Models, Methods and Tools for Availability Assessment of IT-Services and Business Processes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Download CFML Guide 2010 As
CFML GUIDE 2010 YOUR COLDFUSION HOSTING PROVIDER We’ve been hosti ng ColdFusion applicati ons for more than 10 years and have a fundamental knowledge of how to handle all sizes of ColdFusion applicati ons and websites. No matt er if it is a small shared hosti ng, a dedicated server or colocati on servers as long ColdFusion is involved, we are your partner. Since 2009, we are one of a few Premium Adobe ColdFusion hosti ng partner, which confi rms our experti se. Services • Shared Hosti ng • Dedicated Server • Virtual Server • Colocati on • Hosted Exchange 2010 • Domain registrati on service • SSL Certi fi cates • SMS Gateway • MX Backup • Online Backup CENTINATED GmbH Keltenstrasse 98 3018 Bern, Switzerland Phone +41 31 994 03 11 www.centi nated.com info@centi nated.com INDEX TAGS cfAbort - cfCatch 4 cfChart - cfCookie 5 cfDBInfo - cfError 6 cfExchangeCalendar - cfFeed 7 cfFile - cfFTP 8 cfFunction - cfGridRow 9 cfGridUpdate - cfIndex 10 cfInput - cfLayoutArea 11 cfLDAP - cfMailPart 12 cfMailParam - cfMessageBox 13 cfModule - cfPDF 14 cfPDFParam - cfProcessingDirective 15 cfProcParam - cfQuery 16 cfQueryParam - cfSearch 17 cfSelect - cfSpryDataSet 18 cfStoredProc - cfTransaction 19 cfTree - cfZipParam 20 FUNCTIONS Ajax, Array, Cache, Conversion 22 Conversion, Date/Time 23 Decision 24 Display, Dynamic Evaluation, File/Directory 25 Image 26 International, List 27 Mathematic, Object 28 ORM, other, Print, Query 29 Security, Session & Client, Spreadsheet 30 Spreadsheet, string 31 String, Struct, System 32 Thread, Transaction, XML & SOAP 33 CFML -
Supercomputing Resources in BSC, RES and PRACE
www.bsc.es Supercomputing Resources in BSC, RES and PRACE Sergi Girona, BSC-CNS Barcelona, 23 Septiembre 2015 ICTS 2014, un paso adelante para la RES Past RES members and resources BSC-CNS (MareNostrum) IAC (LaPalma II) Processor: 6.112 8-core Intel SandyBridge Processor: 1.024 IBM PowerPC 970 2.3GHz EP E5-2670/1600 20M 2.6GHz Memory: 2 TB 84 Xeon Phi 5110 P Disk: 14 + 10 TB Memory: 100,8 TB Network: Myrinet Disk: 2000 TB Universitat de València (Tirant II) Network: Infiniband FDR10 Processor: 2.048 IBM PowerPC 970 2.3GHz BSC-CNS (MinoTauro) Memory: 2 TB Processor: 256 M2090 NVIDIA GPU Disk: 56 + 40 TB 256 Intel E5649 2,53 GHz 6-core Network: Myrinet Memory: 3 TB Gobierno de Islas Canarias - ITC (Atlante) Network: Iinfiniband QDR Processor: 336 PowerPC 970 2.3GHz BSC-CNS (Altix) Memory: 672 GB Processor: SMP 128 cores Disk: 3 + 90 TB Memory: 1,5 TB Network: Myrinet UPM (Magerit II) Universidad de Málaga (Picasso) Processor: 3.920 (245x16) Power7 3.3GHz Processor: 82 AMD Opteron 6176 96 Intel E5-2670 Memory: 8700 GB 56 Intel E7-4870 Disk: 190 TB 32 GPUS Nvidia Tesla M2075 Network: Infiniband QDR Memory: 21 TB Universidad de Cantabria (Altamira II) Disk: 600 TB Lustre + 260 TB Network: Infiniband Processor: 316 Intel Xeon CPU E5-2670 2.6GHz Memory: 10 TB Universidad de Zaragoza (CaesaraugustaII) Disk: 14 TB Processor: 3072 AMD Opteron 6272 2.1GHz Network: Infiniband Memory: 12,5 TB Disk: 36 TB Network: Infiniband New nodes New RES members and HPC resources CESGA (FINIS TERRAE II) FCSCL (Caléndula) Peak Performance: 256 Tflops Peak Performance: -
RES Updates, Resources and Access / European HPC Ecosystem
