ASPERA Meeting, Paris 8 Feb 2008 Structure

Total Page:16

File Type:pdf, Size:1020Kb

ASPERA Meeting, Paris 8 Feb 2008 Structure MARENOSTRUM at BSC (Barcelona SuperComputing Center) & RES (The Spanish Supercomputing Network) Prepared by Sergi Girona ASPERA Director Operaciones BSC-CNS Presented by Jesus Marco Meeting, Paris RES Universidad de Cantabria Centro Nacional de Supercomputación ● BSC-CNS mission: ● Research, develop & manage technology to promote science advance ● BSC-CNS objectives: ● R&D in: ● Computational Sciences ● Life Sciences ● Earth Sciences. ● Supercomputing Support to external research. ● BSC-CNS is a Consortium with the following partners: ● Spanish Ministry of Education & Science (MEC) – 51% ● Government of Catalonia (Generalitat, DIUE) – 37% ● Universitat Politècnica de Catalunya (UPC) – 12% ASPERA Meeting, Paris 8 Feb 2008 Structure ASPERA Meeting, Paris 8 Feb 2008 Computer Sciences Department Computer architecture: Benchmarking, analysis and prediction tools: • Highly o-o-o architectures • Tracing scalability • Hardware multithreading • Pattern and structure identification • Design space exploration for multicore • Visualization and analysis chips and Hw accelerators • Processor, memory, network, system • Transactional memory (Hw, Hw-assisted) • SIMD and vector extensions/units The Grid Programming models: • Scalability of MPI and UPC • OpenMP for multicore, SMP Future Petaflop and ccNUMA systems • DSM for clusters Large cluster • CellSs systems Grid and cluster computing: • Transactional Memory • Programming models • Embedded architectures • Resource management Small DMM • I/O for Grid Operating environments: cc-NUMA • Autonomic application servers Chip On-board SMP • Resource management for heterogeneous workloads • Coordinated scheduling and resource management • Parallel file system scalability ASPERA Meeting, Paris 8 Feb 2008 Life Sciences Department THE ENCODE THE EARTH PROJECT PROTEOME ● Genome all organisms + all metagenomes ● 1.4x106 sequences ● 32 Tb of RAM used ● 4000 processors ● 38 CPU years ● 9 Tb of output data ● G-Superscalar ● 3.5 days job! ● 5 DAYS lagtime!!! ASPERA Meeting, Paris 8 Feb 2008 Earth Sciences Department Resolution improved to 12 km for all Europe, 4 km for the Iberian peninsula, and 1 km for hot spot regions within MareNostrum Supercomputer Surface tropospheric ozone, 18-21 Jun 2007 ASPERA Meeting, Paris 8 Feb 2008 CASE Department ● Aero-acoustic coupling ● 10,000 processors; 95% parallel efficiency ASPERA Meeting, Paris 8 Feb 2008 A unique place ………… ASPERA Meeting, Paris 8 Feb 2008 MareNostrum “It is not the most powerful supercomputer in the world, but it is the most beautiful” (Fortune, Sept. 2006) ASPERA Meeting, Paris 8 Feb 2008 MareNostrum ● Processors ● 2560 JS21, 2.3GHz ● 4 cores per board ● 8 Gbytes RAM ● 36 Gbytes SAS disk ● Networking ● Myrinet ● 2 Spine 1280 ● 10 Clos256 Blade centers Storage servers Gigabit switch ● 2560 Myrinet cards Myrinet racks Operations rack 10/100 switches ● Gigabit ● 10/100 Ethernet 94,20 TFlops ● Disk 10240 processors ● GPFS over 20 nodes 20 TBytes memory 280 + 90 TBytes disk ● OS ● Linux ASPERA Meeting, Paris 8 Feb 2008 Processor, Blade 4 Processors 8 Gbytes Memory Daughter card Myrinet 36 Gbytes Disk ASPERA Meeting, Paris 8 Feb 2008 Blades, blade center and blade center racks Blade Center • 14 blades per chassis (7U) • 56 processors JS21 Processor Blade • 112GB memory • 2-way 2.3 GHz Power PC 970 MP • Gigabit ethernet switch • 8GB memory (512KB L2 cache) • Local SAS drive (36 GB) • 2x1Gb Ethernet on board • Myrinet daughter card 6 chassis in a rack (42U) • 336 processors • 672GB memory ASPERA Meeting, Paris 8 Feb 2008 Hardware/Myrinet Bandwidth: 250 Mbytes Latency: 4 micros ASPERA Meeting, Paris 8 Feb 2008 Operation: money saving ASPERA Meeting, Paris 8 Feb 2008 MareNostrum ● MareNostrum Evolution: World European List rank rank November 2004 4 1 June 2005 5 1 November 2005 8 1 June 2006 11 3 November 2006 5 1 June 2007 9 1 November 2007 13 3 ASPERA Meeting, Paris 8 Feb 2008 MareNostrum, a live Mare ● MareNostrum 20042006 ● 481210240 PowerPCPowerPC 970 970 cores cores ● 24062560 JS20JS21 2.22.3 GHz ● 1020 TB of Memory ● 48 GB per node ● 270380 TB Storage Capacity ● 3 networks ● Myrinet ● Gigabit ● 10/100 Ethernet ● Operating System ● Linux 2.6 (SuSE) ASPERA Meeting, Paris 8 Feb 2008 Spanish Supercomputing Network / Red Española de Supercomputación RES MareNostrum Processor: 10240 PowerPC 970 2.3 GHz Memory: 20 TBytes Disk: 280 + 90 TBytes Network: Myrinet, Gigabit, 10/100 System: Linux UPM Processor: 2408 PowerPC 970 2.2 GHz Memory: 4.7 TBytes Disk: 63 + 47 TBytes Network: Myrinet, Gigabit, 10/100 System: Linux IAC, UMA, UC, UZ, UV Process: 512 PowerPC 970 2.2 GHz Memory: 1 TByte Disk: 14 + 10 TBytes Network: Myrinet, Gigabit, 10/100 System: Linux ASPERA Meeting, Paris 8 Feb 2008 Magerit Altamira Picasso CesarAugusta LaPalma Tirant ASPERA Meeting, Paris 8 Feb 2008 Red Española de Supercomputación ● Spanish Ministry of Education & Science (MEC) has created a distributed network of supercomputers to support the supercomputing needs of the Spanish research groups. ● Initial nodes of the network are placed at BSC-CNS, at Universidad Politécnica de Madrid (UPM), at IAC (Instituto de Astrofísica de Canarias) and at the Universities of Cantabria, Málaga, Valencia y Zaragoza. ● Access to the resources of the Red Española de Supercomputación is granted to a research group by a Single Access Committee formed by independent prestigious spanish researchers. ● BSC-CNS coordinates the joint technical management of the network. ASPERA Meeting, Paris 8 Feb 2008 Red Española de Supercomputación ● Sharing computing time ● 20% managed by the hosting institution ● 80% assigned through the Access Committee ● Single Access Committee ● 44 Spanish researchers ● 4 panels ● Astronomy, Space & Earth Sciences ● Biomedicine & Life Sciences ● Physics & Engineering ● Chemistry & Materials ● Resources assigned in four months periods ASPERA Meeting, Paris 8 Feb 2008 Access Committee QUALITY OF THE PROJECT (>30%) MPACT OF COMPUTING AT MN HPC EXPERIENCE NEED OF MN (>30%) SUITS THE ARCHITECTURE (>30%) DETAILED PROJECT EXPERTS PANEL CAN ASK FOR A PEER REVIEW THROUGH ANEP GENERAL PROJECT EXPERTS PANEL PROJECT ALREADY EVALUATED POSITIVELY SUPPORT PRIORITIZATION (WRITTEN FORM) APLICATION FORM PRIORITIZATION LISTING DECISION ACCESS BSC RESEARCHER BSC IT ANEP COMMITTEE DIRECTION (ACCEPTANCE) PEER REVIEW ACUSE DE RECIB COMPROMISO TIEMPO RESPUESTA DEFECTO DE FORMA QUALITY OF THE SCIENTIFIC PROJECT (>30%) IMPACT OF COMPUTING AT MN GROUP LEVEL HPC EXPERIENCE ASPERA Meeting, Paris 8 Feb 2008 Evolution of requested/offered hours 60 50 40 Solicitado 30 Ofertado