2-1. Iot 디바이스 Ver3

Total Page:16

File Type:pdf, Size:1020Kb

2-1. Iot 디바이스 Ver3 김호원 부산대 정보보호 및 IoT 연구실, 블록체인 보안 전문연구실, 사물인터넷연구센터 2018.9.17 전체 목차 목차 IoT 디바이스 소개 I. IoT 디바이스 • 주요 IoT 디바이스 소개 - Arduino - Rasberry Pi - ARTIK - Smart Dust 등 2 I. IoT 디바이스 1. 주요 IoT 디바이스 종류 - Arduino - Rasberry Pi - ARTIK - Smart Dust 등 3 I. IoT 디바이스 IoT Device • Smart Dust • Arduino • Raspberry Pi • Intel Galileo • Adafruit • SparkFun • ARM mbed • 삼성 Artik, etc. 4 I. IoT 디바이스 Arduino Reference: http://abdnoor80.weebly.com/uploads/1/2/2/8/12282674/es_architecture_3.pdf “Architecture of Arduino Development Board” 5 Arduino I. IoT 디바이스 What is Arduino ? 6 Arduino I. IoT 디바이스 What is Arduino ? 7 Arduino - Terminology I. IoT 디바이스 Terminology 종류 8 Arduino Types I. IoT 디바이스 9 Arduino Types I. IoT 디바이스 10 Arduino Types I. IoT 디바이스 (Explorer) 11 Arduino Types I. IoT 디바이스 12 Arduino Types I. IoT 디바이스 13 Arduino Types I. IoT 디바이스 14 Arduino Types I. IoT 디바이스 15 Arduino Types I. IoT 디바이스 16 Arduino Types I. IoT 디바이스 17 Arduino – 특성 I. IoT 디바이스 18 Arduino – 특성 I. IoT 디바이스 19 Arduino Types I. IoT 디바이스 20 Arduino Types I. IoT 디바이스 21 Arduino Types I. IoT 디바이스 22 Arduino Types I. IoT 디바이스 23 Arduino Types 24 Pull up resistor I. IoT 디바이스 칩을 floating 상태에 두면 불안정함(high/low 입력이 없는 경우) . Pull up 저항을 쓴 경우, switch 누르지 않을 때(OFF)는 high 입력되고 있음 switch ON이면 low 전압 인가됨 . Pull down 저항 쓰면 그 반대 < Pull up 저항 사용한 경우 > 25 저항 읽는 법 I. IoT 디바이스 26 I. IoT 디바이스 Raspberry Pi 27 I. IoT 디바이스 2009 - Foundation . Foundation: • In May 2009, the Raspberry Pi foundation was established in Caldecote, South Cambridgeshire, UK, as a charitable association . Objective • Making computer for encouraging children to learn programming & computer science ”Raspberry Pi”, https://es.wikipedia.org/wiki/Raspberry_Pi, febrero 2018 28 I. IoT 디바이스 Brief History • 2011.8: Alpha 버전 개발(board 50개 제작) • 2012. 2: 대만업체를 통해, 10,000개 제작, 시판 시작 • 2015. 12: Raspberry Pi 2 시판 • (ARM Quad-Core 900 MHz, 1 GB RAM, 4 x USB, HDMI, RJ- 45), 45 유로 • 2013. 4: Raspberry Pi model A 시판 ”Raspberry Pi”, https://es.wikipedia.org/wiki/Raspberry_Pi, febrero 2018 29 I. IoT 디바이스 Brief History – Raspberry Pi3 • 2016: Raspberry Pi 3 • ARM Quad-Core 900 MHz, 1 GB RAM, 4 x USB, HDMI, RJ-45 ”Raspberry Pi”, https://es.wikipedia.org/wiki/Raspberry_Pi, febrero 2018 30 I. IoT 디바이스 Raspberry Pi 사양 ”Raspberry Pi”, https://es.wikipedia.org/wiki/Raspberry_Pi, febrero 2018 31 I. IoT 디바이스 기타 IoT 디바이스 32 Beaglebone Black I. IoT 디바이스 Beaglebone Black, Rev C Price ~$55 5v, 2A 1 GHz 32 bit