Cestoda: Diphyllobothriidae) Wen X
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Review and Meta-Analysis of the Environmental Biology and Potential Invasiveness of a Poorly-Studied Cyprinid, the Ide Leuciscus Idus
REVIEWS IN FISHERIES SCIENCE & AQUACULTURE https://doi.org/10.1080/23308249.2020.1822280 REVIEW Review and Meta-Analysis of the Environmental Biology and Potential Invasiveness of a Poorly-Studied Cyprinid, the Ide Leuciscus idus Mehis Rohtlaa,b, Lorenzo Vilizzic, Vladimır Kovacd, David Almeidae, Bernice Brewsterf, J. Robert Brittong, Łukasz Głowackic, Michael J. Godardh,i, Ruth Kirkf, Sarah Nienhuisj, Karin H. Olssonh,k, Jan Simonsenl, Michał E. Skora m, Saulius Stakenas_ n, Ali Serhan Tarkanc,o, Nildeniz Topo, Hugo Verreyckenp, Grzegorz ZieRbac, and Gordon H. Coppc,h,q aEstonian Marine Institute, University of Tartu, Tartu, Estonia; bInstitute of Marine Research, Austevoll Research Station, Storebø, Norway; cDepartment of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lodz, Łod z, Poland; dDepartment of Ecology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia; eDepartment of Basic Medical Sciences, USP-CEU University, Madrid, Spain; fMolecular Parasitology Laboratory, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston-upon-Thames, Surrey, UK; gDepartment of Life and Environmental Sciences, Bournemouth University, Dorset, UK; hCentre for Environment, Fisheries & Aquaculture Science, Lowestoft, Suffolk, UK; iAECOM, Kitchener, Ontario, Canada; jOntario Ministry of Natural Resources and Forestry, Peterborough, Ontario, Canada; kDepartment of Zoology, Tel Aviv University and Inter-University Institute for Marine Sciences in Eilat, Tel Aviv, -
Broad Tapeworms (Diphyllobothriidae)
IJP: Parasites and Wildlife 9 (2019) 359–369 Contents lists available at ScienceDirect IJP: Parasites and Wildlife journal homepage: www.elsevier.com/locate/ijppaw Broad tapeworms (Diphyllobothriidae), parasites of wildlife and humans: T Recent progress and future challenges ∗ Tomáš Scholza, ,1, Roman Kuchtaa,1, Jan Brabeca,b a Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czech Republic b Natural History Museum of Geneva, PO Box 6434, CH-1211, Geneva 6, Switzerland ABSTRACT Tapeworms of the family Diphyllobothriidae, commonly known as broad tapeworms, are predominantly large-bodied parasites of wildlife capable of infecting humans as their natural or accidental host. Diphyllobothriosis caused by adults of the genera Dibothriocephalus, Adenocephalus and Diphyllobothrium is usually not a life-threatening disease. Sparganosis, in contrast, is caused by larvae (plerocercoids) of species of Spirometra and can have serious health consequences, exceptionally leading to host's death in the case of generalised sparganosis caused by ‘Sparganum proliferum’. While most of the definitive wildlife hosts of broad tapeworms are recruited from marine and terrestrial mammal taxa (mainly carnivores and cetaceans), only a few diphyllobothriideans mature in fish-eating birds. In this review, we provide an overview the recent progress in our understanding of the diversity, phylogenetic relationships and distribution of broad tapeworms achieved over the last decade and outline the prospects of future research. The multigene family-wide phylogeny of the order published in 2017 allowed to propose an updated classi- fication of the group, including new generic assignment of the most important causative agents of human diphyllobothriosis, i.e., Dibothriocephalus latus and D. -
Non-Invasive Sampling in Itatiaia National Park, Brazil: Wild Mammal Parasite Detection
