TABLE of CONTENTS Twin Otter Flies in Greenland

Total Page:16

File Type:pdf, Size:1020Kb

TABLE of CONTENTS Twin Otter Flies in Greenland SUMMER 2011 The Icebreaker CENTER FOR REMOTE SENSING OF ICE SHEETS Twin Otter Flies in Greenland // BY NICK MOTT A team of scientists and engineers stuck in an isolated, snowed-in hotel in remote Greenland. Their eyes are glued to their computer screens and they are fervently trying to analyze something. It sounds like the plot of a science fiction horror film – John Carpenter’s The Thing on the other end of the world. But on their March 15 to May 6 expedition to Greenland, the Twin Otter team was all science, no fiction. “We were trying to determine the thickness of the ice in several of Greenland’s fastest flowing glaciers,” said Logan Smith, a graduate student in charge of on-site data processing during the mission. Operating out of Ilulissat, Kulusuk, and Nuuk, the CReSIS team, led by Fernando Rodriguez-Morales, flew lines targeting Jakobshavn Fjord, the Helheim and South East Glaciers, and the Nuuk Glacier. On board the Twin 2011: Twin Otter on the ground in Greenland. Otter, CReSIS engineers utilized the MCoRDS ground-penetrating radar, an Photo by Daniel Gomez-Garcia. accumulation radar, and the Ku-band altimeter. “These are the most significant outlet glaciers, which are the main tributaries for getting ice from the interior of Greenland to the calving front, or out to the edges where it breaks off and eventually leads to a rise in sea TABLE OF CONTENTS level,” Smith said. Rodriguez-Morales said that Jakobshavn, one of the fastest-moving 01. Twin Otter Flies in Greenland glaciers in the world, has long been a focal point of scientific interest. The 02. CReSIS Team to Test UAV in Greenland // CReSIS team completed a number of radar improvements to better accomplish Research Experience at CReSIS the tricky task of accurately sounding the bottom of the ice sheet and avoiding 03. Ghana REU Students Relish Time in CReSIS, surface clutter. The depth sounder operated at 195 MHz, as opposed to the America 150 MHz frequency of years past. The scientists and engineers on the mission 04. PNAS Publication Highlights CReSIS Researcher’s also decreased the size of the antennas to accommodate a change in antenna Accomplishment // ECSU Among the Nation’s array on the plane. Best Institutions The Twin Otter operated with six elements per wing, but the size decrease P-3 Antenna Array Changes Produce Faster, allowed CReSIS engineers to rotate the elements 90 degrees. “Now they’re 05. Clearer Results perpendicular,” Rodriguez-Morales said. “They used to be in the direction of 06. Unraveling Byrd Glacier travel. It helps to minimize clutter.” 07. CReSIS Welcomes Three New Staff Members Fieldwork always involves trial and error and unexpected setbacks, and it relies heavily on the ingenuity and improvisational skills of the involved scientists. With a new system operating at a new frequency, the Twin Otter CHECK US OUT ON FACEBOOK AND TWITTER: team faced an unexpected source of interference: the strobe lights on the tips http://www.facebook.com/pages/CReSIS-Center-for- of the aircraft’s wings. An interfering signal masks the signal the researchers Remote-Sensing-of-Ice-Sheets/104872089592282 are trying to detect, which is quite weak. Normal sources of interference come from inside the plane. As researchers examine the data from each antenna, http://twitter.com/#!/CReSIS they usually see the interfering signal decrease as they move away from the Twin Otter Flies in Greenland, Newsletter // The Ice Breaker // Summer 2011 1 Continued on Page 5 www.cresis.ku.edu CReSIS Team to Test UAV in Greenland // BY NICK MOTT Out in North Lawrence, past the Teepee, “purveyors of controls the plane as it takes off and lands. When it reaches altitude, the potables and edibles”, past the one-and-only “authentic” pilot turns the control over to autopilot. Flight test engineers at computer Jellystone Park, the Airport Motel, and seemingly endless terminals fine tune the flight path with GPS Waypoint Navigation. Kansas fields, past even Don’s Diesel and a retro silver What the trip really boils down to, Hale said, “is some aircraft system camper, sits a hidden-away hangar. On any given day, checks, some radar system checks, and then some integrated platform one can easily spot a Valkyrie motorcycle, a gleaming science checks.” At NEEM, Hale said that he hopes to get in “as many yellow corvette, an old hot rod. Here, however, it is flights as humanly possible.” The final number of flights, though, engines and flight that matter. And it is here, in the KU ultimately depends on the weather. Other sensors and aircraft at CReSIS offer high-altitude, long- Aerospace Engineering Hangar, that the Meridian UAV, range, and long-endurance capabilities, but lack some degree of or unpiloted