Millones de horas de Millones 20 Tirant2007 10 CesarAugusta2007 Altamira 2007 Picaso2007 MareNostrum Magerit 2006 2007 LaPalma2007 0 2006Q2 2006Q3 2006Q4 2007P1 2007P2 2007P3 2008P1 ASPERA Meeting, Paris 8 Feb 2008 Research users at MN: ● MN has provided support to more than 300 external projects ● Distribution by scientific area: 35 30 Astronomy, Space 25 and Earth Science Biomedicine and Life 20 Science 15 Physics and Engineering Porcentaje uso 10 Chemistry and Material Science 5 0 06 07 2006 20 0 2_ 2 2 P P3_ P4 2006 P1 2007 P ASPERA Meeting, Paris 8 Feb 2008 PRACE: an Strategic European Answer tier 1 GENCI Ecosystem tier 0 Principal Partners General Partners ASPERA Meeting, Paris 8 Feb 2008 European Projects - DEISA • Consortium of leading national supercomputing centres that currently deploys and operates a persistent, production quality, distributed supercomputing environment with continental scope •Objectives: • To deploy and operate a persistent, production quality, distributed supercomputing environment with continental scope • To enable scientific discovery across a broad spectrum of science and technology. Scientific impact is the only criterion for sucess • Partners: IDRIS – CNRS, Forschungszentrum Jülich, Rechenzentrum Garching of the Max Planck Society, CINECA, CSC, SARA, European Center for Medium – Range Weather Forecasts, Leibniz computing Centre of the Bavarian Academy of Sciences and Humanities, HRLS, Barcelona Supercomputing Center. ASPERA Meeting, Paris 8 Feb 2008 Mobility Programs: HPC - Europe • Consortium of six leading High Performance Computing infrastructures and six centers of excellence: BSC - CNS (Barcelona), CINECA (Bologna), EPCC (Edinburgh), HLRS (Stuttgart), IDRIS (Paris) and SARA (Amsterdam). • Objectives: aims to provide advanced computational services in an integrated manner to the European research community working at the frontiers of science • Services: It enables researchers working in any eligible country in Europe to visit a participating research institute to carry out a collaborative visit of up to 3 months’ duration, and to gain access to some of the most powerful High Performance Computing facilities in Europe • Supported Projects: in any field of computational science, including theoretical physics, condensed matter physics, material sciences, computational fluid dynamics, astrophysics, meteo- climatology, computer science, numerical methods in engineering, bio-engineering, computational chemistry, molecular modeling, genomics and proteomics, computational biology and life sciences www.hpc-europa.org ASPERA Meeting, Paris 8 Feb 2008 What can we offer? ● Access to MareNostrum: Access Committee ● Support on usage ● Support on parallelization ● Mobility programs for doctoral candidates, postdoctoral and senior researchers ● As indicated, through HPC-Europa project (funded by EC) ● As an “Infraestructura Científica y Tecnológica Singular del Estado Español”, MEC offers support to ● Get familiar with the infrastructure ● Perform a scientific experiment ASPERA Meeting, Paris 8 Feb 2008 Research leaders with access to MareNostrum ASPERA Meeting, Paris 8 Feb 2008 Research leaders with access to MareNostrum ASPERA Meeting, Paris 8 Feb 2008 Research leaders with access to MareNostrum ASPERA Meeting, Paris 8 Feb 2008 Thanks ! http://www.bsc.es ASPERA Meeting, Paris 8 Feb 2008.
