Pyrophosphate-Dependent Enzymes in Walled Bacteria Phylogenetically Related to the Wall-Less Bacteria of the Class Mollicutes?
INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, Oct. 1989, p. 413419 Vol. 39, No. 4 OO20-7713/89/O4O413-07$02.00/0 Copyright 0 1989, International Union of Microbiological Societies Pyrophosphate-Dependent Enzymes in Walled Bacteria Phylogenetically Related to the Wall-Less Bacteria of the Class Mollicutes? JAMES P. PETZEL,'S PAUL A. HARTMAN,'* AND MILTON J. ALLISON2 Department of Microbiology, Iowa State University, Ames, Iowa 5001 1-321I ,I and National Animal Disease Center, U.S. Department of Agriculture, Ames, Iowa 500102 Some of the wall-less bacteria of the class Mollicutes (mycoplasmas) have pyrophosphate (PP,)-dependent enzymic activities, including PP,-dependent phosphofructokinase (PP,-PFK), PP,-dependent nucleoside kinase, and pyruvate,orthophosphate dikinase (PPDK) activities. In most other bacteria, adenosine 5'-triphosphate (ATP), not PP,, is the cofactor of analogous enzymic reactions. Because PP,-dependent enzymes are more common among mollicutes than other bacteria, we describe here an examination of the six walled bacteria that have been reported to be phylogenetically related to the mollicutes (Clostridium innocuum, Clostridium ramosum, Erysipelothrix rhusiopathiae, Lactobacillus catenaformis, Lactobacillus vitulinus, and Streptococcus pleomorphus) for PP,-PFK, ATP-dependent PFK, phosphoenolpyruvate carboxytransphosphorylase, PPDK, and PP,- and ATP-dependent acetate kinases. Two anaerobic mollicutes, Anaeroplasma intermedium and Asteroleplasma anuerobium, were also tested. C. innocuum, E. rhusiopathiue, S. pleomorphus, and Anuero- plasma intermedium had PPi-PFK activities, whereas C. ramosum, the two lactobacilli, and Asteroleplasma anaerobium had only ATP-dependent PFK activities. Asteroleplasma anaerobium and all of the walled bacteria except E. rhusiopathiue had PPDK activities. All of the species except Asteroleplasma anaerobium and E. rhusiopathiae also had pyruvate kinase activities; the effects of allosteric activators were tested.
[Show full text]