by the Australian Government and the fishing industry. Northern Australian sharks and rays: the sustainability of target and bycatch species, phase 2 Northern Australian sharks and rays: the sustainability of target and bycatch species, phase 2. Bibliography. Includes index. ISBN 1 921061 24 3. 1. Shark fisheries - Australia, Northern. 2. Shark fisheries - Bycatches - Australia, Northern. 3. Bycatches (Fisheries) - Australia, Northern. 4. Rays (Fishes) - Australia, Northern. I. Salini, John. II. CSIRO. Marine and Atmospheric Research. 338.372730994 Northern Australian sharks and rays: the sustainability of target and bycatch species, phase 2 Enquiries should be addressed to: John Salini PO Box 120, Cleveland, Qld. 4163 Ph 07 3826 7244, Fax 07 3826 7222 Email: [email protected] Distribution list Chief of Division Operations Manager Project Manager Client Authors Other CSIRO Staff National Library CMAR Libraries Important Notice © Copyright Commonwealth Scientific and Industrial Research Organisation (‘CSIRO’) Australia 2006 All rights are reserved and no part of this publication covered by copyright may be reproduced or copied in any form or by any means except with the written permission of CSIRO. The results and analyses contained in this Report are based on a number of technical, circumstantial or otherwise specified assumptions and parameters. The user must make its own assessment of the suitability for its use of the information or material contained in or generated from the Report. To the extent permitted by law, CSIRO excludes all liability to any party for expenses, losses, damages and costs arising directly or indirectly from using this Report. Use of this Report The use of this Report is subject to the terms on which it was prepared by CSIRO. In particular, the Report may only be used for the following purposes. this Report may be copied for distribution within the Client’s organisation; the information in this Report may be used by the entity for which it was prepared (“the Client”), or by the Client’s contractors and agents, for the Client’s internal business operations (but not licensing to third parties); extracts of the Report distributed for these purposes must clearly note that the extract is part of a larger Report prepared by CSIRO for the Client. The Report must not be used as a means of endorsement without the prior written consent of CSIRO. The name, trade mark or logo of CSIRO must not be used without the prior written consent of CSIRO. Northern Australian sharks and rays: the sustainability of target and bycatch species, phase 2 Northern Australian sharks and rays: the sustainability of target and bycatch fisheries, Phase 2. Author John Salini Richard Pillans (Chapter 4, 6), Jennifer Ovenden (Chapter 3) Contributing authors Rik Buckworth, Neil Gribble, Rory McAuley, John Stevens, Project No. 2002/064 PRINCIPAL INVESTIGATOR: John Salini ADDRESS: CSIRO Marine and Atmospheric Research Cleveland Laboratories PO Box 120 Cleveland Qld 4163 Telephone: 07 3826 7200 Fax: 07 3826 7222 Northern Australian sharks and rays: the sustainability of target and bycatch species, phase 2 CONTENTS Non-technical Summary .............................................................................................. 1 Project Objectives.............................................................................................................1 Non Technical Summary: .................................................................................................2 OUTCOMES ACHIEVED TO DATE...................................................................................2 1. Chapter 1 Introduction........................................................................................ 5 1.1 Background .............................................................................................................5 1.2 Need .........................................................................................................................9 1.3 Benefits..................................................................................................................10 1.4 Further Development............................................................................................11 1.5 Planned Outcomes ...............................................................................................13 1.6 Conclusion.............................................................................................................17 1.7 Acknowledgments ................................................................................................19 1.8 Staff ........................................................................................................................20 1.8.1 Observers:..............................................................................................20 1.8.2 Other changes during the project: ......................................................20 1.9 References.............................................................................................................21 2. CHAPTER 2 – Objective 1 Catch data from target shark fisheries............... 23 2.1 Introduction ...........................................................................................................23 2.2 Method ...................................................................................................................23 2.3 Results ...................................................................................................................23 2.4 Discussion.............................................................................................................38 2.5 References.............................................................................................................40 3. CHAPTER 3 – Objective 2 Populations structure of blacktip sharks........... 