aerial vehicle, received its final preparations maneuverability. “They take wide passes,” Hale said. “They’re good for before departing for its July 15 - August 15 test flights at interior ice and for wide spacing arrays.” Smaller, unmanned vehicles the NEEM camp in Greenland. like the Meridian, though, are particularly suited for outlet glaciers. Six years in the works, the UAV will make its first flight over the horizon No pilot means less limitations and more fuel-efficiency. “We’re very during the mission. “We have not left line of sight before,” said Dr. Rick maneuverable. Theoretically what we can do is the very fine surveys Hale, head of the UAV team. “Once the ground pilots can’t see it there’s around the perimeters.” no way to recover other than with the on-board intelligence systems – so “Right now we’ve been busy getting the aircraft ready,” Lykins whether you’re two kilometers or two hundred kilometers out, I guess said. “We went to Utah back in April to do flight tests, and since we’ve you could argue you’re in the same safety mode.” The Meridian will fly returned we’ve done a lot of rewiring the aircraft. Yesterday we did an within 25-50 kilometers of base camp at NEEM. engine test with the radar installed to test for any EMI (Electromagnetic Although the Meridian has already undergone test flights in Antarctica Interference).” Before departure, team members have to focus on and on a military base in Utah, CReSIS engineers have not yet had a packing, and, due to the remote location of the NEEM camp, making chance to test the efficacy of the radar on the UAV. The Meridian radar, sure all necessary items are ready to go. used as a depth-sounding radar, is a one-channel system which transmits Total flight time of UAV missions in previous years amounts to only a on four antennas and receives on four antennas. “Hopefully we’ll send few total hours. “Ideally we’ll dwarf the total flight time of the aircraft in the aircraft out to its limits and get some good data from the radar,” said this mission,” Hale said. flight test engineer Ryan Lykins. During the next five years of development, the UAV team will work This trip will also serve as the first opportunity to test the operation on fine-tuning the aircraft. Hale and Lykins said that engineers will be of the UAV off of skis. “We’ve operated off grass, we’ve operated off hard at work developing an increasingly autonomous radar system, and pavement, we’ve operated off ice, but not off soft snow,” Hale said. The that they hope to cut the total crew number with every deployment. pilot, clutching a large RC joystick – an RC car-obsessed child’s dream – Research Experience at CReSIS // BY SHAWN SCHALLER RESEARCH EXPERIENCE FOR UNDERGRADUATES RESEARCH EXPERIENCE FOR TEACHERS For two summer months every year, the National Science Foundation- The CReSIS Research Experience for Teachers (RET) program has funded CReSIS Research Experience for Undergraduates (REU) program been a new undertaking in 2011 that brought pre-service teachers to brings students from diversified backgrounds and diverse locations to the Center for two summer months. The goal for this program is to the University of Kansas (KU) and the Center’s partner institutions. introduce its participants to some of the research activities at CReSIS The purpose of the program is to provide undergraduate students in and help them prepare materials for classroom teaching. This summer, science and engineering with invaluable opportunities to gain research two RET students have joined the CReSIS team. experience by working with faculty mentors who are actively involved in the Center’s research activities. To learn more about the 2011 REU students, please visit: This summer, 34 students were selected for the REU program. Nine https://www.cresis.ku.edu/education/undergraduate/ students are working at KU, 11 students each are working at Indiana reu-program/2011 University and Elizabeth City State University (ECSU), and two students are working at the University of Washington. In addition, two students To learn more about the 2011 RET students, please visit: from Accra, Ghana, have been selected through an REU grant from the https://www.cresis.ku.edu/education/k-12/teacher- U. S. Navy, and they will perform their research activities at both KU workshops/ret-program and ECSU. Newsletter // The Ice Breaker // Summer 2011 2 www.cresis.ku.edu Ghana REU Students Relish Time in CReSIS, America // BY SHAWN SCHALLER Accra, Ghana is approximately 6,253 miles away from Lawrence, Kan. To put it in CReSIS terms, that’s roughly equivalent to a round trip from CReSIS headquarters in Lawrence, Kansas to Jakobshavn Glacier, Greenland, and then some. For Rockson Armaah and Ignatius Williams, this meant an 11.5 hour flight from Accra to Atlanta and a subsequent 1.3 hour flight from Atlanta to Kansas City.