Recommended publications
  • Supercomputing Resources in BSC, RES and PRACE
    www.bsc.es Supercomputing Resources in BSC, RES and PRACE Sergi Girona, BSC-CNS Barcelona, 23 Septiembre 2015 ICTS 2014, un paso adelante para la RES Past RES members and resources BSC-CNS (MareNostrum) IAC (LaPalma II) Processor: 6.112 8-core Intel SandyBridge Processor: 1.024 IBM PowerPC 970 2.3GHz EP E5-2670/1600 20M 2.6GHz Memory: 2 TB 84 Xeon Phi 5110 P Disk: 14 + 10 TB Memory: 100,8 TB Network: Myrinet Disk: 2000 TB Universitat de València (Tirant II) Network: Infiniband FDR10 Processor: 2.048 IBM PowerPC 970 2.3GHz BSC-CNS (MinoTauro) Memory: 2 TB Processor: 256 M2090 NVIDIA GPU Disk: 56 + 40 TB 256 Intel E5649 2,53 GHz 6-core Network: Myrinet Memory: 3 TB Gobierno de Islas Canarias - ITC (Atlante) Network: Iinfiniband QDR Processor: 336 PowerPC 970 2.3GHz BSC-CNS (Altix) Memory: 672 GB Processor: SMP 128 cores Disk: 3 + 90 TB Memory: 1,5 TB Network: Myrinet UPM (Magerit II) Universidad de Málaga (Picasso) Processor: 3.920 (245x16) Power7 3.3GHz Processor: 82 AMD Opteron 6176 96 Intel E5-2670 Memory: 8700 GB 56 Intel E7-4870 Disk: 190 TB 32 GPUS Nvidia Tesla M2075 Network: Infiniband QDR Memory: 21 TB Universidad de Cantabria (Altamira II) Disk: 600 TB Lustre + 260 TB Network: Infiniband Processor: 316 Intel Xeon CPU E5-2670 2.6GHz Memory: 10 TB Universidad de Zaragoza (CaesaraugustaII) Disk: 14 TB Processor: 3072 AMD Opteron 6272 2.1GHz Network: Infiniband Memory: 12,5 TB Disk: 36 TB Network: Infiniband New nodes New RES members and HPC resources CESGA (FINIS TERRAE II) FCSCL (Caléndula) Peak Performance: 256 Tflops Peak Performance:
    [Show full text]
  • RES Updates, Resources and Access / European HPC Ecosystem
    RES updates, resources and Access European HPC ecosystem Sergi Girona RES Coordinator RES: HPC Services for Spain •The RES was created in 2006. •It is coordinated by the Barcelona Supercomputing Center (BSC-CNS). •It forms part of the Spanish “Map of Unique Scientific and Technical Infrastructures” (ICTS). RES: HPC Services for Spain RES is made up of 12 institutions and 13 supercomputers. BSC MareNostrum CESGA FinisTerrae CSUC Pirineus & Canigo BSC MinoTauro UV Tirant UC Altamira UPM Magerit CénitS Lusitania & SandyBridge UMA PiCaso IAC La Palma UZ CaesarAugusta SCAYLE Caléndula UAM Cibeles 1 10 100 1000 TFlop/s (logarithmiC sCale) RES: HPC Services for Spain • Objective: coordinate and manage high performance computing services to promote the progress of excellent science and innovation in Spain. • It offers HPC services for non-profit, open R&D purposes. • Since 2006, it has granted more than 1,000 Million CPU hours to 2,473 research activities. Research areas Hours granted per area 23% AECT 30% Mathematics, physics Astronomy, space and engineering and earth sciences BCV FI QCM 19% 28% Life and health Chemistry and sciences materials sciences RES supercomputers BSC (MareNostrum 4) 165888 cores, 11400 Tflops Main processors: Intel(R) Xeon(R) Platinum 8160 Memory: 390 TB Disk: 14 PB UPM (Magerit II) 3920 cores, 103 Tflops Main processors : IBM Power7 3.3 GHz Memory: 7840 GB Disk: 1728 TB UMA (Picasso) 4016 cores, 84Tflops Main processors: Intel SandyBridge-EP E5-2670 Memory: 22400 GB Disk: 720 TB UV (Tirant 3) 5376 cores, 111,8 Tflops
    [Show full text]
  • La Difusió D
    ADVERTIMENT . La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX ( www.tesisenxarxa.net ) ha estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei TDX. No s’autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom de la persona autora. ADVERTENCIA . La consulta de esta tesis queda condicionada a la aceptación de las siguientes condiciones de uso: La difusión de esta tesis por medio del servicio TDR ( www.tesisenred.net ) ha sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR. No se autoriza la presentación de su contenido en una ventana o marco ajeno a TDR (framing). Esta reserva de derechos afecta tanto al resumen de presentación de la tesis como a sus contenidos. En la utilización o cita de partes de la tesis es obligado indicar el nombre de la persona autora.