41 3.1 Introduction ...........................................................................................................41 3.2 Methods .................................................................................................................41 3.3 Results and Discussion .......................................................................................42 3.3.1 Summary ................................................................................................42 3.3.2 Introduction............................................................................................43 3.4 Methods .................................................................................................................44 3.4.1 Sampling.................................................................................................44 3.4.2 Species identification............................................................................44 3.4.3 Laboratory..............................................................................................45 Northern Australian sharks and rays: the sustainability of target and bycatch species, phase 2 3.4.4 Data analyses.........................................................................................46 3.5 Results ...................................................................................................................46 3.5.1 Species identification............................................................................46 3.5.2 Microsatellites........................................................................................47 3.5.3 Microsatellites........................................................................................48 3.5.4 Mitochondrial control region................................................................50 3.6 Discussion.............................................................................................................53 3.7 Conclusion.............................................................................................................56 3.8 References.............................................................................................................57 4. Chapter 4 – Objective 3 Shark bycatch in gillnet fisheries ........................... 59 4.1 Method ...................................................................................................................59 4.2 Results ...................................................................................................................60
Recommended publications
  • Chondrichthyan Fishes (Sharks, Skates, Rays) Announcements
    Chondrichthyan Fishes (sharks, skates, rays) Announcements 1. Please review the syllabus for reading and lab information! 2. Please do the readings: for this week posted now. 3. Lab sections: 4. i) Dylan Wainwright, Thursday 2 - 4/5 pm ii) Kelsey Lucas, Friday 2 - 4/5 pm iii) Labs are in the Northwest Building basement (room B141) 4. Lab sections done: first lab this week on Thursday! 5. First lab reading: Agassiz fish story; lab will be a bit shorter 6. Office hours: we’ll set these later this week Please use the course web site: note the various modules Outline Lecture outline: -- Intro. to chondrichthyan phylogeny -- 6 key chondrichthyan defining traits (synapomorphies) -- 3 chondrichthyan behaviors -- Focus on several major groups and selected especially interesting ones 1) Holocephalans (chimaeras or ratfishes) 2) Elasmobranchii (sharks, skates, rays) 3) Batoids (skates, rays, and sawfish) 4) Sharks – several interesting groups Not remotely possible to discuss today all the interesting groups! Vertebrate tree – key ―fish‖ groups Today Chondrichthyan Fishes sharks Overview: 1. Mostly marine 2. ~ 1,200 species 518 species of sharks 650 species of rays 38 species of chimaeras Skates and rays 3. ~ 3 % of all ―fishes‖ 4. Internal skeleton made of cartilage 5. Three major groups 6. Tremendous diversity of behavior and structure and function Chimaeras Chondrichthyan Fishes: 6 key traits Synapomorphy 1: dentition; tooth replacement pattern • Teeth are not fused to jaws • New rows move up to replace old/lost teeth • Chondrichthyan teeth are
    [Show full text]
  • An Introduction to the Classification of Elasmobranchs
    An introduction to the classification of elasmobranchs 17 Rekha J. Nair and P.U Zacharia Central Marine Fisheries Research Institute, Kochi-682 018 Introduction eyed, stomachless, deep-sea creatures that possess an upper jaw which is fused to its cranium (unlike in sharks). The term Elasmobranchs or chondrichthyans refers to the The great majority of the commercially important species of group of marine organisms with a skeleton made of cartilage. chondrichthyans are elasmobranchs. The latter are named They include sharks, skates, rays and chimaeras. These for their plated gills which communicate to the exterior by organisms are characterised by and differ from their sister 5–7 openings. In total, there are about 869+ extant species group of bony fishes in the characteristics like cartilaginous of elasmobranchs, with about 400+ of those being sharks skeleton, absence of swim bladders and presence of five and the rest skates and rays. Taxonomy is also perhaps to seven pairs of naked gill slits that are not covered by an infamously known for its constant, yet essential, revisions operculum. The chondrichthyans which are placed in Class of the relationships and identity of different organisms. Elasmobranchii are grouped into two main subdivisions Classification of elasmobranchs certainly does not evade this Holocephalii (Chimaeras or ratfishes and elephant fishes) process, and species are sometimes lumped in with other with three families and approximately 37 species inhabiting species, or renamed, or assigned to different families and deep cool waters; and the Elasmobranchii, which is a large, other taxonomic groupings. It is certain, however, that such diverse group (sharks, skates and rays) with representatives revisions will clarify our view of the taxonomy and phylogeny in all types of environments, from fresh waters to the bottom (evolutionary relationships) of elasmobranchs, leading to a of marine trenches and from polar regions to warm tropical better understanding of how these creatures evolved.