RES updates, resources and Access European HPC ecosystem Sergi Girona RES Coordinator RES: HPC Services for Spain •The RES was created in 2006. •It is coordinated by the Barcelona Supercomputing Center (BSC-CNS). •It forms part of the Spanish “Map of Unique Scientific and Technical Infrastructures” (ICTS). RES: HPC Services for Spain RES is made up of 12 institutions and 13 supercomputers. BSC MareNostrum CESGA FinisTerrae CSUC Pirineus & Canigo BSC MinoTauro UV Tirant UC Altamira UPM Magerit CénitS Lusitania & SandyBridge UMA PiCaso IAC La Palma UZ CaesarAugusta SCAYLE Caléndula UAM Cibeles 1 10 100 1000 TFlop/s (logarithmiC sCale) RES: HPC Services for Spain • Objective: coordinate and manage high performance computing services to promote the progress of excellent science and innovation in Spain. • It offers HPC services for non-profit, open R&D purposes. • Since 2006, it has granted more than 1,000 Million CPU hours to 2,473 research activities. Research areas Hours granted per area 23% AECT 30% Mathematics, physics Astronomy, space and engineering and earth sciences BCV FI QCM 19% 28% Life and health Chemistry and sciences materials sciences RES supercomputers BSC (MareNostrum 4) 165888 cores, 11400 Tflops Main processors: Intel(R) Xeon(R) Platinum 8160 Memory: 390 TB Disk: 14 PB UPM (Magerit II) 3920 cores, 103 Tflops Main processors : IBM Power7 3.3 GHz Memory: 7840 GB Disk: 1728 TB UMA (Picasso) 4016 cores, 84Tflops Main processors: Intel SandyBridge-EP E5-2670 Memory: 22400 GB Disk: 720 TB UV (Tirant 3) 5376 cores, 111,8 Tflops -
La Difusió D
ADVERTIMENT . La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX ( www.tesisenxarxa.net ) ha estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei TDX. No s’autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom de la persona autora. ADVERTENCIA . La consulta de esta tesis queda condicionada a la aceptación de las siguientes condiciones de uso: La difusión de esta tesis por medio del servicio TDR ( www.tesisenred.net ) ha sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR. No se autoriza la presentación de su contenido en una ventana o marco ajeno a TDR (framing). Esta reserva de derechos afecta tanto al resumen de presentación de la tesis como a sus contenidos. En la utilización o cita de partes de la tesis es obligado indicar el nombre de la persona autora. -
Sistema De Recuperación Automática De Un Supercomputador Con Arquitectura De Cluster
Universidad Politecnica´ de Madrid Facultad de Informatica´ Proyecto fin de carrera Sistema de recuperacion´ automatica´ de un supercomputador con arquitectura de cluster Autor: Juan Morales del Olmo Tutores: Pedro de Miguel Anasagasti Oscar´ Cubo Medina Madrid, septiembre 2008 La composicion´ de este documento se ha realizado con LATEX. Diseno˜ de Oscar Cubo Medina. Esta obra esta´ bajo una licencia Reconocimiento-No comercial-Compartir bajo la misma licencia 2.5 de Creative Commons. Para ver una copia de esta licencia, visite http://creativecommons.org/licenses/by-nc-sa/2.5/ o envie una carta a Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA. Las ideas no duran mucho. Hay que hacer algo con ellas. Santiago Ramon´ y Cajal A todos los que he desatendido durante la carrera Sinopsis El continuo aumento de las necesidades de computo´ de la comunidad cient´ıfica esta´ ocasionando la proliferacion´ de centros de supercomputacion´ a lo largo del mundo. Desde hace unos anos˜ la tendencia es ha utilizar una arquitectura de cluster para la construccion´ de estas maquinas.´ Precisamente la UPM cuenta con uno de estos computadores. Se trata de Magerit, el segundo super- computador mas´ potente de Espana˜ que se encuentra alojado en el CeSViMa y que alcanza los 16 TFLOPS. Los nodos de computo´ de un sistema de estas caracter´ısticas trabajan exhaustivamente casi sin des- canso, por eso es frecuente que vayan sufriendo problemas. Las tareas de reparacion´ de nodos consumen mucho tiempo al equipo de administracion´ de CeSViMa y no existen herramientas que agilicen estas labo- res. El objetivo de este proyecto es dotar de cierta autonom´ıa a Magerit para que pueda recuperar de forma automatica´ sus nodos de computo´ sin la intervencion´ de los administradores del sistema. -
