Seafloor Weathering and the Middle to Late Ordovician Seawater 87Sr/86Sr Inflection Point Preserved in Conodont Apatite

Total Page:16

File Type:pdf, Size:1020Kb

Seafloor Weathering and the Middle to Late Ordovician Seawater 87Sr/86Sr Inflection Point Preserved in Conodont Apatite Seafloor weathering and the Middle to Late Ordovician seawater 87Sr/86Sr inflection point preserved in conodont apatite Thesis Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of the Ohio State University By Teresa Daniela Avila, B.S. Graduate Program in Earth Sciences The Ohio State University 2019 Thesis Committee Matthew Saltzman, Adviser Elizabeth Griffith John Olesik Copyright by Teresa Daniela Avila 2019 Abstract The strontium isotope ratio (87Sr/86Sr) of global seawater varies through geologic time and can serve as a proxy for silicate weathering patterns as well as rates of spreading in mid- ocean ridges. The 87Sr/86Sr value of seawater steadily decreases through the course of the Ordovician, with an increased rate of change during the Darriwilian to Sandbian (Middle to Late Ordovician). The precise age of this inflection point has been poorly constrained, making it difficult to ascertain its possible causes and effects. Here, conodont apatite from the Simpson Group of the Arbuckle Mountains, Oklahoma were analyzed in order to build a higher-resolution 87Sr/86Sr curve. The preparation of conodont samples via leaching in acetic acid is also investigated. In the case of Oklahoma section conodont elements with low thermal alteration (i.e., Color Alteration Index; (CAI) ≤ 1), leaching does appear to strip diagenetic Sr, but the overall effect on 87Sr/86Sr (7.47 x 10-6 ) is smaller than the external analytical error (8.22 x 10-6). To identify the inflection point in the new data set, a smoothing LOESS curve was used to produce a gradient curve, a process which has not yet been applied to the Middle to Late Ordovician. The 87Sr/86Sr inflection point falls in the transition from the Oil Creek to McLish Formations, within the holodentata conodont zone at 466.4 to 463.8 Mya. The shift in 87Sr/86Sr occurs at the Sauk-Tippecanoe sequence boundary and associated transgression, which may reflect increased spreading rates of mid-ocean ridges. Previous studies have linked the inflection point in 87Sr/86Sr to the Taconic Orogeny at c.a. 465 Mya, which may also play an important role in the shift of global 87Sr/86Sr but is unlikely to account for the transgression at the base of the McLish due to asynchronous timing of events. ii Dedication Dedicated to my family and their commitment to education iii Vita May 2010……………………Lafayette High School 2015…………………………B.S. Geological Sciences, University of Missouri 2015…………………………B.S. Science and Agricultural Journalism, University of Missouri 2015 to 2017………………...Laboratory Technician, Department of Earth and Planetary Sciences, Washington University in St. Louis 2017 to present………………Dean’s Graduate Enrichment Fellow, School of Earth Sciences, The Ohio State University Publications Warren, JW, Schiffbauer, JD, Avila, TD, Broce, JS. (2018). Ecophenotypy, temporal and spatial fidelity, functional morphology, and physiological trade-offs among intertidal bivalves. Paleobiology, 44(3), 530-545. Fields of Study Major Field: Earth Sciences iv Table of Contents Abstract……………………………………………………………………………………………ii Dedication………………………………………………………………………………………...iii Vita………………………………………………………………………………………………..iv List of Tables…………………………………………………………………………………..…vi List of Figures…………………………………………………………………………………....vii Introduction……………………………………………………………………………………......1 Background……………………………………………………………………………………..…5 Method…………………………………………………………………………………………...13 Results…………………………………………………………………………………………....16 Discussion………………………………………………………………………………………..23 Conclusion……………………………………………………………………………………….33 References………………………………………………………………………………………..34 Appendix A: Method Details………..…………………………………………………………...42 Appendix B: Statistics Details…..…..…………………………………………………………...46 Appendix C: Age Model…….…..…..…………………………………………………………...47 Appendix D: Non-Ordovician Samples……..