Recommended publications
  • Icebreaker Booklet
    Ideas... Students as Partners: Peer Support Icebreakers Produced by: Teaching,Students Learning as and Partners, Support Office 2 Peer Support Icebreakers Peer Support Icebreakers 31 . Who Is This For? as.. Ide This booklet will come in handy for any group facilitator, but has been primarily designed for use by PASS Leaders, Mentors and Students as Partners staff. Too often we see the same old ice-breakers and energizers used at training courses/first meetings; the aim of this booklet is to provide you with introductory activities that you might not have used or taken part in before! This booklet is an on-going publication– if you have an icebreaker that you think should be included then send an email with your ideas to [email protected] so that future students can benefit from them! Why Use Icebreakers? Icebreakers are discussion questions or activities used to help participants relax and ease people into a group meeting or learning situation. They are great for learning each other's names and personal/professional information. Icebreakers: • create a positive group atmosphere • help people to relax • break down social barriers • energize & motivate • help people to think outside the box • help people to get to know one another Whether it is a small get together or a large training session, we all want to feel that we share some common ground with our fellow participants. By creating a warm and friendly personal learning environment, the attendees will participate and learn more. Be creative and design your own variations on the ice breakers you find here.
    [Show full text]
  • Transits of the Northwest Passage to End of the 2020 Navigation Season Atlantic Ocean ↔ Arctic Ocean ↔ Pacific Ocean
    TRANSITS OF THE NORTHWEST PASSAGE TO END OF THE 2020 NAVIGATION SEASON ATLANTIC OCEAN ↔ ARCTIC OCEAN ↔ PACIFIC OCEAN R. K. Headland and colleagues 7 April 2021 Scott Polar Research Institute, University of Cambridge, Lensfield Road, Cambridge, United Kingdom, CB2 1ER. <[email protected]> The earliest traverse of the Northwest Passage was completed in 1853 starting in the Pacific Ocean to reach the Atlantic Oceam, but used sledges over the sea ice of the central part of Parry Channel. Subsequently the following 319 complete maritime transits of the Northwest Passage have been made to the end of the 2020 navigation season, before winter began and the passage froze. These transits proceed to or from the Atlantic Ocean (Labrador Sea) in or out of the eastern approaches to the Canadian Arctic archipelago (Lancaster Sound or Foxe Basin) then the western approaches (McClure Strait or Amundsen Gulf), across the Beaufort Sea and Chukchi Sea of the Arctic Ocean, through the Bering Strait, from or to the Bering Sea of the Pacific Ocean. The Arctic Circle is crossed near the beginning and the end of all transits except those to or from the central or northern coast of west Greenland. The routes and directions are indicated. Details of submarine transits are not included because only two have been reported (1960 USS Sea Dragon, Capt. George Peabody Steele, westbound on route 1 and 1962 USS Skate, Capt. Joseph Lawrence Skoog, eastbound on route 1). Seven routes have been used for transits of the Northwest Passage with some minor variations (for example through Pond Inlet and Navy Board Inlet) and two composite courses in summers when ice was minimal (marked ‘cp’).