    [Show full text]
  • Sistema De Recuperación Automática De Un Supercomputador Con Arquitectura De Cluster
    Universidad Politecnica´ de Madrid Facultad de Informatica´ Proyecto fin de carrera Sistema de recuperacion´ automatica´ de un supercomputador con arquitectura de cluster Autor: Juan Morales del Olmo Tutores: Pedro de Miguel Anasagasti Oscar´ Cubo Medina Madrid, septiembre 2008 La composicion´ de este documento se ha realizado con LATEX. Diseno˜ de Oscar Cubo Medina. Esta obra esta´ bajo una licencia Reconocimiento-No comercial-Compartir bajo la misma licencia 2.5 de Creative Commons. Para ver una copia de esta licencia, visite http://creativecommons.org/licenses/by-nc-sa/2.5/ o envie una carta a Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA. Las ideas no duran mucho. Hay que hacer algo con ellas. Santiago Ramon´ y Cajal A todos los que he desatendido durante la carrera Sinopsis El continuo aumento de las necesidades de computo´ de la comunidad cient´ıfica esta´ ocasionando la proliferacion´ de centros de supercomputacion´ a lo largo del mundo. Desde hace unos anos˜ la tendencia es ha utilizar una arquitectura de cluster para la construccion´ de estas maquinas.´ Precisamente la UPM cuenta con uno de estos computadores. Se trata de Magerit, el segundo super- computador mas´ potente de Espana˜ que se encuentra alojado en el CeSViMa y que alcanza los 16 TFLOPS. Los nodos de computo´ de un sistema de estas caracter´ısticas trabajan exhaustivamente casi sin des- canso, por eso es frecuente que vayan sufriendo problemas. Las tareas de reparacion´ de nodos consumen mucho tiempo al equipo de administracion´ de CeSViMa y no existen herramientas que agilicen estas labo- res. El objetivo de este proyecto es dotar de cierta autonom´ıa a Magerit para que pueda recuperar de forma automatica´ sus nodos de computo´ sin la intervencion´ de los administradores del sistema.
    [Show full text]
  • Computational Astrophysics Computer Architectures Alexander Knebe, Universidad Autonoma De Madrid Computational Astrophysics Computer Architectures
    Computational Astrophysics Computer Architectures Alexander Knebe, Universidad Autonoma de Madrid Computational Astrophysics Computer Architectures ! architectures ! real machines ! computing concepts ! parallel programming Computational Astrophysics Computer Architectures ! architectures ! real machines ! computing concepts ! parallel programming Computational Astrophysics architectures Computer Architectures ! serial machine = CPU RAM Computational Astrophysics architectures Computer Architectures ! serial machine = CPU RAM CPU: ! very primitive commands, obtained from compilers or interpreters of higher-level languages Computational Astrophysics architectures Computer Architectures ! serial machine = CPU RAM CPU: ! very primitive commands, obtained from compilers or interpreters of higher-level languages ! cycle chain: • fetch – get instruction and/or data from memory • decode – store instruction and/or data in register • execute – perform instruction Computational Astrophysics architectures Computer Architectures ! serial machine = CPU RAM CPU: ! very primitive commands, obtained from compilers or interpreters of higher-level languages ! cycle chain: • fetch – get instruction and/or data from memory • decode – store instruction and/or data in register • execute – perform instruction arithmetical/logical instructions: +, -, *, /, bitshift, if Computational Astrophysics architectures Computer Architectures ! serial machine = CPU RAM CPU: ! very primitive commands, obtained from compilers or interpreters of higher-level languages ! cycle