…………………………………………………...48 v List of Tables Table 1. Sr concentration, 87Sr/86Sr, and associated errors of analyzed conodont samples…..16 Table 2. 87Sr/86Sr of leached samples, unleached samples, and leachates……………………18 Table 3. Sr abundance of leached samples and leachates…………………………………….19 vi List of Figures Figure 1. Ordovician conodont-based curve………………………………………………………3 Figure 2. Diagenetic alteration of conodont 87Sr/86Sr: A conodont element in vivo, B conodont element post mortem, C conodont element with low-temperature pore water alteration, D conodont element with thermal alteration, E conodont element leaching process…..9 Figure 3. Difference between leached samples and leachate in previous studies………………..11 Figure 4. Site location……………………………………………………………………………14 Figure 5. Difference in 87Sr/86Sr of leached samples, unleached samples, leachates…...…….....20 Figure 6. Leached samples vs. unleached samples vs. global LOWESS curve…………………24 Figure 7. Sr mass balance in leached conodont samples……………………………………...…25 Figure 8. SEM images of conodont samples before and after leaching………………………….26 Figure 9. Data plotted against depth……………………………………………………………..27 Figure 10. Data plotted against age, associated gradient curve, whole Ordovician…….……….28 Figure 11. Sr mass balance in leached Pennsylvanian-age conodont samples.………………….50 Figure 12. Difference in 87Sr/86Sr of Silurian leached samples, unleached samples, leachates…51 Figure 13. Data plotted against age, associated gradient curve.………………………………....52 Figure 14. Clear Springs data plotted against depth………….………………………………….53 Figure 15. Antelope Range data plotted against depth……….………………………………….54 Figure 16. Model demonstrating inflection point…………….………………………………….55 vii Introduction The Ordovician Period (485 to 444 Mya) is a valuable case study for the various, interconnected Earth systems that drive and respond to global climate change. The Ordovician climate is characterized by a roughly 20º C drop in average sea surface temperature—with smaller-scale changes superimposed—that encompassed the extreme warmth of the Early Ordovician (c.a. 42º C) to the end-Ordovician (Hirnantian) glaciation (c.a. 22º C; Trotter et al., 2008; Albanesi et al., 2019). This cooling to mild, modern-like sea surface temperatures potentially triggered the Great Ordovician Biodiversification Event (GOBE), but eventually may have led to the first of the “big five” extinctions: the end-Ordovician mass extinction (Sepkoski, 1996; Trotter et al., 2008). Multiple factors could have contributed to this cooling, including decreased volcanic degassing (McKenzie et al., 2016), the appearance of the first land plants in correlation with overall increased organic carbon burial (Lenton et al., 2012; Algeo et al., 2016), and increased weathering of calcium-bearing silicates (Swanson-Hysell and Macdonald, 2017; Saltzman, 2017; Macdonald et al., 2019). Understanding the interplay of these systems and their impact on the timing and magnitude of cooling steps throughout the Ordovician represents a longstanding problem. Previous studies have investigated the Ordovician cooling trend mostly in terms of how exposure of young, Ca- and Mg- bearing silicates (i.e., basalts) at low latitudes—such as the island-arc setting of the Ordovician Taconic orogeny in Laurentia—would have increased weathering rates and the drawdown of CO2 (Shields et al., 2003; Young et al., 2009; Swanson- Hysell and Macdonald, 2017; Macdonald et al., 2019). An important proxy for basaltic weathering in the geologic record is the trend in global marine 87Sr/86Sr values (McArthur et al., 1 2012). However, while the large-scale trend of decreasing 87Sr/86Sr in the Ordovician is fairly well established (Figure 1), uncertainty remains in the timing of a Middle to Late Ordovician (Darriwilian to Sandbian stages) inflection point in the curve and its correlation with the Ordovician paleotemperature curve (Trotter et al., 2008; Albanesi et al., 2019). The timing of the inflection point ranges from 458 Mya to 466 Mya, spanning several biostratigraphic zones (Figure 1; Shields et al., 2003; Young et al., 2009; McArthur et al., 2012; Saltzman et al., 2014; Swanson-Hysell and Macdonald, 2017). This timing