    [Show full text]
  • Canada's Sovereignty Over the Northwest Passage
    Michigan Journal of International Law Volume 10 Issue 2 1989 Canada's Sovereignty Over the Northwest Passage Donat Pharand University of Ottawa Follow this and additional works at: https://repository.law.umich.edu/mjil Part of the International Law Commons, and the Law of the Sea Commons Recommended Citation Donat Pharand, Canada's Sovereignty Over the Northwest Passage, 10 MICH. J. INT'L L. 653 (1989). Available at: https://repository.law.umich.edu/mjil/vol10/iss2/10 This Article is brought to you for free and open access by the Michigan Journal of International Law at University of Michigan Law School Scholarship Repository. It has been accepted for inclusion in Michigan Journal of International Law by an authorized editor of University of Michigan Law School Scholarship Repository. For more information, please contact [email protected]. CANADA'S SOVEREIGNTY OVER THE NORTHWEST PASSAGE Donat Pharand* In 1968, when this writer published "Innocent Passage in the Arc- tic,"' Canada had yet to assert its sovereignty over the Northwest Pas- sage. It has since done so by establishing, in 1985, straight baselines around the whole of its Arctic Archipelago. In August of that year, the U. S. Coast Guard vessel PolarSea made a transit of the North- west Passage on its voyage from Thule, Greenland, to the Chukchi Sea (see Route 1 on Figure 1). Having been notified of the impending transit, Canada informed the United States that it considered all the waters of the Canadian Arctic Archipelago as historic internal waters and that a request for authorization to transit the Northwest Passage would be necessary.
    [Show full text]
  • U.S. Coast Guard Historian's Office
    U.S. Coast Guard Historian’s Office Preserving Our History For Future Generations ICEBREAKERS AND THE U.S. COAST GUARD by Donald L. Canney Among the many missions of the U.S. Coast Guard, icebreaking is generally viewed as a rather narrow specialty, associated most often in the public mind with expeditions into the vast Polar unknowns. However, a study into the service's history of ice operations reveals a broad spectrum of tasks - ranging from the support of pure science to the eminently practical job of life saving on frozen waters. Furthermore, the nature of each of these functions is such that none can be considered "optional": all are vital - whether it be in the arena of national defense, maritime safety, international trade, or the global economy. The origin of icebreaking in the United States came in the 1830s, with the advent of steam propulsion. It was found that side-wheel steamers with reinforced bows were an excellent means of dealing with harbor ice, a problem common to East Coast ports as far south as the Chesapeake Bay. These seasonal tasks were common, but were strictly local efforts with no need to involve the Coast Guard (then called the Revenue Marine or Revenue Cutter Service). The service's first serious encounter with operations in ice came after the purchase of Alaska in 1867. The Revenue Cutter Lincoln became the first of many cutters to operate in Alaskan waters. Though the vessel was a conventional wooden steamer, she made three cruises in Alaskan waters before 1870. Since that time the Bering Sea patrol and other official - and unofficial - tasks made the Revenue Service a significant part of the development of that territory and state.
    [Show full text]
  • Structural Considerations in the Design of the POLAR Class of Coast Guard Icebreakers Bruce H
    ,,.W,+, THE SOCIETYOF NAvAL ARCHITECTSAND MARINE ENGINEERS 74 TrinityPlace,New York,N.Y.,10006 # *: P,PertobeDre$entedattheShipStructureSymPosiUm 8 :c W,sh,rwton,DC.,October68,1975 010 ~+ 2 Q%,,“,,*>>+. Structural Considerations in the Design of the POLAR Class of Coast Guard Icebreakers Bruce H. Barber, Luis M. Baez and Gary J. North, Members, U.S. Coast Guard Headquarters, Washington, DC. c Cowr,8ht1975 by The SOC’etY.f NavalArc17,tects,nd Msr,!,eEnE’neers Artist’s conception of United States Ceast Guard icebreaker POW STAR (WAGB-10 ) structural failures were undertaken to ABSTRACT aesist in the selection of hull mat- erials, Various finite element analyses The design of the Coast Guard’s were conducted for portions of existing POLAR Class icebreakers incorporated and proposed structural arrangements the results of four years of research, with special emphasis on the forward analysis and testing aimed at optimizing structure. With the coperation of other the structural design. Opration and agent ies, studies of the strength of sea load data were gathered by instrumenting ice led to updated ooncepts of loading existing icebreakers. Exten8ive tests that resulted in significant changes in and studies of available steels as we 11 design phi losophy snd refinements over as a methodical analysis of reported previous icebreaker designs. c-1 — INTRODUCTION The need has been apparent since the early 19607S for a new class of ice- Polar icebreakers onerate under the breaking ships to replace aging members most inhospitable ocean ~onditions the of the fleet and to undertake more ex- world has to offer. Designed for opti– tensive duties as Coast Guard Responsi- mum performance at low temperatures in bilities change and expand.