Dib et al. BMC Veterinary Research (2020) 16:295 https://doi.org/10.1186/s12917-020-02490-5 RESEARCH ARTICLE Open Access Non-invasive sampling in Itatiaia National Park, Brazil: wild mammal parasite detection Laís Verdan Dib1, João Pedro Siqueira Palmer1, Camila de Souza Carvalho Class1, Jessica Lima Pinheiro1, Raissa Cristina Ferreira Ramos1, Claudijane Ramos dos Santos1, Ana Beatriz Monteiro Fonseca2, Karen Gisele Rodríguez-Castro3, Camila Francisco Gonçalves3, Pedro Manoel Galetti Jr.3, Otilio Machado Pereira Bastos1, Claudia Maria Antunes Uchôa1, Laís Lisboa Corrêa1, Augusto Cezar Machado Pereira Bastos1, Maria Regina Reis Amendoeira4 and Alynne da Silva Barbosa1,4* Abstract Background: Non-invasive sampling through faecal collection is one of the most cost-effective alternatives for monitoring of free-living wild mammals, as it provides information on animal taxonomy as well as the dynamics of the gastrointestinal parasites that potentially infect these animals. In this context, this study aimed to perform an epidemiological survey of gastrointestinal parasites using non-invasive faecal samples from carnivores and artiodactyls identified by stool macroscopy, guard hair morphology and DNA sequencing in Itatiaia National Park. Between 2017 and 2018, faeces from carnivores and artiodactyls were collected along trails in the park. The host species were identified through macroscopic and trichological examinations and molecular biology. To investigate the parasites, the Faust, Lutz and modified Ritchie and Sheather techniques and enzyme immunoassays to detect Cryptosporidium sp. antigens were used. Results: A total of 244 stool samples were collected. The species identified were Chrysocyon brachyurus, Leopardus guttulus, Canis familiaris, Cerdocyon thous, Puma yagouaroundi, Leopardus pardalis, Puma concolor and Sus scrofa.Therewere81.1% samples that were positive for parasites distributed mainly in the high part of the park. -
Biological Control of Invasive Fish and Aquatic Invertebrates: a Brief Review with Case Studies
Management of Biological Invasions (2019) Volume 10, Issue 2: 227–254 CORRECTED PROOF Review Biological control of invasive fish and aquatic invertebrates: a brief review with case studies Przemyslaw G. Bajer1,*, Ratna Ghosal1,+, Maciej Maselko2, Michael J. Smanski2, Joseph D. Lechelt1, Gretchen Hansen3 and Matthew S. Kornis4 1University of Minnesota, Minnesota Aquatic Invasive Species Research Center, Dept. of Fisheries, Wildlife, and Conservation Biology, 135 Skok Hall, 2003 Upper Buford Circle, St. Paul, MN 55108, USA 2University of Minnesota, Dept. of Biochemistry, Molecular Biology and Biophysics, 1479 Gortner Ave., Room 344, St. Paul MN 55108, USA 3Minnesota Department of Natural Resources, 500 Lafayette Road, St. Paul, MN 55155, USA 4U.S. Fish and Wildlife Service, Great Lakes Fish Tag and Recovery Laboratory, Green Bay Fish and Wildlife Conservation Office, 2661 Scott Tower Drive, New Franken, WI 54229, USA +Current Address: Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Gujarat 380009, India Author e-mails: [email protected] (PGB), [email protected] (RG), [email protected] (MM), [email protected] (MJS), [email protected] (JDL), [email protected] (GH), [email protected] (MSK) *Corresponding author Citation: Bajer PG, Ghosal R, Maselko M, Smanski MJ, Lechelt JD, Hansen G, Abstract Kornis MS (2019) Biological control of invasive fish and aquatic invertebrates: a We review various applications of biocontrol for invasive fish and aquatic brief review with case studies. invertebrates. We adopt a broader definition of biocontrol that includes traditional Management of Biological Invasions 10(2): methods like predation and physical removal (biocontrol by humans), and modern 227–254, https://doi.org/10.3391/mbi.2019. -
In Lake Malawi