    [Show full text]
  • A New Species of Wedgefish, Rhynchobatus Springeri
    Descriptions of new Borneo sharks and rays 77 $QHZVSHFLHVRIZHGJH¿VKRhynchobatus springeri 5K\QFKREDWRLGHL5K\QFKREDWLGDH IURPWKH:HVWHUQ3DFL¿F Leonard J.V. Compagno1 & Peter R. Last2 1 Shark Research Center, Iziko – Museums of Cape Town, Cape Town 8000, SOUTH AFRICA 2 CSIRO Marine & Atmospheric Research, Wealth from Oceans Flagship, GPO Box 1538, Hobart, TAS, 7001, AUSTRALIA ABSTRACT.—$QHZVSHFLHVRIZHGJH¿VKRhynchobatus springeri sp. nov. is described from specimens FROOHFWHGIURPWKH,QGR±0DOD\UHJLRQZLWKDFRQ¿UPHGUDQJHH[WHQGLQJIURPWKH*XOIRI7KDLODQGVRXWK to Java, and possibly westward to at least Sri Lanka. It is a medium-sized species to about 215 cm TL, with males reaching adulthood at about 110 cm TL. Rhynchobatus springeri closely resembles R. palpebratus in body shape and having a dark, eye-brow like marking on its orbital membrane, but differs from this species in having a lower vertebral count (113–126 vs. 130–139 total free centra), a broader preorbital snout, and more rows of white spots on the tail of adults. Other Rhynchobatus species in the region attain a much larger adult size, and have a relatively narrower snout and much higher vertebral counts. A revision of the group LVQHHGHGWR¿QGPRUHXVHIXO¿HOGFKDUDFWHUV Key words: Rhynchobatidae – Rhynchobatus springeri±%URDGQRVH:HGJH¿VK±QHZVSHFLHV±:HVWHUQ 3DFL¿F PDF contact: [email protected] INTRODUCTION Rhynchobatus by various authors, but only two, the West African R. luebberti Ehrenbaum, 1914 and the Indo– The genus Rhynchobatus Müller & Henle, 1837 :HVW3DFL¿FR. djiddensis (Forsskål, 1775), are generally comprises several species of moderate-sized to giant recognised as valid and most of the remaining taxa have (attaining between 0.8 and more than 3 m total length) been synonymised with R.
    [Show full text]
  • The Ecology of Shark-Like Batoids: Implications for Management in the Great Barrier Reef Region
    ResearchOnline@JCU This file is part of the following reference: White, Jimmy (2014) The ecology of shark-like batoids: implications for management in the Great Barrier Reef region. PhD thesis, James Cook University. Access to this file is available from: http://researchonline.jcu.edu.au/40746/ The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owner of any third party copyright material included in this document. If you believe that this is not the case, please contact [email protected] and quote http://researchonline.jcu.edu.au/40746/ THE ECOLOGY OF SHARK-LIKE BATOIDS: IMPLICATIONS FOR MANAGEMENT IN THE GREAT BARRIER REEF REGION Thesis by Jimmy White B.Sc. (Hons) Submitted For the degree of Doctor of Philosophy in the School of Earth and Environmental Sciences James Cook University Townsville 1 STATEMENT OF ACCESS I, the undersigned author of this work, understand that James Cook University will make this thesis available within the University Library, and via the Australian Digital Theses network, for use elsewhere. I declare that the electronic copy of this thesis provided to the James Cook University library is an accurate copy of the print thesis submitted, within the limits of the technology available. I understand that, as an unpublished work, a these has significant protection under the Copyright Act and; All users consulting this thesis must agree not to copy or closely paraphrase it in whole or in part without the written consent of the author; and to make public written acknowledgement for any assistance which may obtain from it.