    [Show full text]
  • BSC-Microsoft Research Centre Overview Osman Unsal
    BSC-Microsoft Research Centre Overview Osman Unsal Moscow 11.June.2009 Outline • Barcelona Supercomputing Center • BSC – Microsoft Research Centre Barcelona Supercomputing Center • Mission – Investigate, develop and manage technology to facilitate the advancement of science. • Objectives – Operate national supercomputing facility – R&D in Supercomputing and Computer Architecture. – Collaborate in R&D e-Science • Consortium – the Spanish Government (MEC) – the Catalonian Government (DURSI) – the Technical University of Catalonia (UPC) Location MareNostrum ● MareNostrum 2006 ● 10240 PowerPC 970 cores ● 2560 JS21 2.3 GHz ● 20 TB of Memory ● 8 GB per node ● 380 TB Storage Capacity ● 3 networks ● Myrinet ● Gigabit ● 10/100 Ethernet ● Operating System ● Linux 2.6 (SuSE) Spanish Supercomputing Network Magerit Altamira CaesarAugusta LaPalma Picasso Tirant Access Committee Resource utilization Solicitudes recibidas y concedidas 140 120 • Resource distribution 100 – 20% internal use 80 60 – 80% assigned via Access 40 Committee 20 0 • Unique Access Committee 2006 P2 2006 P3 2006 P4 2007 P1 2007 P2 2007 P3 2008 P1 Total solicitadas, concedidas (clase A) y usadas – 44 Spanish researchers 60000 Solicitadas 50000 Concedidas • Core Team Usadas • 4 panels 40000 30000 – Astrophysics, Space, and Khoras Earth Sciences 20000 – Biomedicine and Life Sciences 10000 – Physics and Engineering 0 2006 P2 2006 P3 2006 P4 2007 P1 2007 P2 2007 P3 2008 P1 – Chemistry and New Materials Uso por áreas de Ciencia – New applications every four months 2500 – Committee renewed
    [Show full text]
  • Numerical Simulations of Massive Separated Flows: Flow Over a Stalled NACA0012 Airfoil
    Previous work on DNS/LES of bluff bodies Numerical details Computational details Results Numerical simulations of massive separated flows: flow over a stalled NACA0012 airfoil A. Oliva I. Rodr´ıguez O. Lehmkuhl R. Borrell A. Baez C.D. P´erez-Segarra Centre Tecnol`ogicde Transfer`enciade Calor ETSEIAT { UPC 7th RES Users'Conference Barcelona, September 13th, 2013 Previous work on DNS/LES of bluff bodies Numerical details Computational details Results Contents 1 Previous work on DNS/LES of bluff bodies 2 Numerical details 3 Computational details Pre-processing Solving the problem Post-processing 4 Results Previous work on DNS/LES of bluff bodies Numerical details Computational details Results Turbulent flow past bluff bodies Previous work on DNS/LES of bluff bodies Numerical details Computational details Results The turbulence problem Previous work on DNS/LES of bluff bodies Numerical details Computational details Results Motivations & objectives Advance in the understanding of the physics of turbulent flows To gain insight in the mechanism of the shear-layer transition and its influence in the wake characteristics and in the unsteady forces on the bluff body surface Contribute to the improvement of SGS modelling of complex flows, by the assessment of the performance of models suitable for unstructured grids and complex geometries at high Re, typical encountered in industrial applications. Previous work on DNS/LES of bluff bodies Numerical details Computational details Results Previous results (1/2) Project: Direct Numerical Simulation of turbulent flows in complex geometries using unstructured meshes. Flow around a circular cylinder. Refs: FI-2008-2-0037 and FI-2008-3-0021.