Bosco Rusuwa, Maxon Ngochera and Atsushi Maruyama MALAWI JOURNAL OF SCIENCE AND TECHNOLOGY VOLUME 10: ISSUE 1 | 2014 Ligula intestinalis (Cestoda: Pseudophyllidea) infection of Engraulicypris sardella (Pisces: Cyprinidae) in Lake Malawi Bosco Rusuwa1,3*, Maxon Ngochera1 and Atsushi Maruyama2 1 Fisheries Research Station, P.O. Box 27, Monkey Bay, Malawi 2 Department of Environmental Solution Technology, Ryukoku University, Seta-Oe, Otsu, 520-2194 Shiga, Japan 3 Department of Biology, Chancellor College, University of Malawi, P.O. Box 280, Zomba, Malawi Abstract Fish parasites have diverse ecological impacts on fish populations and are presently becoming useful as bio-indicators of fish migration and feeding. Studies of fish parasite in Lake Malawi severely lag behind the strides made in eco-evolutionary studies of its ichthyofauna. Over a period of eleven months from April 2003, we examined more than 1300 Engraulicypris sardella from Lake Malawi for cestode parasites. About 54 % of the fish had infections of between one and eight Ligula intestinalis plerocercoids. The infection occurred throughout the study period (mean prevalence 59 ±13%) but was most prevalent in December and June and was least prevalent in April. The majority of the hosts (78%) had a light parasite burden (one or two). Parasite prevalence increased with age of the fish. Prevalence and infection intensity oscillated closely with periods of peak abundance of zooplankton, the main food of E. sardella and intermediate hosts (copepods) of L. intestinalis. Increased exposure to the parasite with age aggravated by an ontogenetic diet shift from phytoplanktivory to zooplanktivory may be interacting with fluctuations in zooplankton production in driving the trophic transmission patterns of L. -
Identity of Diphyllobothrium Spp. (Cestoda: Diphyllobothriidae) from Sea Lions and People Along the Pacific Coast of South America
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications from the Harold W. Manter Laboratory of Parasitology Parasitology, Harold W. Manter Laboratory of 4-2010 Identity of Diphyllobothrium spp. (Cestoda: Diphyllobothriidae) from Sea Lions and People along the Pacific Coast of South America Robert L. Rausch University of Washington, [email protected] Ann M. Adams United States Food and Drug Administration Leo Margolis Fisheries Research Board of Canada Follow this and additional works at: https://digitalcommons.unl.edu/parasitologyfacpubs Part of the Parasitology Commons Rausch, Robert L.; Adams, Ann M.; and Margolis, Leo, "Identity of Diphyllobothrium spp. (Cestoda: Diphyllobothriidae) from Sea Lions and People along the Pacific Coast of South America" (2010). Faculty Publications from the Harold W. Manter Laboratory of Parasitology. 498. https://digitalcommons.unl.edu/parasitologyfacpubs/498 This Article is brought to you for free and open access by the Parasitology, Harold W. Manter Laboratory of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from the Harold W. Manter Laboratory of Parasitology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. J. Parasitol., 96(2), 2010, pp. 359–365 F American Society of Parasitologists 2010 IDENTITY OF DIPHYLLOBOTHRIUM SPP. (CESTODA: DIPHYLLOBOTHRIIDAE) FROM SEA LIONS AND PEOPLE ALONG THE PACIFIC COAST OF SOUTH AMERICA Robert L. Rausch, Ann M. Adams*, and Leo MargolisÀ Department of Comparative Medicine and Department of Pathobiology, Box 357190, University of Washington, Seattle, Washington 98195-7190. e-mail: [email protected] ABSTRACT: Host specificity evidently is not expressed by various species of Diphyllobothrium that occur typically in marine mammals, and people become infected occasionally when dietary customs favor ingestion of plerocercoids. -
Cestodes of the Fishes of Otsego Lake and Nearby Waters
