United States Patent Office Patented Sept

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent Office Patented Sept 3,205,214 United States Patent Office Patented Sept. 7, 1965 2 usual catalytic amount of the two catalytic components 3,205,214 can be used within the range of, for example, 0.2 to about PPERYLENE POLYMERZATION Thomas B. Taicott, Wadsworth Township, Ohio, assignor 20 millimoles per 100 grams of monomer. to The Firestone Tire & Rubber Company, Akron, Piperylene can be polymerized by the method of the Ohio, a corporation of Ohio 5 invention either as the sole monomer or in the presence No Drawing. Filed May 15, 1961, Ser. No. 109,814 of one or more additional ethylenically unsaturated com 2 Claims. (C. 260-94.3) pound, with which it may or may not copolymerize, de pending upon the specific monomer and the specific cata This invention relates to the polymerization of piperyl lyst combination. For instance, a mixed hydrocarbon ene, either cis-piperylene or trans-piperylene or a mixture O stream containing both piperylene and isoprene can be of the two, and other monomers may be present. The treated to polymerizing conditions in accordance with the invention relates more particularly to a process of polym-. invention to polymerize the piperylene selectively, leaving erization using a catalyst containing iodine, either in com all or most of the isoprene in the stream unpolymerized. bined or initially uncombined form. A different catalyst ratio or combination within the scope A piperylene polymer produced by the invention con 15 of the invention can be utilized to produce a piperylene tain in the piperylene portion over 98 percent 1,4-addi isoprene copolymer. On the other hand, a hydrocarbon tion microstructure, and unexpectedly it is over 85 percent stream containing both piperylene and butadiene-1,3 can trans-1,4-addition polymer. The polymer of such high be copolymerized to a useful rubbery polymer by the in content of the trans-stereo isomer tends toward crystal vention. Other monomers can be copolymerized with linity, is tough and exceptionally strong; and the more 20 piperylene by means of the invention, including, with nearly the trans-isomer content approaches 100 percent, out limitation, styrene, alpha-methylstyrene, vinyltoluene, the more accentuated are these properties. The high con chlorostyrene, 2,3-dimethylbutadiene-1,3 and other Suit tent of trans-1,4-addition is surprising, because when able alpha-olefins. butadiene is polymerized in the same catalyst system, the Any hydrocarbon solvent for the monomer can be used, percentage of cis-1,4-addition in the product is high. :25 such as pentane, hexane, petroleum ether, heptane, octane, The catalyst of the invention comprises a hydrocarbon benzene, toluene, a xylene, isoprene or other hydrocarbon aluminum compound and a halide of titanium or zirco solvent that is liquid at the polymerization temperature. nium, there being at least about one atom of iodine present A mixture of solvents, e.g., xylene and pentane, can be for each atom of the Group IV metal in the catalyst. This used. Excess piperylene can be used as solvent. A polym iodine requirement can be met by use in the catalyst corn 30 erization temperature of about 0 to 100° C. is Satisfac bination of titanium tetraiodide, Tils, Tia, TilgCl2, tory. TilBr, TiBrC1, TiCl, TilBrand similar halides. The The following examples illustrate the invention. All iodine requirement can also be met by including in the parts and percentages are by weight unless otherwise indi catalyst makeup an iodine-containing organoaluminum cated. In Examples 3-5, trans-piperylene (substantially compound, such as an alkylaluminum diiodide, a dialkyl 35 free of cis-piperylene) was subjected to polymerization. aluminum iodide, an alkylaluminum chloroiodide and sim ‘The first example describes the preparation of this mate ilar compounds; in which case at least sufficient of the rial. aluminum compound is utilized to provide the required EXAMPLE 1-PREPARATION OF TRANS amount of iodine in the catalyst. A further alternative . catalyst is provided by addition of elemental iodine to a 40 PIPERYLENE hydrocarbon aluminum-titanium chloride or bromide (or The piperylene used was a by-product from the prep the analogous zirconium salts) catalyst, sufficient iodine aration of isoprene and had the following analysis: being provided to supply at least about one atom of iodine Percent per atom of the Group IV metal present. Mixtures of 45 Trans-piperylene ----------------------------- 58.6 the various catalyst combinations outlined above are op Cis-piperylene ------------------------------- 34.5 erable so long as the iodine requirement is met. The molar Isoprene ------------------------------------- 1.2 ratio of aluminum compound to the Group IV metal halide Cyclopentadiene ------------------------------ 4. in the catalyst is generally 0.5/1.0 to 4.0/1.0, and usually Isopropenyl acetylene -------------------------- 1.6 in the range of 1/1 to 3.5/1. The aluminum component of the catalyst can, for ex 50 The