processor 4GB flash memory Pre-loaded OS 33 삼성 ARTIK I. IoT 디바이스 ARTIK 보드 MIPS processor 34 I. IoT 디바이스 삼성 ARTIK - https://craftroom.tizen.org/gallery/ 개발자 포털, 클라우드 제공 등 https://craftroom.tizen.org/gallery/ https://developer.tizen.org/development/iot-preview/customized-platform-guide https://craftroom.tizen.org/how-to-create-your-own-customized-platform-image/ 35 I. IoT 디바이스 기타 프로세서 4-bit CPUs 8-bit CPUs . TMS 1000 . Atmel AVR . Intel 4004 . Intel 8051 . Atmel MARC4 . Microchip Technology PIC . Toshiba TLCS-47 . STMicroelectronics STM8 . Epson S1C63 아두이노 프로젝트 토큰, 자동차키 36 I. IoT 디바이스 기타 프로세서 TinyOS 프로젝트 16-bit CPUs . TI MSP430 . Microchip Technology PIC24 32-bit CPUs . ARM Cortex-A . Atmel AVR32 . MIPS32 . AIM 32-bit PowerPC . STMicroelectronics STM32 스마트폰 37 I. 연구 개요 기타 프로세서 4-bit MARC4 . 4-bit processor, 2 MHz . 4 KB EEPROM, 1 KB RAM, 6 registers 8-bit AVR . 8-bit processor, 7.3728 MHz . 128 KB EEPROM, 4 KB RAM, 32 registers 16-bit MSP . 16-bit processor, 16 MHz . 32-48 KB EEPROM, 10 KB RAM, 12 registers 32-bit ARM . 32-bit processor, 1~2 GHz . 16 registers, 1GB RAM, most instructions in a single cycle . SIMD extensions (NEON) . Sixteen 128-bit registers . Packed 8, 16, 32, 64-bit operations 38 I. IoT 디바이스 기타 프로세서 ATMEL’s MARC4 (4bit 프로세서) . Stack Machine 기반의 프로세서 구조를 가짐 . 16KHz, 500KHz 혹은 2MHz로 동작 . EEPROM (4kbytes), RAM (4way-256bytes) . 1mA의 전력소모(active mode) . 온도 -40~125 상에서 동작가능, 1.8V~6.5V . 리모컨, 인터넷 뱅킹 토큰, 자동차 키 등에 사용됨 < Marc4 4bit processor> 39 I. IoT 디바이스 기타 프로세서 : Atmel MARC-4 주소 방식 . 직접(Direct) . 간접(Indirect) . Stack Pointer(SP) 이용 (8-bit) . 6bit short와 12bit long 주소 형식 저장공간 . EEPROM (4kbytes), RAM (4way-256bytes) 레지스터 . 8bit RAM 주소 레지스터 X, Y . 8bit Expression Stack Pointer(SP) . Return Stack Pointer(RP,12bit) . Condition Code Register(CCR): 상태 정보를 저장 . Program Counter(PC, 12bit): 프로그램 수행순서 확인 . Top Of Stack(TOS) 레지스터 . 6 programmable 레지스터 40 I. IoT 디바이스 기타 프로세서 : EPSON 4bit uP S1C63 family Stack Machine 기반의 프로세서 구조를 가짐 . 32.768kHz 혹은 1MHz로 동작 레지스터 . 2개의 4bit 데이터 레지스터 A, B . 4bit 플래그 레지스터 F . (확장 E, 인터럽트 I, 캐리 C 그리고 제로 플래그 Z로 구성) . 2개의 16bit 인덱스 레지스터 X, Y . (post-increment 명령어 지원) . 2개의 8bit stack pointers SP1(주소 용), SP2(데이터 용) 주소 방식 . 직접(Direct) . 간접(Indirect: 2개) . Stack Pointer(SP)기반 저장공간 . 26kB code ROM (16k*13bits) . 1kB data ROM (2k*4bits) . 2kB ROM(4k*4 bits) 41 참고 자료 참고 자료 [1] 부산대학교, “개방형 고성능 표준 IoT 기술 개발”, 김호원, 2014.2 [2] “Historia of Raspberry Pi” by Rogelio Ferreira Escutia [3] Internet of Things Architecture, IoT-A, Project Deliverable D4.2 42.