appears problematic for the Taconic weathering hypothesis (Young et al., 2009; Saltzman, 2017), as the late Darriwilian to Sandbian appears to coincide with a slowing of cooling or even a slight warming trend superimposed on long-term cooling (Trotter et al., 2008; Albanesi et al., 2019). A role for Taconic weathering is evidenced by a similarly timed shift in neodymium (Nd) isotopes (Swanson-Hysell and Macdonald, 2017), but questions persist about the amount of basaltic versus more intermediate composition continental weathering that can be inferred using this proxy (Saltzman, 2017). Therefore, a more precise understanding of the timing of this 87Sr/86Sr inflection point is critical to evaluate other causal mechanisms that likely played a role distinct from Taconic weathering, namely seafloor spreading rates and associated eustatic changes (e.g., Shields et al., 2003; Saltzman et al., 2014). In order to better constrain the timing of the inflection point in the Ordovician 87Sr/86Sr curve, this study focuses on conodont microfossil apatite in the Arbuckle Mountains of Oklahoma, which contains one of the best-constrained conodont biostratigraphic data sets in the world for the Darriwilian to Sandbian (c.a. 465 to 455 Mya) study interval (Bauer, 1987; Bauer, 2 Figure 1. Ordovician conodont-based 87Sr/86Sr measurements with Locally Estimated Scatterplot Smoothing (LOESS) curve with global Locally Weighted Scatterplot Smoothing (LOWESS)
Recommended publications
  • PUBLICATIONS by JAMES SPRINKLE 1965 -- Sprinkle, James
    PUBLICATIONS BY JAMES SPRINKLE 1965 -- Sprinkle, James. 1965. Stratigraphy and sedimentary petrology of the lower Lodgepole Formation of southwestern Montana. M.I.T. Department of Geology and Geophysics, unpublished Senior Thesis, 29 p. (see #56 and 66 below) 1966 1. Sprinkle, James and Gutschick, R. C. 1966. Blastoids from the Sappington Formation of southwest Montana (Abst.). Geological Society of America Special Paper 87:163-164. 1967 2. Sprinkle, James and Gutschick, R. C. 1967. Costatoblastus, a channel fill blastoid from the Sappington Formation of Montana. Journal of Paleon- tology, 41(2):385-402. 1968 3. Sprinkle, James. 1968. The "arms" of Caryocrinites, a Silurian rhombiferan cystoid (Abst.). Geological Society of America Special Paper 115:210. 1969 4. Sprinkle, James. 1969. The early evolution of crinozoan and blastozoan echinoderms (Abst.). Geological Society of America Special Paper 121:287-288. 5. Robison, R. A. and Sprinkle, James. 1969. A new echinoderm from the Middle Cambrian of Utah (Abst.). Geological Society of America Abstracts with Programs, 1(5):69. 6. Robison, R. A. and Sprinkle, James. 1969. Ctenocystoidea: new class of primitive echinoderms. Science, 166(3912):1512-1514. 1970 -- Sprinkle, James. 1970. Morphology and Evolution of Blastozoan Echino- derms. Harvard University Department of Geological Sciences, unpublished Ph.D. Thesis, 433 p. (see #8 below) 1971 7. Sprinkle, James. 1971. Stratigraphic distribution of echinoderm plates in the Antelope Valley Limestone of Nevada and California. U.S. Geological Survey Professional Paper 750-D (Geological Survey Research 1971):D89-D98. 1973 8. Sprinkle, James. 1973. Morphology and Evolution of Blastozoan Echino- derms. Harvard University, Museum of Comparative Zoology Special Publication, 283 p.
    [Show full text]
  • Distribution of the Middle Ordovician Copenhagen Formation and Its Trilobites in Nevada
    Distribution of the Middle Ordovician Copenhagen Formation and its Trilobites in Nevada GEOLOGICAL SURVEY PROFESSIONAL PAPER 749 Distribution of the Middle Ordovician Copenhagen Formation and its Trilobites in Nevada By REUBEN JAMES ROSS, JR., and FREDERICK C. SHAW GEOLOGICAL SURVEY PROFESSIONAL PAPER 749 Descriptions of Middle Ordovician trilobites belonging to 21 genera contribute to correlations between similar strata in Nevada) California) and 0 klahoma UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON 1972 UNITED STATES DEPARTMENT OF THE INTERIOR ROGERS C. B. lVIOR TON, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director Library of Congress catalog-card No. 78-190301 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price 