cyclopentadiene and isopropenyl acetylene are gen ample, be trimethyl aluminum, triethyl aluminum, any erally considered polymerization inhibitors. The former tripropyl aluminum, any tributyl aluminum or any other was removed by reaction with maleic anhydride; the lat trialkyl aluminum in which the alkyl group contains up ter was removed by admixture with a reagent containing to about 8 or 10 carbon atoms, e.g., trioctyl-, trinonyl-, and the cuprous ion. tridecyl-aluminum; tribenzylaluminum or phenyldibutyl 55 Pure trans-piperylene was produced from the purified aluminum; or it can be an alkyl aluminum chloride of the mixture of cis- and trans-isomers by the sulfone method formula alkyl, AlCly in which x and y are whole numbers of David Craig, Journal of the American Chemical So that total 3, such as dibutyl aluminum chloride, ethyl ciety, volume 65, page 1006 (1943). The product (trans aluminum dichloride, etc., and in which the alkyl group piperylene) was completely free of cis-piperylene and can be any of the foregoing alkyl groups which contain 60 contained less than 1 percent of isoprene as the only im upto 8 or 10 carbon atoms. The alkyl groups can be purity. straight or branched chain and any one aluminum com EXAMPLE 2 ponent can contain alkyl groups in which there are a different number of carbon atoms. Analogous alkenyl The piperylene used in this experiment was a mixed groups can be substituted for the alkyls named above. Any 65 piperylene which in addition to a trace of isoprene con 3,205,214 3. 4 tained about 63 percent trans-piperylene and 37 percent invention with hevea rubber, synthetic cis-polyisoprene, cis-piperylene. The details of the process and an analysis butadiene-styrene synthetic rubbers and/or with poly of the product are given in Table I. The amount of each butadiene rubbers are usefully vulcanized into pneumatic catalyst component is given as millimoles per each 100 tire treads, sidewalls and body stocks, as well as into grams of piperylene used. many mechanical rubber goods. The unvulcanized poly piperylene can be chlorinated to provide a useful sub EXAMPLES 3-5 stitute for chlorinated natural rubber in coatings and ad The trans-piperylene of Example 1 and benzene were hesives. dried by distilling off a portion and discarding the distill What is claimed is: late. Three polymerization bottles were charged with 1. The process of polymerizing piperylene which com the monomer and solvent. They were then capped, using 0. prises treating the piperylene in a hydrocarbon solvent at rubber liners; the catalyst components were injected a temperature between 0 and 100° C. with 0.2 to 20 milli through the liners so that they reacted and formed the moles of catalyst per 100 moles of monomer, the catalyst active catalyst in situ; and the bottles were turned end being composed of a trialkyl aluminum compound and a over-end in a polymerization bath. The details of the halide of titanium that includes at least one atom of iodine charges, the polymerization process, and the products are for one atom of titanium, the molar ratio of the aluminum summarized in the following table where they are des compound to the halide being within the range of 0.5/1 ignated Examples 3, 4 and 5. The charge is given in to 4/1. grams. The microstructures of the products were deter 2. The process of claim 1 in which the titanium halide mined by known infrared technique. 20 is titanium tetraiodide. Table I-Polymerization of piperylene Example 2 Example 3 Example 4 Example 5 Mixed Piperylenes (g).------------- Trans-Piperylene (g.)-- 00. Benzene (g.)----------- 200. Al(CH5)3(mm. perf100 g. monomer). 4.4. Ti4 (mm. perf100 g. monomer)------- O. 1.76. Molar Ratio, Al(CH5)3/Til---------------- 3.0------------ 2.5------------ 2.5. Temperature (C.) and Time (hours).------ 72hrs. at 30 20 hrs. at 5°; 24 hrs. at 5°; 52 hrs. at 48 hrs., at Appearance of Polymer Solution--------------------------- ser st Conversion, percent------------------------ 774----------- REso...I SESs. Microstructure: cis-1,4 percent.------------------------- 16.2----------- 10.7----------- 4.4. trans-1.4 percent------------- 83.8--- 88.4----------. 94.8 1,2 percent----------------------------- 0.0------------ 0.9------------ 0.8. In Examples 3-5, polymerization was slight at 5 C., References Cited by the Examiner but was substantial at about room temperature, and po 40 lymerization in the range of about 15 to 50 C. is pre UNITED STATES PATENTS ferred. The high content of trans-1,4-addition polymer 2,959,576 11/60 Payne --------------- 260-94.9 is characteristic of all of these products. 2,979,488 4/61 Carpenter ------------- 260-79 The polypiperylene of the invention, its copolymers 2,999,087 9/61 Thomas et al. ------ 290-94.3 with other diolefins and its copolymers in which it pre 45 3,050,513 8/62 Zelinski et al. -------- 260-94.3 dominates are ethylenically unsaturated polymers, more FOREIGN PATENTS or less rubbery in nature, and capable of being vulcanized to a more elastic, less thermoplastic condition by means 827,365 2/60 Great Britain.