Recommended publications
  • Reconfigurable Embedded Control Systems: Problems and Solutions
    RECONFIGURABLE EMBEDDED CONTROL SYSTEMS: PROBLEMS AND SOLUTIONS By Dr.rer.nat.Habil. Mohamed Khalgui ⃝c Copyright by Dr.rer.nat.Habil. Mohamed Khalgui, 2012 v Martin Luther University, Germany Research Manuscript for Habilitation Diploma in Computer Science 1. Reviewer: Prof.Dr. Hans-Michael Hanisch, Martin Luther University, Germany, 2. Reviewer: Prof.Dr. Georg Frey, Saarland University, Germany, 3. Reviewer: Prof.Dr. Wolf Zimmermann, Martin Luther University, Germany, Day of the defense: Monday January 23rd 2012, Table of Contents Table of Contents vi English Abstract x German Abstract xi English Keywords xii German Keywords xiii Acknowledgements xiv Dedicate xv 1 General Introduction 1 2 Embedded Architectures: Overview on Hardware and Operating Systems 3 2.1 Embedded Hardware Components . 3 2.1.1 Microcontrollers . 3 2.1.2 Digital Signal Processors (DSP): . 4 2.1.3 System on Chip (SoC): . 5 2.1.4 Programmable Logic Controllers (PLC): . 6 2.2 Real-Time Embedded Operating Systems (RTOS) . 8 2.2.1 QNX . 9 2.2.2 RTLinux . 9 2.2.3 VxWorks . 9 2.2.4 Windows CE . 10 2.3 Known Embedded Software Solutions . 11 2.3.1 Simple Control Loop . 12 2.3.2 Interrupt Controlled System . 12 2.3.3 Cooperative Multitasking . 12 2.3.4 Preemptive Multitasking or Multi-Threading . 12 2.3.5 Microkernels . 13 2.3.6 Monolithic Kernels . 13 2.3.7 Additional Software Components: . 13 2.4 Conclusion . 14 3 Embedded Systems: Overview on Software Components 15 3.1 Basic Concepts of Components . 15 3.2 Architecture Description Languages . 17 3.2.1 Acme Language .
    [Show full text]
  • Architecture of 8051 & Their Pin Details
    SESHASAYEE INSTITUTE OF TECHNOLOGY ARIYAMANGALAM , TRICHY – 620 010 ARCHITECTURE OF 8051 & THEIR PIN DETAILS UNIT I WELCOME ARCHITECTURE OF 8051 & THEIR PIN DETAILS U1.1 : Introduction to microprocessor & microcontroller : Architecture of 8085 -Functions of each block. Comparison of Microprocessor & Microcontroller - Features of microcontroller -Advantages of microcontroller -Applications Of microcontroller -Manufactures of microcontroller. U1.2 : Architecture of 8051 : Block diagram of Microcontroller – Functions of each block. Pin details of 8051 -Oscillator and Clock -Clock Cycle -State - Machine Cycle -Instruction cycle –Reset - Power on Reset - Special function registers :Program Counter -PSW register -Stack - I/O Ports . U1.3 : Memory Organisation & I/O port configuration: ROM RAM - Memory Organization of 8051,Interfacing external memory to 8051 Microcontroller vs. Microprocessors 1. CPU for Computers 1. A smaller computer 2. No RAM, ROM, I/O on CPU chip 2. On-chip RAM, ROM, I/O itself ports... 3. Example:Intel’s x86, Motorola’s 3. Example:Motorola’s 6811, 680x0 Intel’s 8051, Zilog’s Z8 and PIC Microcontroller vs. Microprocessors Microprocessor Microcontroller 1. CPU is stand-alone, RAM, ROM, I/O, timer are separate 1. CPU, RAM, ROM, I/O and timer are all on a single 2. designer can decide on the chip amount of ROM, RAM and I/O ports. 2. fix amount of on-chip ROM, RAM, I/O ports 3. expansive 3. for applications in which 4. versatility cost, power and space are 5. general-purpose critical 4. single-purpose uP vs. uC – cont. Applications – uCs are suitable to control of I/O devices in designs requiring a minimum component – uPs are suitable to processing information in computer systems.