Cestodes of the fishes of Otsego Lake and nearby waters Amanda Sendkewitz1, Illari Delgado1, and Florian Reyda2 INTRODUCTION This study of fish cestodes (i.e., tapeworms) is part of a survey of the intestinal parasites of fishes of Otsego Lake and its tributaries (Cooperstown, New York) from 2008 to 2014. The survey included a total of 27 fish species, consisting of six centrarchid species, one ictalurid species, eleven cyprinid species, three percid species, three salmonid species, one catostomid species, one clupeid species, and one esocid species. This is really one of the first studies on cestodes in the area, although one of the first descriptions of cestodes was done on the Proteocephalus species Proteocephalus ambloplitis by Joseph Leidy in Lake George, NY in 1887; it was originally named Taenia ambloplitis. Parasite diversity is a large component of biodiversity, and is often indicative of the health and stature of a particular ecosystem. The presence of parasitic worms in fish of Otsego County, NY has been investigated over the course of a multi-year survey, with the intention of observing, identifying, and recording the diversity of cestode (tapeworm) species present in its many fish species. The majority of the fish species examined harbored cestodes, representing three different orders: Caryophyllidea, Proteocephalidea, and Bothriocephalidea. METHODS The fish utilized in this survey were collected through hook and line, gill net, electroshock, or seining methods throughout the year from 2008-2014. Cestodes were collected in sixteen sites throughout Otsego County. These sites included Beaver Pond at Rum Hill, the Big Pond at Thayer Farm, Canadarago Lake, a pond at College Camp, the Delaware River, Hayden Creek, LaPilusa Pond, Mike Schallart’s Pond in Schenevus, Moe Pond, a pond in Morris, NY, Oaks Creek, Paradise Pond, Shadow Brook, the Susquehanna River, the Wastewater Treatment Wetland (Cooperstown), and of course Otsego Lake. -
Spirometra Decipiens (Cestoda: Diphyllobothriidae) Collected in a Heavily Infected Stray Cat from the Republic of Korea
ISSN (Print) 0023-4001 ISSN (Online) 1738-0006 Korean J Parasitol Vol. 56, No. 1: 87-91, February 2018 ▣ BRIEF COMMUNICATION https://doi.org/10.3347/kjp.2018.56.1.87 Spirometra decipiens (Cestoda: Diphyllobothriidae) Collected in A Heavily Infected Stray Cat from the Republic of Korea Hyeong-Kyu Jeon†, Hansol Park†, Dongmin Lee, Seongjun Choe, Keeseon S. Eom* Department of Parasitology, Medical Research Institute and Parasite Resource Bank, Chungbuk National University School of Medicine, Cheongju 28644, Korea Abstract: Morphological and molecular characteristics of spirometrid tapeworms, Spirometra decipiens, were studied, which were recovered from a heavily infected stray cat road-killed in Eumseong-gun, Chungcheongbuk-do (Province), the Republic of Korea (= Korea). A total of 134 scolices and many broken immature and mature proglottids of Spirometra tapeworms were collected from the small intestine of the cat. Morphological observations were based on 116 specimens. The scolex was 22.8-32.6 mm (27.4 mm in average) in length and small spoon-shape with 2 distinct bothria. The uterus was coiled 3-4 times, the end of the uterus was ball-shaped, and the vaginal aperture shaped as a crescent moon was closer to the cirrus aperture than to the uterine aperture. PCR amplification and direct sequencing of the cox1 target frag- ment (377 bp in length and corresponding to positions 769-1,146 bp of the cox1 gene) were performed using total ge- nomic DNA extracted from 134 specimens. The cox1 sequences (377 bp) of the specimens showed 99.0% similarity to the reference sequence of S. decipiens and 89.3% similarity to the reference sequence of S. -
Checklists of Parasites of Fishes of Salah Al-Din Province, Iraq