    [Show full text]
  • The Mont-Blanc Approach Towards Exascale Prof
    www.bsc.es The Mont-Blanc approach towards Exascale Prof. Mateo Valero Director Disclaimer: All references to unavailable products are speculative, taken from web sources. There is no commitment from ARM, Samsung, Intel, or others implied. Supercomputers, Theory and Experiments Fusion reactor Accelerator design Material sciences Astrophysics Experiments Aircraft Automobile design Theory Simulation Climate and weather modeling Life sciences Parallel Systems Interconnect (Myrinet, IB, Ge, 3D torus, tree, …) Node Node* Node** Node Node* Node** Node* Node** Node Node Node SMP Memory homogeneous multicore (BlueGene-Q chip) heterogenous multicore multicore IN multicore general-purpose accelerator (e.g. Cell) multicore GPU multicore FPGA ASIC (e.g. Anton for MD) Network-on-chip (bus, ring, direct, …) Looking at the Gordon Bell Prize 1 GFlop/s; 1988; Cray Y-MP; 8 Processors – Static finite element analysis 1 TFlop/s; 1998; Cray T3E; 1024 Processors – Modeling of metallic magnet atoms, using a variation of the locally self-consistent multiple scattering method. 1 PFlop/s; 2008; Cray XT5; 1.5x105 Processors – Superconductive materials 1 EFlop/s; ~2018; ?; 1x108 Processors?? (109 threads) Jack Dongarra Top10 GFlops/Wat Rank Site Computer Procs Rmax Rpeak Power t BlueGene/Q, Power BQC 16C 1.60 1 DOE/NNSA/LLNL 1572864 16,32 20,13 7,89 2,06 GHz, Custom RIKEN Advanced Institute for Fujitsu, K computer, SPARC64 2 705024 10,51 11,28 12,65 0,83 Computational VIIIfx 2.0GHz, Tofu interconnect Science (AICS) DOE/SC/Argonne BlueGene/Q, Power BQC 16C 3 786432
    [Show full text]
  • High Performance Computing for Electron Dynamics in Complex
    Optimisation of the first principle code Octopus for massive parallel architectures: application to light harvesting complexes Thesis Dissertation April 23, 2015 Joseba Alberdi-Rodriguez ([email protected]) Supervisors: Dr. Javier Muguerza Rivero Department of Computer Architecture and Technology Faculty of Computer Science Prof. Angel Rubio Secades Department of Materials Physics Faculty of Chemistry eman ta zabal zazu Universidad Euskal Herriko del País Vasco Unibertsitatea Servicio Editorial de la Universidad del País Vasco (UPV/EHU) - Euskal Herriko Unibertsitateko (UPV/EHU) Argitalpen Zerbitzua - University of the Basque Country (UPV/EHU) Press - ISBN: 978-84-9082-371-2 Knows no end Jakintzak ez duelako inoiz mugarik Familiari Abstract Computer simulation has become a powerful technique for assisting scientists in developing novel insights into the basic phenomena underlying a wide variety of complex physical systems. The work reported in this thesis is concerned with the use of massively parallel computers to simulate the fundamental features at the electronic structure level that control the initial stages of harvesting and transfer of solar energy in green plants which initiate the photosynthetic process. Currently available supercomputer facilities offer the possibility of using hundred of thousands of computing cores. However, obtaining a linear speed-up from HPC systems is far from trivial. Thus, great efforts must be devoted to understand the nature of the scientific code, the methods of parallel execution, data communication requirements in multi-process calculations, the efficient use of available memory, etc. This thesis deals with all of these themes, with a clear objective in mind: the electronic structure simulation of complete macro-molecular complexes, namely the Light Harvesting Complex II, with the aim of understanding its physical behaviour.
    [Show full text]
  • MAP of Unique Scientific and Technical Infrastructures (ICTS)
    MAP OF UNIQUE SCIENTIFIC AND TECHNICAL INFRASTRUCTURES (ICTS) GOBIERNO MINISTERIO DE ESPAÑA DE ECONOMÍA Y COMPETITIVIDAD MAP OF UNIQUE SCIENTIFIC AND TECHNICAL INFRASTRUCTURES (ICTS) GOBIERNO MINISTERIO DE ESPAÑA DE ECONOMÍA Y COMPETITIVIDAD FOREWORD panish science and technology The Ministry of Economy and Competitiveness Spain is a country of science, technology, and have reached a considerable has promoted, in conjuntction with the Auton- innovation. We participate in many of the level of excellence over the last omous Communities, an updated ICTS Map most important global infrastructure sites and Sthree decades. The number of approved on 7 October 2014 by the Council we are capable of competing for large inter- researchers has multiplied, we are now able of Scientific, Technological, and Innovation national projects. Reading through the pages to attract and retain talent, centres have been Policy, a coordination body for scientific and of this book will allow you to get an idea of created for highly-competitive research, and technological research in Spain. Thanks to a our scientific and technological capabilities. I companies have emerged that are capable productive collaboration with the Autono- invite you to get to know our Unique Scientific of tackling projects that require cutting-edge mous Communities, we have joined forces to and Technical Infrastructures, the ICTS, prod- technology. Our position as tenth in the world foster ICTS capacities, avoid redundancies, ucts of the effort of the scientific and techno- in scientific production, eighth if we consider and boost their industrial use. logical community. the journals with the greatest impact, reflects the quality of our science. Criteria of maximum scientific, technology, and innovation quality, submitting infrastruc- The growth that has characterised Spanish tures to independent assessment by top-level R&D over the last thirty years would not have international experts, have been taken into Carmen Vela Olmo been possible without facilities and infrastruc- account to create this map.