    [Show full text]
  • Medidor Online De Temperatura Y Humedad De Bajo Consumo
    Medidor online de temperatura y humedad de bajo consumo Estudiante: Jesús Santiago Fernández Prieto “Ingeniería Técnica de Informática de Sistemas” Consultor: Jordi Bécares Ferrés 11 de Junio de 2013 When I read commentary about suggestions for where C should go, I often think back and give thanks that it wasn't developed under the advice of a worldwide crowd. (D. Ritchie) A mi familia, novia y amigos. 2 Resumen Para este proyecto se ha diseñado un dispositivo con capacidad de conexión a Internet a través de un punto de acceso WIFI para el envío de datos y alertar en caso de posibles temperaturas y humedades críticas, definidas con un valor mínimo y un máximo. El diseño de este dispositivo se ha hecho teniendo en cuenta el reducir el consumo de energía para maximizar autonomía. El dispositivo está basado en una mota LPC1769 que posee un procesador Cortex-M3 de ARM el cual ejecuta nuestro programa desarrollado. Este programa hace uso del sistema operativo FreeRTOS (Free Real Time Operating System) que facilitará y nos asegurará estabilidad. La mota llevará conectada un chip WiFly que se usará para poder conectarnos por WiFi al punto de acceso. Cuenta además con un sensor SHT15 que permite, a la mota, tomar las mediciones de temperatura y humedad relativa. Estos serán posteriormente enviados al servidor. En caso de que en alguno de esos valores esté fuera del rango de seguridad se avisará al usuario a través de dos leds conectados también a la mota. Se le puede configurar una dirección de correo electrónico donde se enviarán alertas para enviar un correo al usuario advirtiéndole de un posible problema.
    [Show full text]
  • Extracting and Mapping Industry 4.0 Technologies Using Wikipedia
    Computers in Industry 100 (2018) 244–257 Contents lists available at ScienceDirect Computers in Industry journal homepage: www.elsevier.com/locate/compind Extracting and mapping industry 4.0 technologies using wikipedia T ⁎ Filippo Chiarelloa, , Leonello Trivellib, Andrea Bonaccorsia, Gualtiero Fantonic a Department of Energy, Systems, Territory and Construction Engineering, University of Pisa, Largo Lucio Lazzarino, 2, 56126 Pisa, Italy b Department of Economics and Management, University of Pisa, Via Cosimo Ridolfi, 10, 56124 Pisa, Italy c Department of Mechanical, Nuclear and Production Engineering, University of Pisa, Largo Lucio Lazzarino, 2, 56126 Pisa, Italy ARTICLE INFO ABSTRACT Keywords: The explosion of the interest in the industry 4.0 generated a hype on both academia and business: the former is Industry 4.0 attracted for the opportunities given by the emergence of such a new field, the latter is pulled by incentives and Digital industry national investment plans. The Industry 4.0 technological field is not new but it is highly heterogeneous (actually Industrial IoT it is the aggregation point of more than 30 different fields of the technology). For this reason, many stakeholders Big data feel uncomfortable since they do not master the whole set of technologies, they manifested a lack of knowledge Digital currency and problems of communication with other domains. Programming languages Computing Actually such problem is twofold, on one side a common vocabulary that helps domain experts to have a Embedded systems mutual understanding is missing Riel et al. [1], on the other side, an overall standardization effort would be IoT beneficial to integrate existing terminologies in a reference architecture for the Industry 4.0 paradigm Smit et al.