Step Debugging in CF 6/7/8 with the CF8 Debugger and Fusiondebug - SA6A
Step Debugging in CF 6/7/8 with the CF8 Debugger and FusionDebug - SA6A Charlie Arehart Independent Consultant [email protected] Produced 3-May-08 Topics • Solutions for CF 6, 7, and 8 • Introduction to Step Debugging • Debugging Demo – CF8 Debugger – FusionDebug • Debugger Features • Why Use Debugging over CFDUMP, etc. • Tips and Traps • Learning More, FAQs, etc. 2 About Charlie Arehart • Independent consultant since April 2006 • 11 yrs CF experience (26 in Enterprise IT) – Member, Adobe Community Experts – Certified Adv CF Developer (4 - 7), Cert. Adobe Instructor – Writer in CFDJ, FAQU, Adobe DevCenter, CommunityMX, more – Contributor to all three Ben Forta CF8 books – Frequent speaker to user groups, conferences worldwide: cf.Objective, CFUnited, webDU, webManiacs, Scotch on the Rocks, et al – Run the Online ColdFusion Meetup (coldfusionmeetup.com) – Living in Alpharetta, Georgia (north of Atlanta) 3 About Charlie Arehart • Web home at www.carehart.org – Hosts 200+ blog entries, 60+ articles, 70+ presentations, more – UGTV: • Recorded presentations by over 100 CFUG speakers – Tools/Resources to Consider: • 700+ tools/resources in 100+ categories – Consulting: available for troubleshooting, tuning, training • For as few as days, hours, or even minutes; remote or on-site 4 Solutions for 6, 7, and 8 • CF 8 Debugger, from Adobe – Free with CF8 • Adobe ColdFusion 8 Extensions for Eclipse – http://www.adobe.com/support/coldfusion/downloads.html#cfdevtools – Works only on CF8 • FusionDebug, from Intergral – Commercial product (www.fusiondebug.com) -
Computational Astrophysics Computer Architectures Alexander Knebe, Universidad Autonoma De Madrid Computational Astrophysics Computer Architectures
Computational Astrophysics Computer Architectures Alexander Knebe, Universidad Autonoma de Madrid Computational Astrophysics Computer Architectures ! architectures ! real machines ! computing concepts ! parallel programming Computational Astrophysics Computer Architectures ! architectures ! real machines ! computing concepts ! parallel programming Computational Astrophysics architectures Computer Architectures ! serial machine = CPU RAM Computational Astrophysics architectures Computer Architectures ! serial machine = CPU RAM CPU: ! very primitive commands, obtained from compilers or interpreters of higher-level languages Computational Astrophysics architectures Computer Architectures ! serial machine = CPU RAM CPU: ! very primitive commands, obtained from compilers or interpreters of higher-level languages ! cycle chain: • fetch – get instruction and/or data from memory • decode – store instruction and/or data in register • execute – perform instruction Computational Astrophysics architectures Computer Architectures ! serial machine = CPU RAM CPU: ! very primitive commands, obtained from compilers or interpreters of higher-level languages ! cycle chain: • fetch – get instruction and/or data from memory • decode – store instruction and/or data in register • execute – perform instruction arithmetical/logical instructions: +, -, *, /, bitshift, if Computational Astrophysics architectures Computer Architectures ! serial machine = CPU RAM CPU: ! very primitive commands, obtained from compilers or interpreters of higher-level languages ! cycle -
BSC-Microsoft Research Centre Overview Osman Unsal
