Download This Article in PDF Format
Total Page:16
File Type:pdf, Size:1020Kb
E3S Web of Conferences 175, 12018 (2020) https://doi.org/10.1051/e3sconf/202017512018 INTERAGROMASH 2020 Introduction potential of GPS navigation technology for supervision control at capital construction, reconstruction and conversion projects Dmitriy Topchiy1,*, Alexey Yurgaytis1 and Dmitriy Yurgaytis2 1Moscow State University of Civil Engineering, 129337, 26, Yaroslavskoye Shosse, Moscow, Russia 2Lomonosov Moscow State University, 129305, 22, Lomonosovsky Avenue, Moscow, Russia Abstract. This article analyzes potential use of various navigation technologies to implement building supervision functions for capital construction, reconstruction and conversion projects. It indicates the basic prerequisites for the development of such technologies and describes the navigation physical principle applicable due to its properties for a certain range of supervision functions in the construction industry. The article also examines testing of corresponding software systems on the construction sites in Moscow in control operations by the Technical Customer’s engineers, and analyzes the potential of using adjacent navigation systems for similar purposes as compared with the main physical and technical characteristics of implementation in professional software packages. 1 Introduction The following is the definition of the systems science that now offers additional possibilities of developing human activities in a number of areas including the construction industry. Navigation (Latin navigatio, from Latin navigo – ‘I go by boat’) is a field of study that focuses on methods to determine velocity, location and orientation of moving objects; it has evolved as a result of the general ship navigation study development (Table 1). In the modern world, it is virtually impossible to imagine human life without the navigation technology - navigation systems enable safe cargo and passenger transportation by air, sea and land; coordination of space devices and rescue operations; meeting the requirement of online tracking in large cities and heavy urban traffic, etc [1-2]. Table 1. Milestones of navigation science development. Item Historical period Location Event No. 1. Ancient World Ancient The properties of magnetic iron ore are described (6th century B.C.) Greece by Thales of Miletus for the first time ever 2. Middle Ages (11th China, Song In his work ‘The Four Great Chinese Inventions’ century; ~ dynasty Joseph Nidem, researcher of Chinese and ancient * Corresponding author: [email protected] © The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/). E3S Web of Conferences 175, 12018 (2020) https://doi.org/10.1051/e3sconf/202017512018 INTERAGROMASH 2020 1044) Chinese science, mentions among other inventions (paper, gunpowder, book printing) the first magnetic device determining an object’s location (i.e. compass) to facilitate navigation along with maps and pilot charts used in sea voyages. 3. Middle Ages (12th - Europe First prototypes of the modern compass. In the 13th century) late 12th century Necame of England and Gio de Provins of France were the first to describe the simplest boussole (“compass” in French), a device intended to determine the magnetic azimuth. 4. Middle Ages (early Europe Flavio Fioia of Italy refined on the existing 14th century) (Italy) magnetic device (i.e. compass, 16 rhumbs) 5. Renaissance Europe The compass card was divided into 32 rhumbs, (16th century) and the needle framing was put inside a gimbal to remove the impact of ship motions 6. Modern Age Europe The compass was equipped with a direction (17th century) finder, i.e. a rotating diametric ruler with sighting devices at the ends with its center based on the box cover above the needle 7. Contemporary Europe Hermann Anschütz-Kaampfe, a German history (Germany) engineer, invented the gyroscope (1908) 8. Contemporary Europe Plus Fours Routefinder, the first prototype of the history modern navigator in the form of a wrist watch (1920) 9. Contemporary Europe Iter-Auto, the first in-car navigator history (1930) 10. Contemporary USA The first electronic navigation system with the history punched cards technology developed by General (1966) Motors (Driver Aid Information and Routing) 11. Contemporary USSR Launching of first artificial satellite of the Earth history marked the start of the satellite navigation era. (1957) 12. Contemporary USA In 1974, the idea of satellite navigation based on history the Doppler Effect was implemented by the US (1974 - 1994) military which launched the first of the 24 GPS satellites to cover the entire area of the Earth. The last of them was launched in 1994. There are 32 satellites of that kind at the moment. 13. Contemporary USSR Development of the GLONASS project was history officially started in the USSR in 1976, but the (since 1976) first two satellites however were not launched until 1984. Similarly to GPS, 24 satellites are required to cover the entire area of the Earth, 14. Contemporary USA, In 1983, following the Soviet Air Force shoot history USSR down a Korean Airline civil aircraft that incurred (since 1983) into the Soviet Union airspace, it was decided to create GPS for civil needs. 