Recommended publications
  • Download Flyer
    NexantThinkingTM Special Reports C5 Chemicals: Unlocking Hidden Opportunities in Steam Crackers? Brochure January 2017 NexantThinkingTM Special Reports C5 Chemicals: Unlocking Hidden Opportunities in Steam Crackers? Brochure January 2017 A50801. Special Reports This Report was prepared by Nexant, Inc. (“Nexant”) and is part of the NexantThinking™ suite. Except where specifically stated otherwise in this Report, the information contained herein is prepared on the basis of information that is publicly available, and contains no confidential third party technical information to the best knowledge of Nexant. Aforesaid information has not been independently verified or otherwise examined to determine its accuracy, completeness or financial feasibility. Neither Nexant, Subscriber nor any person acting on behalf of either assumes any liabilities with respect to the use of or for damages resulting from the use of any information contained in this Report. Nexant does not represent or warrant that any assumed conditions will come to pass. The Report is submitted on the understanding that the Subscriber will maintain the contents confidential except for the Subscriber’s internal use. The Report should not be reproduced, distributed or used without first obtaining prior written consent by Nexant. Each Subscriber agrees to use reasonable effort to protect the confidential nature of the Report. Copyright © by Nexant Inc. 2017. All rights reserved. Contents Section Page 1 Introduction and Report Objectives .......................................................................................
    [Show full text]
  • SAFETY DATA SHEET Classified in Accordance with Health Canada Hazardous Products Regulations (SOR/2015-17)
    Version: 8.0 Revision Date: 01/02/2020 SAFETY DATA SHEET Classified in accordance with Health Canada Hazardous Products Regulations (SOR/2015-17) 1. Identification Product identifier: Hydrocarbons C5 Rich Other means of identification Common name(s), Crude Isoprene; Isoprene/Piperylene Concentrate; C5 Mixture; Isoprene synonym(s): Product SDS number: NOVA-0007 Recommended use and restriction on use Recommended use: Petrochemical feedstock. Restrictions on use: All uses other than the identified. Manufacturer/Importer/Supplier/Distributor Information Manufacturer Company Name: NOVA Chemicals Address: P.O. Box 2518, Station M Calgary, Alberta, Canada T2P 5C6 Telephone: Product Information: 1-412-490-4063 SDS Information Email: [email protected] Emergency telephone number: 1-800-561-6682, 1-403-314-8767 (NOVA Chemicals) (24 hours) 2. Hazard(s) identification Hazard Classification According to Hazardous Products Regulations Physical Hazards Flammable liquids Category 1 Static-accumulating flammable liquid Category 1 Health Hazards Acute toxicity (Oral) Category 4 Skin Corrosion/Irritation Category 2 Serious Eye Damage/Eye Irritation Category 2A Germ Cell Mutagenicity Category 2 Carcinogenicity Category 1B Specific Target Organ Toxicity - Category 3 Single Exposure Aspiration Hazard Category 1 Environmental Hazards Acute hazards to the aquatic Category 3 environment Chronic hazards to the aquatic Category 3 environment Label Elements Hazard Symbol: SDS_CA 1/14 Version: 8.0 Revision Date: 01/02/2020 Signal Word: Danger Hazard Statement: Extremely flammable liquid and vapour. Static accumulating flammable liquid can become electrostatically charged even in bonded and grounded equipment. Sparks may ignite liquid and vapour. May cause flash fire or explosion. Harmful if swallowed. Causes skin irritation. Causes serious eye irritation.