    [Show full text]
  • Locally Managed Galaxy Instances with Access to External Resources in a Supercomputing Environment
    Locally Managed Galaxy Instances with Access to External Resources in a Supercomputing Environment Nuria Lozano1,2, Oscar Lozano2, Beatriz Jorrin1, Juan Imperial3, Vicente Martin2 1 Center for Biotechnology and Genomics of Plants (CBGP), Technical University of Madrid 2 Madrid Supercomputing and Visualization Center (CeSViMa), Technical University of Madrid 3 Center for Biotechnology and Genomics of Plants (CBGP), Technical University of Madrid and CSIC 1. Introduction 2. Cluster: Magerit 3. Solution: Collaboration VPS – Cluster Galaxy is a tool that can use resources well beyond those CeSViMa manages a large heterogeneous cluster, called ● Production local instance installed in a Virtual Private available to a research group or even to a research center, Magerit, of about 4,000 Power7 cores and 1,000 Intel ones. Server. especially when huge datasets are going to be used. In this case Some of the nodes have special characteristics, like a large ● Jobs are sent to a Cluster (Magerit) and executed there. the access to shared resources, like those available in memory footprint or accelerators (either Xeon Phi or Nvidia ● A shared filesystem between the application server (VPS) supercomputers centers is a welcome addition to Galaxy K20x). and the cluster nodes is required. capabilities. However, privacy or flexibility requirements might ● The path to Galaxy must be exactly the same on both the impose the need for a locally managed Galaxy installation, As it is standard in these installations, Magerit resources are nodes and the application server. It is the one required by something not possible in a typical, batch-mode oriented facility accessed in batch mode. The resource manager used is SLURM Magerit.
    [Show full text]
  • Models, Methods and Tools for Availability Assessment of IT-Services and Business Processes
    Models, Methods and Tools for Availability Assessment of IT-Services and Business Processes Dr.-Ing. Nikola Milanovic Habilitationsschrift an der FakultÄatIV { Elektrotechnik und Informatik der Technischen UniversitÄatBerlin Lehrgebiet: Informatik ErÄo®nug des Verfahrens: 15. Juli 2009 Verleihung der LehrbefÄahigung:19. Mai 2010 Ausstellung der Urkunde: 19. Mai 2010 Gutachter: Prof. Dr. Volker Markl (Technische UniversitÄatBerlin) Prof. Dr. Miroslaw Malek (Humboldt UniversitÄatzu Berlin) Prof. Dr. Alexander Reinefeld (Humboldt UniversitÄatzu Berlin) Berlin, 2010 D 83 II III Abstract In the world where on-demand and trustworthy service delivery is one of the main preconditions for successful business, service and business process avail- ability is of paramount importance and cannot be compromised. For that reason service availability is in central focus of the IT operations management research and practice. This work presents foundations, models, methods and tools that can be used for comprehensive service and business process availability assess- ment and management. As many terms in this emerging ¯eld are used colloquially, Chapter 2 pro- vides detailed background and de¯nitions. The problem of service availabil- ity assessment and management is interdisciplinary, combining ¯elds of fault- tolerance, service oriented architecture and business process management. An- other role of this chapter is to make the text accessible to readers with dif- ferent backgrounds. After the context of service availability has been intro- duced, Chapter 3 presents existing models for availability and performability assessment. The emphasis is on formal availability models, such as combinato- rial (e.g., reliability block diagrams, fault trees) and state-space (e.g., Markov chains, Petri net) models, but qualitative models (e.g., maturity models such as ITIL or CobiT or standards such as ISO 27002 and ISO 12207) are also covered, albeit with limited scope as they are not the primary focus of this work.
    [Show full text]