70 cents (paper cover) Stock Number 2401-2109 CONTENTS Page Page Abstract ______________________________ -------------------------------------------------- 1 Descriptions of trilobites __________________________________________________ _ 14 Introduction ________________________________________________________________________ _ 1 Genus T1·iarth1·us Green, 1832 .... ------------------------------ 14 Previous investigations _____________________________________________ _ 1 Genus Carrickia Tripp, 1965 ____________________________________ _ 14 Acknowledgments-------------------------------------------------------· 1 Genus Hypodicranotus Whittington, 1952 _____________ _ 15 Geographic occurrences of the Copenhagen Genus Robergia Wiman, 1905·----------------------------------
    [Show full text]
  • Thesis-2002-F832d.Pdf
    THE DEPOSITIONAL HISTORY OF THE SYCAMOREL~STONE By KAREN ELIZABETH FRANKLIN Bachelor ofScience Oklahoma State University Stillwater, Oklahoma 1997 Submitted to the faculty ofthe Graduate College of Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE August, 2002 THE DEPOSITIONAL HISTORY OF THE SYCAMORE LIMESTONE Thesis Approved: Thesis Adviser 11 ACKNOWLEDGEMENTS I sincerely thank my advisers for all their help and patience with this thesis. Dr. Al Shaieb provided me with confidence and an unending supply of information. Dr. Boardman and Dr. Cemen provided helpful information from their disciplines. I thank my parents for all their help as well. They supported my family and I both mentally and financially. I especially thank Mom and Dad for watching my sons when I just had to get to school to work. I cannot express how thankful I am to my husband for all his support while I was working on my thesis. Without him, this wouldn't be possible. He and my sons provided support and love when things didn't seem to be going right. Finally I would like to thank the professors in the Geology Department and my fellow students for suffering through my constant questions. Many of them provided ideas and answers that helped me continue on those days where it seemed impossible to do so. III TABLE OF CONTENTS Chapter Page I. INTRODUCTION 1 Purpose ofStudy 1 Location 1 Method ofStudy 3 Formation History 3 Previous Investigations 6 II. GEOLOGICAL SETTING 13 Regional Structure 13 Regional Stratigraphy 16 Sequence Stratigraphy 20 III.
    [Show full text]
  • A New Family of Trepostome Bryozoans from the Ordovician Simpson Group of Oklahoma
    700 JOURNAL OF PALEONTOLOGY, V. 64, NO. 5, 1990 --, B. D. PRATI, AND A. J. ROWELL. 1989. Early Cambrian reefs, Holyoake Range, Antarctica. New Zealand Journal of Geology and reef complexes, and associated lithofacies of the Shackleton Lime­ Geophysics, 31:397-404. stone, Transantarctic Mountains. Sedimentology, 36:341-362. Sowv'Ev, I. A., AND G. E. GRIKUROV. 1979. Novie dannie o ras­ --, AND A. J. ROWELL. In press. The pre-Devonian Palaeozoic elas­ prostranenii Kembriyskikh trilobitov v khrebtakh Ardzhentina i She­ tics of the central Transantarctic Mountains: stratigraphy and depo­ klton [New data on the spread of Cambrian trilobites in the Argentina sitional setting. In M. R. A. Thomson, J. W. Crame, and J. W. Thom­ and Shackleton Mountains]. Antarktika, 18:54-73. son (eds.), Geologic Evolution of Antarctica. Cambridge University TATE, R. 1892. The Cambrian fossils ofSouth Australia. Transactions Press, Cambridge. and Proceedings of the Royal Society of South Australia, 15:183- ROWELL, A. J., K. R. EvANs, AND M. N. REES. 1989. Fauna of the 189. Shackleton Limestone. Antarctic Journal of the United States, 1988 WRONA, R. 1987. Cambrian microfossil Hadimopanel/a Gedik from Review, 23(5):13-14. glacial erratics in West Antarctica. Palaeontological Polonica, 49:37- --, AND M. N. REES. 1989. Early Palaeozoic history of the upper 48. Beardmore Glacier area: implications for a major Antarctic structural Y OCHELSON, E. L. AND E. STUMP. 1977. Discovery of Early Cambrian boundary within the Transantarctic Mountains. Antarctic Science, l: fossils at Taylor Nunatak, Antarctica. Journal of Paleontology, 81: 249-260. 872-875. --, --, R. A. COOPER, AND B. R.