    [Show full text]
  • Material Safety Data Sheet SECTION 1: PRODUCT and COMPANY IDENTIFICATION SECTION 2: INGREDIENTS
    MATERIAL SAFETY DATA SHEET 3M™ Weatherstrip Adhesive - Black, P.N. 08011 08/26/11 Material Safety Data Sheet Copyright, 2011, 3M Company All rights reserved. Copying and/or downloading of this information for the purpose of properly utilizing 3M products is allowed provided that: (1) the information is copied in full with no changes unless prior written agreement is obtained from 3M, and (2) neither the copy nor the original is resold or otherwise distributed with the intention of earning a profit thereon. SECTION 1: PRODUCT AND COMPANY IDENTIFICATION PRODUCT NAME: 3M™ Weatherstrip Adhesive - Black, P.N. 08011 MANUFACTURER: 3M DIVISION: Automotive Aftermarket ADDRESS: 3M Center, St. Paul, MN 55144-1000 EMERGENCY PHONE: 1-800-364-3577 or (651) 737-6501 (24 hours) Issue Date: 08/26/11 Supercedes Date: 02/03/09 Document Group: 10-2974-3 Product Use: Intended Use: Automotive Specific Use: Trim Adhesive SECTION 2: INGREDIENTS Ingredient C.A.S. No. % by Wt NAPHTHA (PETROLEUM), SOLVENT-REFINED LIGHT 64741-84-0 40 - 60 HEXANE 110-54-3 10 - 30 HEPTANE 142-82-5 2 - 12 METHYLCYCLOPENTANE 96-37-7 2 - 12 2-METHYLPENTANE 107-83-5 5 - 10 3-METHYLPENTANE 96-14-0 5 - 10 POLYISOPRENE 9003-31-0 3 - 7 NAPHTHA, LIGHT STEAM-CRACKED AROM., PIPERYLENE CONC., 68478-07-9 3 - 7 POLYMD. STYRENE-BUTADIENE POLYMER 9003-55-8 3 - 7 TALC 14807-96-6 3 - 7 TOLUENE 108-88-3 3 - 7 FORMALDEHYDE, POLYMER WITH 4-(1,1-DIMETHYLETHYL)PHENOL, Trade Secret 1 - 5 MAGNESIUM OXIDE COMPLEX ROSIN, POLYMD., CALCIUM AND ZINC SALTS 68188-23-8 0 - 5 ZINC RESINATE 9010-69-9 0 - 3 CYCLOHEXANE 110-82-7 < 3 2,3-DIMETHYLBUTANE 79-29-8 0.5 - 1.5 ETHYL ALCOHOL 64-17-5 0.1 - 1 ZINC OXIDE 1314-13-2 <= 0.23 BENZENE 71-43-2 < 0.06 _________________________________________________________________________________________________ Page 1 of 10 MATERIAL SAFETY DATA SHEET 3M™ Weatherstrip Adhesive - Black, P.N.
    [Show full text]
  • United States Patent' Office
    ' Patented Feb. 7, i950 - 2,496,868 UNITED STATES PATENT‘ OFFICE 2,496,868 POLYMERS OF 3-VINYLPYRENE Ralph G. Flowers, Pitts?eld, Mass., assignm- to to General Electric Company, a corporation of New York No Drawing. Application May 13, 1948, ' , Serial No. 26,940 12 Claims. (Cl. 260—87.3) 2 This invention relates to polymers and co such as boron tri?uoride, are used. aperiod of polymers of vinyl compounds and to methods of time elapses between the addition of the catalyst , preparing same. More particularly, the inven and the beginning of the polymerization. This tion-ia concerned with new and useful composi tendency is particularly marked when the poly tions of matter comprising the product of poly merization is carried out at elevated tempera merization of a mass comprising 3-vinylpyrene. tures. A very large amount of solvent often in In my copending application, Serial No. 26,939, hibits or retards the polymerization of the mono ?led concurrently herewith and assigned to the mer or comonomers to the extent that polymer same assignee as the present invention, there are ization is not e?ected in a reasonable time. disclosed and claimed 3-vinylpyrene and methods 10 Another method which has been found effective - of preparing the same. I have now discovered in preparing the homopolymers and copolymers that this monomeric material may be polymer of the instant claimed invention includes ‘the ized or copolymerized with other polymerizable preparation of an intimate mixture of the mono compositions to yield valuable and useful com- ' meric materials by preparing a suspension or positions of matter.