Vol. 2 (2): 180-218, 2018 Checklists of Parasites of Fishes of Salah Al-Din Province, Iraq Furhan T. Mhaisen1*, Kefah N. Abdul-Ameer2 & Zeyad K. Hamdan3 1Tegnervägen 6B, 641 36 Katrineholm, Sweden 2Department of Biology, College of Education for Pure Science, University of Baghdad, Iraq 3Department of Biology, College of Education for Pure Science, University of Tikrit, Iraq *Corresponding author: [email protected] Abstract: Literature reviews of reports concerning the parasitic fauna of fishes of Salah Al-Din province, Iraq till the end of 2017 showed that a total of 115 parasite species are so far known from 25 valid fish species investigated for parasitic infections. The parasitic fauna included two myzozoans, one choanozoan, seven ciliophorans, 24 myxozoans, eight trematodes, 34 monogeneans, 12 cestodes, 11 nematodes, five acanthocephalans, two annelids and nine crustaceans. The infection with some trematodes and nematodes occurred with larval stages, while the remaining infections were either with trophozoites or adult parasites. Among the inspected fishes, Cyprinion macrostomum was infected with the highest number of parasite species (29 parasite species), followed by Carasobarbus luteus (26 species) and Arabibarbus grypus (22 species) while six fish species (Alburnus caeruleus, A. sellal, Barbus lacerta, Cyprinion kais, Hemigrammocapoeta elegans and Mastacembelus mastacembelus) were infected with only one parasite species each. The myxozoan Myxobolus oviformis was the commonest parasite species as it was reported from 10 fish species, followed by both the myxozoan M. pfeifferi and the trematode Ascocotyle coleostoma which were reported from eight fish host species each and then by both the cestode Schyzocotyle acheilognathi and the nematode Contracaecum sp. -
Rapid Identification of Nine Species of Diphyllobothriidean Tapeworms By
www.nature.com/scientificreports OPEN Rapid identification of nine species of diphyllobothriidean tapeworms by pyrosequencing Received: 20 July 2016 Tongjit Thanchomnang1,2, Chairat Tantrawatpan2,3, Pewpan M. Intapan2,4, Accepted: 26 October 2016 Oranuch Sanpool1,2,4, Viraphong Lulitanond2,5, Somjintana Tourtip1, Hiroshi Yamasaki6 & Published: 17 November 2016 Wanchai Maleewong2,4 The identification of diphyllobothriidean tapeworms (Cestoda: Diphyllobothriidea) that infect humans and intermediate/paratenic hosts is extremely difficult due to their morphological similarities, particularly in the case of Diphyllobothrium and Spirometra species. A pyrosequencing method for the molecular identification of pathogenic agents has recently been developed, but as of yet there have been no reports of pyrosequencing approaches that are able to discriminate among diphyllobothriidean species. This study, therefore, set out to establish a pyrosequencing method for differentiating among nine diphyllobothriidean species, Diphyllobothrium dendriticum, Diphyllobothrium ditremum, Diphyllobothrium latum, Diphyllobothrium nihonkaiense, Diphyllobothrium stemmacephalum, Diplogonoporus balaenopterae, Adenocephalus pacificus, Spirometra decipiens and Sparganum proliferum, based on the mitochondrial cytochrome c oxidase subunit 1 (cox1) gene as a molecular marker. A region of 41 nucleotides in the cox1 gene served as a target, and variations in this region were used for identification using PCR plus pyrosequencing. This region contains nucleotide variations at 12 positions, which is enough for the identification of the selected nine species of diphyllobothriidean tapeworms. This method was found to be a reliable tool not only for species identification of diphyllobothriids, but also for epidemiological studies of cestodiasis caused by diphyllobothriidean tapeworms at public health units in endemic areas. The order Diphyllobothriidea (Platyhelminthes: Cestoda) is a large group of tapeworms that parasitize mammals, birds, amphibians and reptiles1,2. -