    [Show full text]
  • Department of Homeland Security Office of Inspector General
    Department of Homeland Security Office of Inspector General The Coast Guard’s Polar Icebreaker Maintenance, Upgrade, and Acquisition Program OIG-11-31 January 2011 Ojfice o/lJlSpeclor General U.S. Department of Homeland Seturity Washington, DC 20528 Homeland JAN 19 2011 Security Preface The Department of Homeland Security (DHS) Office ofInspector General (OIG) was established by the Homeland Security Act of2002 (Public Law 107-296) by amendment to the Inspector General Act of I 978. This is one of a series of audit, inspection, and special reports prepared as part of our oversight responsibilities to promote economy, efficiency, and effectiveness within the department. This report addresses the strengths and weaknesses of the Coast Guard's Polar Icebreaker Maintenance, Upgrade, and Acquisition Program. It is based on interviews with employees and officials of relevant agencies and institutions, direct observations, and a review of applicable documents. The recommendations herein have been developed to the best knowledge available to our office, and have been discussed in draft with those responsible for implementation. We trust this report will result in more effective, efficient, and economical operations. We express our appreciation to all of those who contributed to the preparation of this report. /' -/ r) / ;1 f.-t!~ u{. {~z "/v"...-.-J­ Anne L. Richards Assistant Inspector General for Audits Table of Contents/Abbreviations Executive Summary .............................................................................................................1
    [Show full text]
  • Arctic Ocean-Ice-Atmosphere Interactions in the NW Passage of the Canadian High Arctic and Throughout Baffin Bay
    Arctic Ocean-Ice-Atmosphere Interactions in the NW Passage of the Canadian High Arctic and throughout Baffin Bay “In the wake of the Erubus, Terror and Gjoa” UARCTIC RESEARCH CHAIR LEADS ARCTIC EXPEDITION USING THE US COAST GUARD’S HEALY ICEBREAKER Leaving from Seward, Alaska, on 25 August, University of Oulu (UOulu) & University of Alaska Anchorage’s (UAA) Professor Jeff Welker and colLeagues (Drs. KLein, Causey, Kopec, Pedron, MarttiLa, BaiLey, Hubbard and Czimczik) are about to embark on an icebreaker based investigation into the magnitude and patterns of the “Freshening and Fertilization” of the New Arctic. This research mission and the sharing and using of the discoveries invoLves coLLeagues from numerous Arctic nations incLuding those from the US, Finland, Norway, Canada, Denmark and Greenland. Freshening of the Arctic is occurring now with the injection of new moisture into the Arctic’s atmosphere via evaporation resuLting from newLy open ocean areas due to sea ice Loss. Freshening of the Arctic’s atmosphere is one of the most dramatic changes that are now occurring in the north with important consequences for weather, precipitation patterns throughout the northern hemisphere and the deLivery of freshwater in the form of snow and rain necessary for habitat and community heaLth. At the same time, massive amounts of fresh water and ancient C are being transported from gLaciers, ice caps, the Greenland Ice Sheet and the permafrost landscapes into the bays, fjords, coastaL environments of the Arctic Ocean. These injections of freshwater may be aLtering ocean stratification and ocean current patterns, while the new sources of C and nutrients are leading to regions with increasing productivity and Arctic Ocean C sequestration, a negative feedback to cLimate change.