    [Show full text]
  • A Cambrian Meraspid Cluster: Evidence of Trilobite Egg Deposition in a Nest Site
    PALAIOS, 2019, v. 34, 254–260 Research Article DOI: http://dx.doi.org/10.2110/palo.2018.102 A CAMBRIAN MERASPID CLUSTER: EVIDENCE OF TRILOBITE EGG DEPOSITION IN A NEST SITE 1 2 DAVID R. SCHWIMMER AND WILLIAM M. MONTANTE 1Department of Earth and Space Sciences, Columbus State University, Columbus, Georgia 31907-5645, USA 2Tellus Science Museum, 100 Tellus Drive, Cartersville, Georgia, 30120 USA email: [email protected] ABSTRACT: Recent evidence confirms that trilobites were oviparous; however, their subsequent embryonic development has not been determined. A ~ 6cm2 claystone specimen from the upper Cambrian (Paibian) Conasauga Formation in western Georgia contains a cluster of .100 meraspid trilobites, many complete with librigenae. The juvenile trilobites, identified as Aphelaspis sp., are mostly 1.5 to 2.0 mm total length and co-occur in multiple axial orientations on a single bedding plane. This observation, together with the attached free cheeks, indicates that the association is not a result of current sorting. The majority of juveniles with determinable thoracic segment counts are of meraspid degree 5, suggesting that they hatched penecontemporaneously following a single egg deposition event. Additionally, they are tightly assembled, with a few strays, suggesting that the larvae either remained on the egg deposition site or selectively reassembled as affiliative, feeding, or protective behavior. Gregarious behavior by trilobites (‘‘trilobite clusters’’) has been reported frequently, but previously encompassed only holaspid adults or mixed-age assemblages. This is the first report of juvenile trilobite clustering and one of the few reported clusters involving Cambrian trilobites. Numerous explanations for trilobite clustering behavior have been posited; here it is proposed that larval clustering follows egg deposition at a nest site, and that larval aggregation may be a homing response to their nest.
    [Show full text]
  • Athenacrinus N. Gen. and Other Early Echinoderm Taxa Inform Crinoid
    Athenacrinus n. gen. and other early echinoderm taxa inform crinoid origin and arm evolution Thomas Guensburg, James Sprinkle, Rich Mooi, Bertrand Lefebvre, Bruno David, Michel Roux, Kraig Derstler To cite this version: Thomas Guensburg, James Sprinkle, Rich Mooi, Bertrand Lefebvre, Bruno David, et al.. Athenacri- nus n. gen. and other early echinoderm taxa inform crinoid origin and arm evolution. Journal of Paleontology, Paleontological Society, 2020, 94 (2), pp.311-333. 10.1017/jpa.2019.87. hal-02405959 HAL Id: hal-02405959 https://hal.archives-ouvertes.fr/hal-02405959 Submitted on 13 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Journal of Paleontology, 94(2), 2020, p. 311–333 Copyright © 2019, The Paleontological Society. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/ licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. 0022-3360/20/1937-2337 doi: 10.1017/jpa.2019.87 Athenacrinus n. gen. and other early echinoderm taxa inform crinoid origin and arm evolution Thomas E.
    [Show full text]
  • Athenacrinus N. Gen. and Other Early Echinoderm Taxa Inform Crinoid Origin and Arm Evolution
    Journal of Paleontology, 94(2), 2020, p. 311–333 Copyright © 2019, The Paleontological Society. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/ licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. 0022-3360/20/1937-2337 doi: 10.1017/jpa.2019.87 Athenacrinus n. gen. and other early echinoderm taxa inform crinoid origin and arm evolution Thomas E. Guensburg,1 James Sprinkle,2 Rich Mooi,3 Bertrand Lefebvre,4 Bruno David,5,6 Michel Roux,7 and Kraig Derstler8 1IRC, Field Museum, 1400 South Lake Shore Drive, Chicago, Illinois 60605, USA <tguensburg@fieldmuseum.org> 2Department of Geological Sciences, Jackson School of Geosciences, University of Texas, 1 University Station C1100, Austin, Texas 78712-0254, USA <[email protected]> 3Department of Invertebrate Zoology, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, California 94118, USA <[email protected]> 4UMR 5276 LGLTPE, Université Claude Bernard, Lyon 1, France <[email protected]> 5Muséum National d’Histoire Naturelle, Paris, France <[email protected]> 6UMR CNRS 6282 Biogéosciences, Université de Bourgogne Franche-Comté, 21000 Dijon, France <[email protected]> 7Muséum National d’Histoire Naturelle, UMR7205 ISYEB MNHN-CNRS-UMPC-EPHE, Département Systématique et Évolution, CP 51, 57 Rue Cuvier, 75231 Paris Cedex 05, France <[email protected]> 8Department of Earth and Environmental Studies, University of New Orleans, 2000 Lake Shore Drive, New Orleans, Louisiana 70148, USA <[email protected]> Abstract.—Intermediate morphologies of a new fossil crinoid shed light on the pathway by which crinoids acquired their distinctive arms.