    [Show full text]
  • 2002-00238-01-E.Pdf (Pdf)
    report no. 01/54 environmental classification of petroleum substances - summary data and rationale Prepared by CONCAWE Petroleum Products Ecology Group D. King (Chairman) M. Bradfield P. Falkenback T. Parkerton D. Peterson E. Remy R. Toy M. Wright B. Dmytrasz D. Short Reproduction permitted with due acknowledgement CONCAWE Brussels October 2001 I report no. 01/54 ABSTRACT Environmental data on the fate and effects of petroleum substances are summarised. Technical issues relating to the choice of test methodology for the evaluation of environmental impacts of petroleum substances are discussed. Proposals for self-classification according to EU criteria, as defined in the Dangerous Substances Directive, are presented for individual petroleum substance groups, on the basis of available test data and structure activity relationships (based on composition). KEYWORDS Hazard, environment, petroleum substances, classification, aquatic toxicity, biodegradation, bioaccumulation, QSAR, dangerous substances directive. INTERNET This report is available as an Adobe pdf file on the CONCAWE website (www.concawe.be). NOTE Considerable efforts have been made to assure the accuracy and reliability of the information contained in this publication. However, neither CONCAWE nor any company participating in CONCAWE can accept liability for any loss, damage or injury whatsoever resulting from the use of this information. This report does not necessarily represent the views of any company participating in CONCAWE. II report no. 01/54 CONTENTS Page SUMMARY V 1. REGULATORY FRAMEWORK AND GENERAL INTRODUCTION 1 2. DATA SELECTION FOR CLASSIFICATION 2 2.1. WATER "SOLUBILITY" OF PETROLEUM SUBSTANCES AND TEST "CONCENTRATIONS" 2 2.2. ACUTE AND CHRONIC TOXICITY AND SOLUBILITY LIMITS 2 2.3. PERSISTENCE AND FATE PROCESSES FOR PETROLEUM SUBSTANCES 3 2.4.
    [Show full text]
  • First Telomerisation of Piperylene with Morpholine Using Palladium¬タモ
    Catalysis Communications 77 (2016) 70–74 Contents lists available at ScienceDirect Catalysis Communications journal homepage: www.elsevier.com/locate/catcom Short communication First telomerisation of piperylene with morpholine using palladium– carbene catalysts Peter Neubert, Ines Meier, Tom Gaide, René Kuhlmann, Arno Behr ⁎ Technische Universität Dortmund, Lehrstuhl für Technische Chemie, Emil-Figge-Str. 66, 44227 Dortmund, Germany article info abstract Article history: Telomerisation of common 1,3-dienes like butadiene and isoprene has already been successfully conducted with Received 1 July 2015 a huge number of nucleophiles. However, 1,3-pentadiene (piperylene) telomerisation with amines has not been Received in revised form 19 January 2016 reported yet. Here, we present the first telomerisation of piperylene with morpholine, providing an atom eco- Accepted 20 January 2016 nomic access to unsaturated C -amines in a single reaction step. Investigations of the reaction conditions such Available online 25 January 2016 10 as precursor and ligand screening led to Pd(acac)2/IMes·HCl being the most active catalyst. Keywords: © 2016 Elsevier B.V. All rights reserved. Homogeneous catalysis Topic: Telomerisation Dienes Piperylene Amines 1. Introduction with oxygen nucleophiles [22–24]. Nevertheless, piperylene telomerisation has also been achieved with carbon dioxide [25],sul- Having in mind the diminishing resources of fossil feedstocks, one fones [26], and trimethylsilane [27]. To the best of our knowledge, major goal of catalysis is the development of efficient synthesis routes there is no telomerisation of piperylene described with amines. For based on either new feedstocks or on well-known, yet unutilized com- long time, telomerisation reactions have been catalysed by palladium/ pounds.