    [Show full text]
  • THE ANTARCTICAN SOCIETY C/O R
    THE ANTARCTICAN SOCIETY c/o R. J. Siple 905 North Jacksonville Street Arlington, Virginia 22205 HONORARY PRESIDENT — AMBASSADOR PAUL C. DANIELS Presidents: Dr. Carl R. Eldund, 1959-61 _________________________________________________________ Dr. Paul A. Siple, 1961-2 Mr. Gordon D. Cartwright, 1962-3 Vol. 81-82 October No. 2 RADM David M. Tyree (Ret), 1963-4 Mr. George R. Toney, 1964-5 Mr. Morton J. Rubin, 1965-6 Dr. Albert F. Crary, 1966-8 The Antarctican Society is proud to announce that Dr. Henry M. Dater, 1968-70 Mr. George A. Doumani, 1970-1 its Centennial Lecture Dr. William J. L. Sladen, 1971-i Mr. Peter F. Bermel, 1973-5 will be Dr. Kenneth J. Bertrand. 1975-7 Mrs. Paul A. Siple, 1977-8 Dr. Paul C. Dalrymple, 1978-80 "A TALE OF TWO PROJECTS: RADIOACTIVITY AND SOLAR ACTIVITY" Dr. Meredith F. Burrill, 1980-82 by Dr. Gisela Dreschhoff Associate Director, Radiation Physics Laboratory Honorary Members: Ambassador Paul C. Daniels University of Kansas Dr. Laurence McKinley Gould Count Emilio Pucci and Sir Charles S. Wright Mr. Hugh Blackwell Evans Annual Homing Austral Summer Antarctican, 1976-1981 Dr. Henry M. Dater Mr. August Howard on Memorial Lecturers: Thursday, November 12, 1981 Dr. William J. L. Sladen, 1964 RADM David M. Tyree (Ret). 1965 Dr. Roger Tory Peterson, 1966 8 p.m. Dr. J. Campbell Craddock, 1967 Mr. James Pranke, 1968 Dr. Henry M. Dater, 1970 National Science Foundation Mr. Peter M. Scott, 1971 Dr. Frank T. Davies, 1972 18th & G Streets, N.W. Mr. Scott McVay, 1973 Room 540 Mr. Joseph O. Fletcher.
    [Show full text]
  • Information to Users
    INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. ProQuest Information and Learning 300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA 800-521-0600 UMT UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE HOME ONLY LONG ENOUGH: ARCTIC EXPLORER ROBERT E. PEARY, AMERICAN SCIENCE, NATIONALISM, AND PHILANTHROPY, 1886-1908 A Dissertation SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the degree of Doctor of Philosophy By KELLY L. LANKFORD Norman, Oklahoma 2003 UMI Number: 3082960 UMI UMI Microform 3082960 Copyright 2003 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Titie 17, United States Code. ProQuest Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, Ml 48106-1346 c Copyright by KELLY LARA LANKFORD 2003 All Rights Reserved.
    [Show full text]
  • The Russian Federation
    Polar Code Implementation in Russian Federation Administration of the Baltic sea ports Vladimir E. Kuzmin Northern Sea Route as a part of Russian polar waters within Polar Code area Polar Waters Northern Sea Route area Russian Federation Polar Code National Regulation, Navigation Rules in the Northern Sea Route Area За 2017 год выдано - 662 разрешения 107 permissions were issued to ships flying foreign flag in 2017 «Permission granted» way of navigation in the NSR waters In 2017 issued - 662 permissions 107 permissions were issued to ships flying foreign flag 7 vessels flying foreign flag were in breach of regulations : Netherlands, United Kingdom, Luxembourg and Sierra-Leone. Crew Training required by the Polar Code Training of Russian crews is already effected by our Maritime Universities Ensuring compliance of Russian vessels to Polar Code requirements Checking the ship compliance with Polar Code requirements is effected by RO Port State Control Port State Control Port State Control in sea ports of Russian Federation Port State Control in sea ports of Russian Federation in Arctic zone within the Polar Code area in Arctic zone outside of the Polar Code area 112 1458 49 753 8 114 0 1 0 43 24 1 Total amount of Inspections Inspections Total amount of Inspections Inspections inspections with with detentions inspections with with detentions deficiencies deficiencies Russian vessels Foreign vessels Russian vessels Foreign vessels Ecological issues Analysis of discharge dynamics from ships Amounts of harmful discharges from bulker ships in Murmansk merchant port 140.00 120.00 100.00 80.00 60.00 40.00 Harmful per year 20.00 0.00 discharges, tons 2010 2011 2012 2013 2014 2015 2016 Main Engine Auxiliary Engines Boilers Total amount of discharge SAR bases in Arctic waters Bases of SAR and points of their location p.