BSC-Microsoft Research Centre Overview Osman Unsal Moscow 11.June.2009 Outline • Barcelona Supercomputing Center • BSC – Microsoft Research Centre Barcelona Supercomputing Center • Mission – Investigate, develop and manage technology to facilitate the advancement of science. • Objectives – Operate national supercomputing facility – R&D in Supercomputing and Computer Architecture. – Collaborate in R&D e-Science • Consortium – the Spanish Government (MEC) – the Catalonian Government (DURSI) – the Technical University of Catalonia (UPC) Location MareNostrum ● MareNostrum 2006 ● 10240 PowerPC 970 cores ● 2560 JS21 2.3 GHz ● 20 TB of Memory ● 8 GB per node ● 380 TB Storage Capacity ● 3 networks ● Myrinet ● Gigabit ● 10/100 Ethernet ● Operating System ● Linux 2.6 (SuSE) Spanish Supercomputing Network Magerit Altamira CaesarAugusta LaPalma Picasso Tirant Access Committee Resource utilization Solicitudes recibidas y concedidas 140 120 • Resource distribution 100 – 20% internal use 80 60 – 80% assigned via Access 40 Committee 20 0 • Unique Access Committee 2006 P2 2006 P3 2006 P4 2007 P1 2007 P2 2007 P3 2008 P1 Total solicitadas, concedidas (clase A) y usadas – 44 Spanish researchers 60000 Solicitadas 50000 Concedidas • Core Team Usadas • 4 panels 40000 30000 – Astrophysics, Space, and Khoras Earth Sciences 20000 – Biomedicine and Life Sciences 10000 – Physics and Engineering 0 2006 P2 2006 P3 2006 P4 2007 P1 2007 P2 2007 P3 2008 P1 – Chemistry and New Materials Uso por áreas de Ciencia – New applications every four months 2500 – Committee renewed -
Numerical Simulations of Massive Separated Flows: Flow Over a Stalled NACA0012 Airfoil
Previous work on DNS/LES of bluff bodies Numerical details Computational details Results Numerical simulations of massive separated flows: flow over a stalled NACA0012 airfoil A. Oliva I. Rodr´ıguez O. Lehmkuhl R. Borrell A. Baez C.D. P´erez-Segarra Centre Tecnol`ogicde Transfer`enciade Calor ETSEIAT { UPC 7th RES Users'Conference Barcelona, September 13th, 2013 Previous work on DNS/LES of bluff bodies Numerical details Computational details Results Contents 1 Previous work on DNS/LES of bluff bodies 2 Numerical details 3 Computational details Pre-processing Solving the problem Post-processing 4 Results Previous work on DNS/LES of bluff bodies Numerical details Computational details Results Turbulent flow past bluff bodies Previous work on DNS/LES of bluff bodies Numerical details Computational details Results The turbulence problem Previous work on DNS/LES of bluff bodies Numerical details Computational details Results Motivations & objectives Advance in the understanding of the physics of turbulent flows To gain insight in the mechanism of the shear-layer transition and its influence in the wake characteristics and in the unsteady forces on the bluff body surface Contribute to the improvement of SGS modelling of complex flows, by the assessment of the performance of models suitable for unstructured grids and complex geometries at high Re, typical encountered in industrial applications. Previous work on DNS/LES of bluff bodies Numerical details Computational details Results Previous results (1/2) Project: Direct Numerical Simulation of turbulent flows in complex geometries using unstructured meshes. Flow around a circular cylinder. Refs: FI-2008-2-0037 and FI-2008-3-0021. -
Oct 2016 Cfsummit
Keep Applications Online And Detect & Isolate Application Issues & Performance Bottlenecks In No Time With FusionReactor 6 Charlie Arehart, Independent Consultant CF Server Troubleshooter CArehart.org [email protected] @carehart (Tw, Fb, Li) What we’ll cover • Key new features of FusionReactor 6 • Low overhead Profiler • Production Debugger • Additional FR 6 improvements • Some FR 6 hidden gems • Quick overview of FR’s long-standing benefits • Sneak peek at FusionCLOUD (coming soon) Who does this talk apply to? • Anyone interested in troubleshooting/tuning servers; solving coding issues • Admins, managers, developers, devops • Whether using any CFML engine • ColdFusion, Lucee, Railo, BlueDragon • Or any Java application or server • Tomcat, JBoss, Wildfly, Jetty, WebSphere etc. • Or java applications: Solr, Confluence, etc. • FusionReactor is implemented simply as a javaagent • And is a low-cost, low-impact, reliable tool • Trusted for over 10 years by thousands of companies (over 30K servers world-wide) Key new features in FR 6 • Low overhead Profiler (in Ultimate edition) • Lets you see where the most time is spent within a request • Can change profiler default triggering at > 3 seconds; change poll interval (200 ms) • FusionReactor>plugins>active plugins>FusionReactor Low Cost Profiler • More: • www.fusion-reactor.com/production-java-profiler/ • www.fusion-reactor.com/evangelism/introducing-fusionreactors-production-java-profiler/ • docs.intergral.com/display/FR62/Profiler • … Key new features in FR 6 (cont.) • Production Debugger -
Promoting CFML Outside of the CFML Community Brainstorming Session
Ground Rules A. We are here to discuss ideas for CF developers and the CF developer community as a whole to Promoting CFML promote ColdFusion to the unconverted... Outside of the CFML Community outside of our own community. B. This will NOT discuss Adobe's efforts to promote Brainstorming Session ColdFusion. Directed by Brian Meloche C. We will not discuss Open BlueDragon. Manager, Cleveland CFUG D. More correctly, we will discuss promoting CFML outside of the CFML community! As such, I’ve & Adobe Community Expert changed the title. www.cfunited.com June 18 - 21, 2008 www.cfunited.com Ground Rules, Part 2 This is a Brainstorming Session E. This is scheduled to last for two hours!!! A. Concepts are outlined here: http://en.wikipedia.org/wiki/Brainstorming F. This is not a typical panel discussion. NO B. Focus on quantity of ideas TALKING HEADS!!! C. NO CRITICISM OF IDEAS IS ALLOWED G. We've got a lot of material to cover! That said, D. Unusual ideas are welcomed E. Team members may add to, combine and improve upon we won't have time for panelists to wax other ideas poetic. Instead of a panel discussion... F. The ideas are collected and recorded, then edited into bullet points G. Then, these ideas are voted upon by the team . H. The top 3 ideas are then broken down, and a strategy will be created based on them. June 18 - 21, 2008 www.cfunited.com June 18 - 21, 2008 www.cfunited.com Inspirations for this discussion… For our Brainstorming Session: The Good A. -
The Mont-Blanc Approach Towards Exascale Prof
www.bsc.es The Mont-Blanc approach towards Exascale Prof. Mateo Valero Director Disclaimer: All references to unavailable products are speculative, taken from web sources. There is no commitment from ARM, Samsung, Intel, or others implied. Supercomputers, Theory and Experiments Fusion reactor Accelerator design Material sciences Astrophysics Experiments Aircraft Automobile design Theory Simulation Climate and weather modeling Life sciences Parallel Systems Interconnect (Myrinet, IB, Ge, 3D torus, tree, …) Node Node* Node** Node Node* Node** Node* Node** Node Node Node SMP Memory homogeneous multicore (BlueGene-Q chip) heterogenous multicore multicore IN multicore general-purpose accelerator (e.g. Cell) multicore GPU multicore FPGA ASIC (e.g. Anton for MD) Network-on-chip (bus, ring, direct, …) Looking at the Gordon Bell Prize 1 GFlop/s; 1988; Cray Y-MP; 8 Processors – Static finite element analysis 1 TFlop/s; 1998; Cray T3E; 1024 Processors – Modeling of metallic magnet atoms, using a variation of the locally self-consistent multiple scattering method. 1 PFlop/s; 2008; Cray XT5; 1.5x105 Processors – Superconductive materials 1 EFlop/s; ~2018; ?; 1x108 Processors?? (109 threads) Jack Dongarra Top10 GFlops/Wat Rank Site Computer Procs Rmax Rpeak Power t BlueGene/Q, Power BQC 16C 1.60 1 DOE/NNSA/LLNL 1572864 16,32 20,13 7,89 2,06 GHz, Custom RIKEN Advanced Institute for Fujitsu, K computer, SPARC64 2 705024 10,51 11,28 12,65 0,83 Computational VIIIfx 2.0GHz, Tofu interconnect Science (AICS) DOE/SC/Argonne BlueGene/Q, Power BQC 16C 3 786432