    [Show full text]
  • Material Safety Data Sheet
    Material Safety Data Sheet Piperylene, tech., 60%, cis and trans isomers ACC# 30000 Section 1 - Chemical Product and Company Identification MSDS Name: Piperylene, tech., 60%, cis and trans isomers Catalog Numbers: AC207650000, AC207650010, AC207650500 Synonyms: 1,3-Pentadiene; 1-Methylbutadiene; Penta-1,3-diene; Pentadiene, 1,3- Company Identification: Acros Organics N.V. One Reagent Lane Fair Lawn, NJ 07410 For information in North America, call: 800-ACROS-01 For emergencies in the US, call CHEMTREC: 800-424-9300 Section 2 - Composition, Information on Ingredients CAS# Chemical Name Percent EINECS/ELINCS 504-60-9 Piperylene 60 207-995-2 Section 3 - Hazards Identification EMERGENCY OVERVIEW Appearance: APHA: 25 max clear liquid. Flash Point: -28 deg C. Danger! Extremely flammable liquid. Causes respiratory tract irritation. Irritant. Lachrymator (substance which increases the flow of tears). Causes eye and skin irritation. May cause digestive tract irritation. May cause central nervous system depression. Target Organs: Central nervous system, respiratory system, eyes, skin. Potential Health Effects Eye: Vapors cause eye irritation. Lachrymator (substance which increases the flow of tears). Causes redness and pain. May cause chemical conjunctivitis and corneal damage. Skin: Causes skin irritation. Causes redness and pain. May cause cyanosis of the extremities. Ingestion: May cause gastrointestinal irritation with nausea, vomiting and diarrhea. Possible aspiration hazard. May cause central nervous system depression. Ingestion of large amounts may cause CNS depression. Inhalation: Causes respiratory tract irritation. May cause effects similar to those described for ingestion. May cause dyspnea (difficult or labored breathing). Aspiration may lead to pulmonary edema. Vapors may cause dizziness or suffocation. May cause burning sensation in the chest.
    [Show full text]
  • From Cracker to Key C5 Derivative Applications for Isoprene, DCPD and Piperylene Special Report Prospectus
    IHS CHEMICAL C5 Value Chain Study: From Cracker to Key C5 Derivative Applications for Isoprene, DCPD and Piperylene Special Report Prospectus IHS Chemical Prospectus IHS CHEMICAL Contents Contents ..................................................................................................................................... 2 Introduction ................................................................................................................................. 3 What are C5 Petrochemicals? .............................................................................................. 3 What Industries do C5 Petrochemicals Supply? .................................................................. 4 Accessing C5 Petrochemicals .............................................................................................. 6 Issues Impacting the C5 Petrochemicals Industry ................................................................ 8 Study Objective .......................................................................................................................... 9 Study Scope ............................................................................................................................... 9 Market Dynamics for C5 Petrochemicals ............................................................................. 9 Pricing Dynamics for C5 Petrochemicals ............................................................................. 9 Downstream Industries Review ........................................................................................
    [Show full text]
  • "Hydrocarbons," In: Ullmann's Encyclopedia of Industrial Chemistry
    Article No : a13_227 Hydrocarbons KARL GRIESBAUM, Universit€at Karlsruhe (TH), Karlsruhe, Federal Republic of Germany ARNO BEHR, Henkel KGaA, Dusseldorf,€ Federal Republic of Germany DIETER BIEDENKAPP, BASF Aktiengesellschaft, Ludwigshafen, Federal Republic of Germany HEINZ-WERNER VOGES, Huls€ Aktiengesellschaft, Marl, Federal Republic of Germany DOROTHEA GARBE, Haarmann & Reimer GmbH, Holzminden, Federal Republic of Germany CHRISTIAN PAETZ, Bayer AG, Leverkusen, Federal Republic of Germany GERD COLLIN, Ruttgerswerke€ AG, Duisburg, Federal Republic of Germany DIETER MAYER, Hoechst Aktiengesellschaft, Frankfurt, Federal Republic of Germany HARTMUT Ho€KE, Ruttgerswerke€ AG, Castrop-Rauxel, Federal Republic of Germany 1. Saturated Hydrocarbons ............ 134 3.7. Cumene ......................... 163 1.1. Physical Properties ................ 134 3.8. Diisopropylbenzenes ............... 164 1.2. Chemical Properties ............... 134 3.9. Cymenes; C4- and C5-Alkylaromatic 1.3. Production ....................... 134 Compounds ...................... 165 1.3.1. From Natural Gas and Petroleum . .... 135 3.10. Monoalkylbenzenes with Alkyl Groups 1.3.2. From Coal and Coal-Derived Products . 138 >C10 ........................... 166 1.3.3. By Synthesis and by Conversion of other 3.11. Diphenylmethane .................. 167 Hydrocarbons . .................. 139 4. Biphenyls and Polyphenyls .......... 168 1.4. Uses ............................ 140 4.1. Biphenyl......................... 168 1.5. Individual Saturated Hydrocarbons ... 142 4.2. Terphenyls......................