    [Show full text]
  • Report on Sicklefin Weasel Shark Hemigaleus Microstoma
    Rec. zool. Surv. India: Vol. 120(2)/153–159, 2020 ISSN (Online) : 2581-8686 DOI: 10.26515/rzsi/v120/i2/2020/144516 ISSN (Print) : 0375-1511 Report on Sicklefin weasel shark Hemigaleus microstoma (Bleeker, 1852) (Carcharhiniformes: Hemigaleidae) from the Andaman Islands, Indian EEZ with DNA barcodes K. K. Bineesh1*, R. Kiruba Sankar2, M. Nashad3, O. R. Arun Retheesh2, Ravi Ranjan Kumar4 and V. S. Basheer5 1Zoological Survey of India, Andaman and Nicobar Regional Centre, Haddo, P.B. No. 744 102, Andaman and Nicobar Islands, India; Email: [email protected] 2ICAR-Central Island Agricultural Research Institute, Garacharama, P.B. No.744101, Andaman & Nicobar Islands, India 3Fishery Survey of India, Port Blair Zonal Base, P.B No.744101, Andaman & Nicobar Islands, India 4Department of Ocean Studies and Marine Biology, Pondicherry University, P.B.No. 744112, Andaman Islands, India 5National Bureau of Fish Genetic Resources (NBFGR), CMFRI Campus, P.B.No.1603, Ernakulam North, P.O., Kochi - 682018, Kerala, India Abstract Hemigaleus microstoma The occurrence of sickle fin weasel shark Bleeker,H. 1852 microstoma is reported here from Indian EEZ, off the Andaman Islands in the Bay of Bengal. Two specimens of total length (TL) 610 mm and 628 mm were caught by longline at depths 40-100 m. A detailed diagnostic description and morphometrics of and its comparison with previous literature is provided. COI DNA barcodes were generated for the collected specimens. Keywords: Bycatch, DNA Analysis, Elasmobranchs, Morphometrics, Port Blair Introduction microstoma (Compagno, 1988). Later, White et al. (2005) described a close species Hemigaleus australiensis from Chondrichthyan fishes are mainly exploited as bycatch in Australian waters.
    [Show full text]
  • Training Manual Series No.15/2018
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CMFRI Digital Repository DBTR-H D Indian Council of Agricultural Research Ministry of Science and Technology Central Marine Fisheries Research Institute Department of Biotechnology CMFRI Training Manual Series No.15/2018 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual This is a limited edition of the CMFRI Training Manual provided to participants of the “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals” organized by the Marine Biotechnology Division of Central Marine Fisheries Research Institute (CMFRI), from 2nd February 2015 - 31st March 2018. Principal Investigator Dr. P. Vijayagopal Compiled & Edited by Dr. P. Vijayagopal Dr. Reynold Peter Assisted by Aditya Prabhakar Swetha Dhamodharan P V ISBN 978-93-82263-24-1 CMFRI Training Manual Series No.15/2018 Published by Dr A Gopalakrishnan Director, Central Marine Fisheries Research Institute (ICAR-CMFRI) Central Marine Fisheries Research Institute PB.No:1603, Ernakulam North P.O, Kochi-682018, India. 2 Foreword Central Marine Fisheries Research Institute (CMFRI), Kochi along with CIFE, Mumbai and CIFA, Bhubaneswar within the Indian Council of Agricultural Research (ICAR) and Department of Biotechnology of Government of India organized a series of training programs entitled “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals”.
    [Show full text]
  • Identifying Sharks and Rays
    NSW DPI Identifying sharks and rays A guide for NSW commercial fishers Important If a shark or ray cannot be confidently identified using this guide, it is recommended that either digital images are obtained or the specimen is preserved. Please contact NSW DPI research staff for assistance: phone 1300 550 474 or email [email protected] Contents Introduction 4 How to use this guide 5 Glossary 6-7 Key 1 Whaler sharks and other sharks of similar appearance 8-9 to whalers – upper precaudal pit present Key 2 Sharks of similar appearance to whaler sharks – no 10 precaudal pit Key 3 Mackerel (great white and mako), hammerhead and 11 thresher sharks Key 4 Wobbegongs and some other patterned 12 bottom-dwelling sharks Key 5 Sawsharks and other long-snouted sharks and rays 13 2 Sandbar shark 14 Great white shark 42 Bignose