2 E3S Web of Conferences 175, 12018 (2020) https://doi.org/10.1051/e3sconf/202017512018 INTERAGROMASH 2020 2 Methods The Satellite Navigation System (Tables 2 and 3) is an integrated system consisting of equipment placed in space orbit and on the ground and designed to determine the coordinates and trajectory parameters of an object. There is a group of satellites in space orbit with each of them emitting signals in the radiofrequency band [3-4]. Once the signal reaches an object on Earth and is processed, the distance from the object to the satellite is calculated using previously known data (such the location of the satellite). The distance is determined by calculating the formulas of wave propagation in the medium. The waves from the satellites propagate at the speed of light, and the lag between their emission in the space and receipt on Earth is directly proportional to the distance between the object and the satellite [5-6]. Table 2. Types of modern navigation systems. Item Navigation system type System subtypes groups No. 1. Satellite-borne NAVSTAR (GPS); GLONASSS; Doris etc. 2. Based on extremely low frequency waves, Radio-navigational medium frequency waves, high frequency waves, etc. 3. Inertial Platform INS, platformless INS Table 3. Satellite navigation systems over the periods. Name of the Item Developer satellite Brief description based on the main Historical No. country navigation parameters period system 1. USA Transit The system included 5 satellites in 1958 – polar orbits and was originally 1996 intended to periodically offset the guidance systems of sea-based ballistic missiles, as well as to correct the errors of ship inertial navigation systems under any weather conditions. The objects location error is approx. 25 m, location determination period is 1–3 hours, and location determination time is 10–16 minute. The TRANSIT system has developed into GPS 2. USSR Cyclone The world’s first combined 1967 – navigation & communication satellite 1978 complex. A satellite-borne transponder was fitted for wireless communication. With a group of 6 Parus satellites in orbit, the system was able to determine plane coordinates accurate to 80–100 meters. 3. USSR (RF) Tsikada The system included 4 navigation 1979 – satellites at an incline of 83 degrees 1997 with uniform distribution of orbital plane along the equator. 4. USSR (RF) Parus The systems were used to provide 1976 – space communications and navigation 2010 3 E3S Web of Conferences 175, 12018 (2020) https://doi.org/10.1051/e3sconf/202017512018 INTERAGROMASH 2020 data for submarines and surface vessels of the Russian Navy. They form the Cyclone Space Military Navigation & Communication System. The satellites are put into subpolar orbits at an incline of 82.9 degrees, perigee altitude of 970 km and apogee altitude of 1,200 km. 5. USA NAVSTAR The development of the US (GPS) Department of Defense. The GPS system provides services on a global scale. The orbital group initially consisted of 24 satellites located in 6 orbital planes with an inclination of 64.5 degrees to the geostationary orbit plane. Satellite signals have the following carrier frequencies: L1=1575.42 MHz, L2=1227.60 MHz, L5=1176.45 MHz (the latest models). The operating GPS wavelength falls within UHF, which means that the signal reception level may be severely degraded by physical obstacles and magnetic storms. This factor constitutes the main problem in precise determination of an object’s location. However, the accuracy may be increased using signal phase measurement. The satellite‘s data transmission frequency is 1575.42 MHz. The data include: ephemeris – precise orbit and clock adjustment data for each satellite; almanac – location data of the satellite. There are 31 GPS satellites currently in orbit. Each satellite transmits its unique signature consisting of random sequence (Pseudo Random Noise (PRN) code) of 1,023 units of 0’s and 1’s. There are 2 types of PRN code: a P- code processed by a GPS receiver with an accuracy of more than 10 m; and a C/A-code with an accuracy of approx. 20 m. The unique ID is added in the code to determine the signal- transmitting satellite and to measure the signal transit time. 6. USSR (RF) GLONASS The GLONASS satellites are situated in the medium-altitude circular orbit at an altitude of 19,400 km with inclination of 64.8 degrees and orbital period of 11 hours and 15 minutes. These satellites continuously emit two types of navigation signals: a standard accuracy navigation signal in L1 band 4 E3S Web of Conferences 175, 12018 (2020) https://doi.org/10.1051/e3sconf/202017512018 INTERAGROMASH 2020 (1.6 GHz), and a high accuracy navigation signal in L1 and L2 bands (1.2 GHz). The system exploits frequency division of channels - each satellite generates a wave at its own carrier frequency.