    [Show full text]
  • Canada's Coast Guard Operations in Our Arctic Ocean
    Journal of Military and Strategic VOLUME 17, ISSUE 3 Studies Notes from the Field Canada’s Coast Guard Operations In Our Arctic Ocean J. G. Gilmour In the fall of 2016, I had the opportunity to travel on the Canadian Coast Guard’s largest icebreaker the “Louis St. Laurent” from October 18 to October 27. The trip took us from Kugluktuk in Nunavut to Iqaluit on Baffin Island, approximately 1700 kilometers from start to finish during the ten day passage. The trip, which encountered various ice conditions, took us through Bellot Strait, the Gulf of Boothia, Fury and Hecla Strait, Foxe Basin, Hudson Strait and finally into Frobisher Bay. Normally anything above the Treeline qualifies as “Arctic” beyond 60°; whereas the “High Arctic” refers to regions north of 74°. In its Icebreaking Operations Directives,1 the Canadian Coast Guard (CCG) notes that its icebreaking services include the following: Route assistance to escort ships; Ice routing and Information Services; Harbour breakouts in harbour approaches; 1 “Icebreaking Operations Directive1: Provision of Icebreaking Services,” Canadian Coast Guard, http://www.ccg-gcc.gc.ca/eng/CCG/Ice_Home/Ice_Publications/Directive1-Icebreaking-Services. ©Centre of Military and Strategic Studies, 2017 ISSN : 1488-559X VOLUME 17, ISSUE 3 Flood Control; Northern Resupply to Northern communities; and Arctic Sovereignty. During the summer of 2016, the ship had a very busy schedule. From leaving its port in Halifax it was involved in the Galway project which was an agreement signed off in 2013 between the US, Canada, Norway and the European Union to support the mapping of the Atlantic seabed.
    [Show full text]
  • Underwater Radiated Noise Levels of a Research Icebreaker in the Central Arctic Ocean
    University of New Hampshire University of New Hampshire Scholars' Repository Center for Coastal and Ocean Mapping Center for Coastal and Ocean Mapping 4-2013 Underwater radiated noise levels of a research icebreaker in the central Arctic Ocean Ethan H. Roth University of California - San Diego Val E. Schmidt University of New Hampshire, Durham, [email protected] John A. Hildebrand University of New Hampshire, Durham Sean M. Wiggins University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/ccom Part of the Oceanography and Atmospheric Sciences and Meteorology Commons Recommended Citation E. H. Roth, V. Schmidt, J. A. Hildebrand, and S. M. Wiggins, ‘Underwater radiated noise levels of a research icebreaker in the central arctic ocean’, The Journal of the Acoustical Society of America, vol. 133, no. 4, p. 1971, 2013. This Journal Article is brought to you for free and open access by the Center for Coastal and Ocean Mapping at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Center for Coastal and Ocean Mapping by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. Underwater radiated noise levels of a research icebreaker in the central Arctic Ocean Ethan H Rotha) Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0205 Val Schmidt Center for Coastal and Ocean Mapping/Joint Hydrographic Center, University of New Hampshire, Durham, New Hampshire 03824 John A. Hildebrand and Sean M. Wiggins Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0205 (Received 10 January 2012; revised 21 December 2012; accepted 22 January 2013) U.S.
    [Show full text]