shark 15 Porbeagle 43 Dusky whaler 16 Shortfin mako 44 Silky shark 17 Longfin mako 45 Oceanic whitetip shark 18 Thresher shark 46 Tiger shark 19 Pelagic thresher 47 Common blacktip shark 20 Bigeye thresher 48 Spinner shark 21 Great hammerhead 49 Blue shark 22 Scalloped hammerhead 50 Sliteye shark 23 Smooth hammerhead 51 Bull shark 24 Eastern angelshark 52 Bronze whaler 25 Australian angelshark 53 Weasel shark 26 Banded wobbegong 54 Lemon shark 27 Ornate wobbegong 55 Grey nurse shark 28 Spotted wobbegong 56 Sandtiger (Herbst’s nurse) shark 29 Draughtboard shark 57 Bluntnose sixgill shark 30 Saddled swellshark 58 Bigeye sixgill shark 31 Whitefin swellshark 59 Broadnose shark 32 Port Jackson shark 60 Sharpnose sevengill
    [Show full text]
  • Eighteenth Meeting of the Conference of the Parties Colombo, Sri Lanka, May 23-June 3
    CoP18 Prop. xx CONVENTION ON INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD FAUNA AND FLORA ____________________ Eighteenth Meeting of the Conference of the Parties Colombo, Sri Lanka, May 23-June 3 CONSIDERATION OF PROPOSALS FOR AMENDMENT OF APPENDICES I AND II A. Proposal Inclusion of the two species commonly referred to as the white-spotted wedgefish, Rhynchobatus australiae and Rhynchobatus djiddensis, in Appendix II in accordance with Article II paragraph 2(a) of the Convention and satisfying Criterion A and B in Annex 2a of Resolution Conf. 9.24 (Rev. CoP17). Inclusion of all other species in the Family Rhinidae (wedgefish): Rhynchobatus cooki, Rhynchobatus immaculatus, Rhynchobatus laevis, Rhynchobatus luebberti, Rhynchobatus palpebratus, Rhynchobatus springeri, Rhynchorhina mauritaniensis, Rhina ancylostoma, and any other putative species of Family Rhinidae in Appendix II in accordance with Article II paragraph 2(b) of the Convention and satisfying Criterion A in Annex 2b of Resolution Conf. 9.24 (Rev. CoP17). Qualifying Criteria (Conf. 9.24 Rev. CoP17) Annex 2a, Criterion A. It is known, or can be inferred or projected, that the regulation of trade in the species is necessary to avoid it becoming eligible for inclusion in Appendix I in the near future: Rapid recent declines in populations of Rhynchobatus australiae and Rhynchobatus djiddensis of 80% or more, meeting Appendix I listing criteria for marine species of low productivity, are already documented in some regions (e.g., Jabado et al. 2017; Jabado 2018). Using the precautionary approach where data is lacking, and given the global footprint of tangle and gill net fisheries, similar declines are likely throughout much of the species range.
    [Show full text]
  • UNEP/CMS/MS/Inf/10 PRESENT STATUS of SHARK FISHING IN
    UNEP/CMS/MS/Inf/10 PRESENT STATUS OF SHARK FISHING IN THE MARINE WATER OF BANGLADESH Abstract : The present study was done during the period April/2006 to March/2007. A total 22 species belongs to 17 genera and 11 families including sharks, skates and rays were identified. Out of this sharks comprises of 10 species, 08 genera belongs to 06 families. In the ray group 10 species, 07 genera and 05 families and 02 species of skates belongs to 02 genera and 01 family were identified. The total landed of sharks, skates and rays were 398.68 MT. The percentage composition should that the highest catch in percentage weight, Himantura uarnak was 41.11% and the lowest Amphotistius kuhlii which was 0.04%. The highest landing was in the month of June/06 was 81.935 MT and the lowest in the August/06 was 4.458 MT. *Bikram Jit Roy *Manju Prava Dey *Md. Fokhrul Alam *Niprandra Kumar Singha Scientific Officer, Marine Fisheries Survey Management Unite, C.G.O. Building-2, 6th Floor, Agrabad, Chittagong, Bangladesh. PRESENT STATUS OF SHARK FISHING IN THE MARINE WATER OF BANGLADESH Abstract : The present study was done during the period April/2006 to March/2007. A total 22 species belongs to 17 genera and 11 families including sharks, skates and rays were identified. Out of this sharks comprises of 10 species, 08 genera belongs to 06 families. In the rays group 10 species, 07 genera and 05 families and 02 species of skates belongs to 02 genera and 01 family were identified.