    [Show full text]
  • Oklahoma Geological Survey Publications on Fossils Bulletins
    Oklahoma Geological Survey Publications on Fossils Bulletins Bulletin Part 1. Geology of a portion of northeastern Oklahoma. Part 2. Paleontology of the 24 Chester group in Oklahoma, by L. C. Snider. 1915. Bulletin Fossiliferous boulders in the Ouachita "Caney" shale, and the age of the shale 45 containing them, by E. O. Ulrich. 1927 Bulletin Micropaleontology of the Wetumka, Wewoka, and Holdenville formations, by A. S. 53 Warthin, Jr. 1930. Bulletin Ostracoda of the Simpson Group of Oklahoma, by R. W. Harris. 1957. 75 Stratigraphy and paleontology of the Hunton Group in the Arbuckle Mountain region. Bulletin Part II, Haragan articulate brachiopods, by Thomas W. Amsden. Part III, Supplement 78 to the Henryhouse brachiopods, by Thomas W. Amsden. Part IV, New genera of brachiopods, by Arthur J. Boucot and Thomas W. Amsden. 1958. Bulletin Stratigraphy and paleontology of the Hunton Group in the Arbuckle Mountain region. 82 Part V, Bois d’Arc articulate brachiopods, by Thomas W. Amsden. 1958. Bulletin Stratigraphy and paleontology of the Hunton Group in the Arbuckle Mountain region. 84 Part VI, Stratigraphy, by Thomas W. Amsden. 1960. Bulletin Stratigraphy and paleontology of the Hunton group in the Arbuckle Mountain region. 85 Part VI, Stratigraphy, by Thomas W. Amsden. 1960. Bulletin Late Desmoinesian crinoid faunule from Oklahoma, by Harrell L. Strimple. 1961. 93 Early Devonian brachiopods of Oklahoma. Part I, Articulate brachiopods of the Frisco Formation (Devonian), by Thomas W. Amsden and W. P. S. Ventress. Part II, Bulletin Articulate brachiopods of the Sallisaw Formation (Devonian), by Thomas W. Amsden. 94 Part III, Supplement to the Haragan (Devonian) brachiopods, by Thomas W.
    [Show full text]
  • Katian GSSP and Carbonates of the Simpson and Arbuckle Groups in Oklahoma Jesse R
    University of Dayton eCommons Geology Faculty Publications Department of Geology 2015 Katian GSSP and Carbonates of the Simpson and Arbuckle Groups in Oklahoma Jesse R. Carlucci Midwestern State University Daniel Goldman University of Dayton, [email protected] Carlton E. Brett University of Cincinnati - Main Campus Stephen R. Westrop University of Oklahoma Stephen A. Leslie James Madison University Follow this and additional works at: https://ecommons.udayton.edu/geo_fac_pub Part of the Geology Commons, and the Stratigraphy Commons eCommons Citation Carlucci, Jesse R.; Goldman, Daniel; Brett, Carlton E.; Westrop, Stephen R.; and Leslie, Stephen A., "Katian GSSP and Carbonates of the Simpson and Arbuckle Groups in Oklahoma" (2015). Geology Faculty Publications. 5. https://ecommons.udayton.edu/geo_fac_pub/5 This Article is brought to you for free and open access by the Department of Geology at eCommons. It has been accepted for inclusion in Geology Faculty Publications by an authorized administrator of eCommons. For more information, please contact [email protected], [email protected]. Stratigraphy, 12 (2) 12th International Symposium on the Ordovician System Katian GSSP and Carbonates of the Simpson and Arbuckle Groups in Oklahoma Jesse R. Carlucci1 Daniel Goldman2 Carlton E. Brett3 Stephen R. Westrop4 Stephen A. Leslie5 1Assistant Professor, Kimbell School of Geosciences, Midwestern State University, Wichita Falls TX, [email protected] 2Professor & Chair, Department of Geology, University of Dayton, Dayton OH, [email protected] 3Professor, Department of Geology, University of Cincinnati, Cincinnati OH, [email protected] 4Professor & Curator of Invertebrate Paleontology, University of Oklahoma, Sam Noble Oklahoma Museum of Natural History, Norman OK, [email protected] 5Professor & Department Head, Department of Geology and Environmental Science, James Madison University, Harrisonburg VA, [email protected] 144 Stratigraphy, 12 (2) TABLE OF CONTENTS & GPS COORDINATES pg.