Gastrointestinal Parasites of Maned Wolf
http://dx.doi.org/10.1590/1519-6984.20013 Original Article Gastrointestinal parasites of maned wolf (Chrysocyon brachyurus, Illiger 1815) in a suburban area in southeastern Brazil Massara, RL.a*, Paschoal, AMO.a and Chiarello, AG.b aPrograma de Pós-Graduação em Ecologia, Conservação e Manejo de Vida Silvestre – ECMVS, Universidade Federal de Minas Gerais – UFMG, Avenida Antônio Carlos, 6627, CEP 31270-901, Belo Horizonte, MG, Brazil bDepartamento de Biologia da Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo – USP, Avenida Bandeirantes, 3900, CEP 14040-901, Ribeirão Preto, SP, Brazil *e-mail: [email protected] Received: November 7, 2013 – Accepted: January 21, 2014 – Distributed: August 31, 2015 (With 3 figures) Abstract We examined 42 maned wolf scats in an unprotected and disturbed area of Cerrado in southeastern Brazil. We identified six helminth endoparasite taxa, being Phylum Acantocephala and Family Trichuridae the most prevalent. The high prevalence of the Family Ancylostomatidae indicates a possible transmission via domestic dogs, which are abundant in the study area. Nevertheless, our results indicate that the endoparasite species found are not different from those observed in protected or least disturbed areas, suggesting a high resilience of maned wolf and their parasites to human impacts, or a common scenario of disease transmission from domestic dogs to wild canid whether in protected or unprotected areas of southeastern Brazil. Keywords: Chrysocyon brachyurus, impacted area, parasites, scat analysis. Parasitas gastrointestinais de lobo-guará (Chrysocyon brachyurus, Illiger 1815) em uma área suburbana no sudeste do Brasil Resumo Foram examinadas 42 fezes de lobo-guará em uma área desprotegida e perturbada do Cerrado no sudeste do Brasil. -
Dict-En-Fr-Food V3
Dictionnaire Anglais-Français de l’Alimentation English-French Food Dictionary Version 3.0 Pascal Médeville (CC BY-NC-ND 4.0) 1 This work is distributed under Creative Commons license CC BY-NC-ND 4.0. Please revise the information below and stay within the limits of the license. 2 Le présent travail est distribué dans le cadre de la licence Creative Commons CC BY-NC-ND 4.0. Veuillez lire les informations ci-dessous et respecter les limites imposées. 3 Sigles et abréviations utilisés dans ce dictionnaire : adj. : adjectif agr. : agriculture bot. : botanique ichtyol. : ichtyologie Ind. : Indonésie it. : Italie J : Japon microbiol. : microbiologie œnol. : œnologie p.ex. : par exemple UK : Royaume Uni US : États-Unis d’Amérique vét. : médecine vétérinaire zool. : zoologie Historique des versions/Version history : Date Objet No. de version Déc. 2008 Version initiale 1.0 Juin 2009 Corrections diverses ; Ajout de nouvelles sources ; Ajout de nouvelles 2.0 références bibliographiques Avril 2020 Ajout de nouvelles entrées ; Corrections diverses ; Ajout de nouvelles 3.0 sources ; Ajout de nouvelles references bibliographiques 4 Pour vos traductions anglais-français ou chinois-français dans le domaine de la gastronomie ou de l’agro-alimentaire, veuillez prendre contact avec Pascal Médeville à l’une des adresses suivantes : [email protected] ou [email protected]. For all your food and agrifood translation needs (English to French of Chinese to French), you can contact Pascal Médeville, at [email protected] or [email protected]. Pour toutes vos traductions et besoins de publication assistée par ordinateur en chinois ou d’autres langues asiatiques, n’hésitez pas à faire appel à Pascal Médeville ou à Parallels Translation Office : www.parallels-translation.net.