    [Show full text]
  • And Their Functional, Ecological, and Evolutionary Implications
    DePaul University Via Sapientiae College of Science and Health Theses and Dissertations College of Science and Health Spring 6-14-2019 Body Forms in Sharks (Chondrichthyes: Elasmobranchii), and Their Functional, Ecological, and Evolutionary Implications Phillip C. Sternes DePaul University, [email protected] Follow this and additional works at: https://via.library.depaul.edu/csh_etd Part of the Biology Commons Recommended Citation Sternes, Phillip C., "Body Forms in Sharks (Chondrichthyes: Elasmobranchii), and Their Functional, Ecological, and Evolutionary Implications" (2019). College of Science and Health Theses and Dissertations. 327. https://via.library.depaul.edu/csh_etd/327 This Thesis is brought to you for free and open access by the College of Science and Health at Via Sapientiae. It has been accepted for inclusion in College of Science and Health Theses and Dissertations by an authorized administrator of Via Sapientiae. For more information, please contact [email protected]. Body Forms in Sharks (Chondrichthyes: Elasmobranchii), and Their Functional, Ecological, and Evolutionary Implications A Thesis Presented in Partial Fulfilment of the Requirements for the Degree of Master of Science June 2019 By Phillip C. Sternes Department of Biological Sciences College of Science and Health DePaul University Chicago, Illinois Table of Contents Table of Contents.............................................................................................................................ii List of Tables..................................................................................................................................iv
    [Show full text]
  • Wedgefishes : Family Rhinidae
    9 WEDGEFISHES Family Rhinidae P.R. Last, W.T. White & B. Séret Wedgefishes are medium to large, shark-like rays (0.7–3.1 m TL as adults and weighing at least 227 kg) with a variably depressed trunk, weakly formed disc, and a head either thickened and broadly domed, or flattened wedge-shaped or rounded. Pectoral fins are triangular and join the body behind eye level. The nostrils are long and narrow, and usually lie oblique to a small horizontal mouth with rounded to oval teeth that lack distinct cusps. The anterior nasal flaps are poorly developed and do not form a nasal curtain. The spiracles are large with 0–3 skin folds along their hind margin. A robust tail is slightly longer than the disc, and has two upright dorsal fins (the first above the pelvic fins), and a well-developed bilobed caudal fin with a strongly concave posterior margin. Its pelvic fins are moderately sized, angular and are not divided into two lobes. The skin is covered with minute denticles and there is a variably developed series of thorns along the dorsal mid-line, and usually 2–3 short series on each shoulder. Dorsal surface mainly yellowish to greyish brown and white ventrally. Often with rows of white spots or ocelli, and often a black blotch on each pectoral fin (pectoral marking) that is variably surrounded by white spots (marking generally most obvious in young). The undersurface of the snout can have a blackish marking. The family now includes 10 valid species from 3 genera: Rhina, Rhynchobatus and Rhynchorhina.
    [Show full text]
  • Migratory Sharks Complete 3 0 0.Pdf
    CMS Technical Series No. 15 Review of Migratory Chondrichthyan Fishes Review of Migratory Chondrichthyan Fishes Prepared by the Shark Specialist Group of the IUCN Species Survival Commission on behalf of the CMS Secretariat • CMS Technical Series No. 15 CMS Technical UNEP/CMS Secretariat Public Information Hermann-Ehlers-Str. 10 53113 Bonn, Germany T. +49 228 815-2401/02 F. +49 228 815-2449 www.cms.int Review of Chondrichthyan Fishes IUCN Species Survival Commission’s Shark Specialist Group December 2007 Published by IUCN–The World Conservation Union, the United Nations Environment Programme (UNEP) and the Secretariat of the Convention on the Conservation of Migratory Species of Wild Animals (CMS). Review of Chondrichthyan Fishes. 2007. Prepared by the Shark Specialist Group of the IUCN Species Survival Commission on behalf of the CMS Secretariat. Cover photographs © J. Stafford-Deitsch. Front cover: Isurus oxyrinchus Shortfin mako shark. Back cover, from left: Sphyrna mokarran Great hammerhead shark, Carcharodon carcharias Great white shark, Prionace glauca Blue shark. Maps from Collins Field Guide to Sharks of the World. 2005. IUCN and UNEP/ CMS Secretariat, Bonn, Germany. 72 pages. Technical Report Series 15. This publication was prepared and printed with funding from the CMS Secretariat and Department for the Environment, Food, and Rural Affairs, UK. Produced by: Naturebureau, Newbury, UK. Printed by: Information Press, Oxford, UK. Printed on: 115gsm Allegro Demi-matt produced from sustainable sources. © 2007 IUCN–The World Conservation Union / Convention on Migratory Species (CMS). This publication may be reproduced in whole or in part and in any form for educational or non-profit purposes without special permission from the copyright holder, provided acknowledgement of the source is made.
    [Show full text]