    [Show full text]
  • Echinoderms Newsletter
    l The Echinoderms Newsletter No.8. February, 1977 Prepared in the Department of Invertebrate Zoology (Echinoderms), National Museum of Natural History, Smithsonian Institution, Washington D.C., 20560, U.S.A. With this issue we include the good news that the Third Echino- derms Conference is to be held in March, 19~. Those of you who are interested in participating are urged to complete and send to Frank Rowe the enclosed pre-registration form without delay. Regional Editors, we eagerly await your c~ntributions; please send us what you have, and we'll circulate it promptly. I think that for the first time ever we have produced two News- letters within the span of a year. This astounding feat would not have been possible at all without the monumental labors of Cynthia Gust who, becoming impatient with our well developed procrastination techniques, set to and typed virtually all of the Newsletter, duplicated it, addressed the envelopes, and did a million other things. We owe her a great vote of thanks. David L. Pawson Maureen E. Downey IThe Echinoderms Newsletter is not intended to be part of the ~~~ntific literature, and should not be cited, abstracted, or reprinted as. published document. HELP ~! - ADDRESSES UNKNOWN If you happen t~ know the addresses of any of the following people, please let us know. Thank you. J. Campbell Landenberger Judith Eastwood Paul Leviten Finn Edvardsen Karl Mauzey Losza Endelman R.G. McKellar Carol Mosher Fernandez B.F. Mcrherson Olga Grageda Richard Merrill Spencer Hamada A. T. Mu J.R. Harger P.R. Noble Ira Jones B.S.
    [Show full text]
  • Chickasaw National Recreation Area Paleontological Resources Inventory (Public Version)
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science Chickasaw National Recreation Area Paleontological Resources Inventory (Public Version) Natural Resource Report NPS/CHIC/NRR—2016/1276 ON THE COVER Echinoderm stalk and columnals collected from the Welling Formation at the “Veterans Lake” echinoderm locality. Photo taken by Roger Burkhalter at the Sam Noble Oklahoma Museum of Natural History at 2X magnification. Chickasaw National Recreation Area Paleontological Resources Inventory (Public Version) Natural Resource Report NPS/CHIC/NRR—2016/1276 Alysia S. Korn National Park Service Geoscientists-in-the-Parks Program Chickasaw National Recreation Area [email protected] Madison L. Armstrong National Park Service Geoscientists-in-the-Parks Program Chickasaw National Recreation Area [email protected] Vincent L. Santucci National Park Service Geologic Resources Division 1201 Eye Street, NW (Room 1146) Washington, D.C. 20005 [email protected] Justin Tweet Tweet Paleo-Consulting 9149 79th St. S. Cottage Grove, Minnesota 55016 [email protected] August 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service.
    [Show full text]
  • Horseshoe Crab Trace Fossils from the Upper Cretaceous Two Medicine Formation of Montana, USA, and a Brief Review of the Xiphosurid Ichnological Record
    Journal of Paleontology, 94(5), 2020, p. 887–905 Copyright © The Author(s), 2020. Published by Cambridge University Press on behalf of The Paleontological Society. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. 0022-3360/20/1937-2337 doi: 10.1017/jpa.2020.16 Horseshoe crab trace fossils from the Upper Cretaceous Two Medicine Formation of Montana, USA, and a brief review of the xiphosurid ichnological record Masateru Shibata1 and David J. Varricchio2* 1Institute of Dinosaur Research, Fukui Prefectural University, Fukui, Japan <[email protected]> 2Earth Sciences, Montana State University, Bozeman, MT 59717, USA <[email protected]> Abstract.—A locality in the Upper Cretaceous Two Medicine Formation of Montana preserves abundant and variable horseshoe crab tracks and trails of the ichnotaxon Kouphichnium isp. These specimens span six morphologies differing in track form and trail configuration. These differences likely reflect variations in track-maker locomotion and behavior, substrate consistency, epichnial versus hypichnial preservation, and undertrack versus true tracks. Several tracks preserve the first clear appendage impressions for an extinct horseshoe crab. This discovery adds new information to the fossil horseshoe crab diversity in the Cretaceous Period. Trackway dimensions, such as the external width across the pusher legs or of the prosomal drag mark, provide information on the track-maker size. Most trackways correspond with crabs 9–14 cm wide; the abundance but limited size range of the traces suggests the large assemblage corresponds to a mating aggregation.
    [Show full text]