    [Show full text]
  • Photophysics and Stereomutation of Aromatic Sulfoxides Woojae Lee Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2000 Photophysics and stereomutation of aromatic sulfoxides Woojae Lee Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Organic Chemistry Commons Recommended Citation Lee, Woojae, "Photophysics and stereomutation of aromatic sulfoxides " (2000). Retrospective Theses and Dissertations. 12344. https://lib.dr.iastate.edu/rtd/12344 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality Illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will Indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections witii small overiaps.
    [Show full text]
  • Separation of Piperylene Concentrate Via Metathesis Catalysis
    University of Central Florida STARS Retrospective Theses and Dissertations Fall 1982 Separation of Piperylene Concentrate via Metathesis Catalysis Donald R. Allred University of Central Florida Part of the Chemistry Commons Find similar works at: https://stars.library.ucf.edu/rtd University of Central Florida Libraries http://library.ucf.edu This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Allred, Donald R., "Separation of Piperylene Concentrate via Metathesis Catalysis" (1982). Retrospective Theses and Dissertations. 605. https://stars.library.ucf.edu/rtd/605 SEPARATION OF PIPERYLENE CONCENTRATE VIA METATHESIS CATALYSIS BY DONALD R. ALLRED B. S., University of Central Florida, 1978 RESEARCH REPORT Submitted in partial fulfillment of the requirements for the Master of Science degree in Indus tr i a I Chemistry in the Graduate Studies Program of the College of Arts and Sciences University of Central Florida Orlando, Florida Fall Semester 1982 ABSTRACT Diolefin metathesis, using a Re 2 o 7 catalyst, failed to show a reactivity difference due to conjugation of double bonds o However ., the same system allows reaction of pentadiene wh i le not affecting cyclopentene yielding a successful reaction - separation scheme for a piperylene concentrate mixture. ACKNOWLEDGE MEN TS In recognition of those whose support and guidance were instrumental in the completion of this work, I would like to thank my wife Valerie and son Christopher, Dr. Chris Clausen, and the Burroughs Corporation.
    [Show full text]
  • Isoprene Feedstock
    Product Stewardship Summary Isoprene Feedstock This product stewardship summary is intended to give general information about the chemical or categories of chemicals listed in this document. It is not intended to provide an in-depth discussion of all health and safety information related to this chemical or category. Additional information on this chemical or category of chemicals is available through the applicable Material Safety Data Sheet (MSDS). Please consult the MSDS before use of the chemical. The product stewardship summary does not supplant or replace required regulatory and/or legal communication documents. Chemical Identity: Isoprene Feedstock (IPFS), also known as C5 diolefin, crude isoprene or C5 Amylene, is a colorless, volatile liquid. Isoprene Feedstock is a co-product of ethylene production. It is produced at the Cedar Bayou and Sweeny plants in Texas. The Isoprene Feedstock product from Sweeny is called C5 Amylene. CAS Number: 68514-39-6 CAS name: Naphtha, (Petroleum), Light Steam-Cracked, Isoprene-Rich Synonyms:Isoprene Feedstock; Isoprene C5 Diolefin Stream; C5 Amylene Product Uses: There are no consumer uses of Isoprene Feedstock. Typically, Isoprene Feedstock is fed to an extraction unit to isolate and recover isoprene and piperylene. Isoprene is used to make polyisoprene synthetic rubber for a wide variety of applications including tires, baby bottle nipples and medical equipment. It can also be a component of film and coating formulations. Piperylene is used to produce copolymerization elastomers, petroleum resins, curing agents, pesticides and perfumes. The remaining components in Isoprene Feedstock, mainly C5 paraffins, are often utilized as a gasoline blending stock. Physical/Chemical Properties: Isoprene Feedstock is classified by the U.S.
    [Show full text]