    [Show full text]
  • Lecture #3 PIC Microcontrollers
    Integrated Technical Education Cluster Banna - At AlAmeeria ‎ © Ahmad © Ahmad El E-626-A Real-Time Embedded Systems (RTES) Lecture #3 PIC Microcontrollers Instructor: 2015 SPRING Dr. Ahmad El-Banna Banna Agenda - What’s a Microcontroller? © Ahmad El Types of Microcontrollers Features and Internal structure of PIC 16F877A RTES, Lec#3 , Spring Lec#3 , 2015 RTES, Instruction Execution 2 Banna What is a microcontroller? - • A microcontroller (sometimes abbreviated µC, uC or MCU) is a small computer on a single integrated circuit © Ahmad El containing a processor core, memory, and programmable input/output peripherals. • It can only perform simple/specific tasks. • A microcontroller is often described as a ‘computer-on-a- chip’. RTES, Lec#3 , Spring Lec#3 , 2015 RTES, 3 Microcomputer system and Microcontroller Banna based system - © Ahmad © Ahmad El RTES, Lec#3 , Spring Lec#3 , 2015 RTES, 4 Banna Microcontrollers.. - • Microcontrollers are purchased ‘blank’ and then programmed with a specific control program. © Ahmad El • Once programmed the microcontroller is build into a product to make the product more intelligent and easier to use. • A designer will use a Microcontroller to: • Gather input from various sensors • Process this input into a set of actions • Use the output mechanisms on the microcontroller to do something useful. RTES, Lec#3 , Spring Lec#3 , 2015 RTES, 5 Banna Types of Microcontrollers - • Parallax Propeller • Freescale 68HC11 (8-bit) • Intel 8051 © Ahmad El • Silicon Laboratories Pipelined 8051 Microcontrollers • ARM processors (from many vendors) using ARM7 or Cortex-M3 cores are generally microcontrollers • STMicroelectronics STM8 (8-bit), ST10 (16-bit) and STM32 (32-bit) • Atmel AVR (8-bit), AVR32 (32-bit), and AT91SAM (32-bit) • Freescale ColdFire (32-bit) and S08 (8-bit) • Hitachi H8, Hitachi SuperH (32-bit) • Hyperstone E1/E2 (32-bit, First full integration of RISC and DSP on one processor core [1996]) • Infineon Microcontroller: 8, 16, 32 Bit microcontrollers for Spring Lec#3 , 2015 RTES, automotive and industrial applications.
    [Show full text]
  • 1999 Embedded Systems Programming Subscriber Study
    A complete CMP embedded package 1999 Embedded Systems Programming Subscriber Study Mailed out 1,500 returned undeliverable 45 Base 1,455 returned unusable 17 returned usable 410 Total returned 427 Total preliminary report response rate: 29.3% (Conducted by Wilson Research Group) 1999 ESP Subscriber Study Survey Coverage • Programming Languages & • RTOSes/Kernals Host Operating Systems • Compilers • MCUs/Embedded MPUs • Software Debuggers • DSPs • Software Configuration • Memories Management Tools • Software Protocols/Stacks • Single Board Computers • Web Products/Tools • Intellectual Property • In-Circuit Emulators • FPGAs/CPLDs • Logic Analyzers • HW/SW Co-Design • Oscilloscopes • Embedded Systems Work • Device programmers Environments 160+ Questions Market & Mind Share Programming Language Trends 1997 1998 1999 C 80.7% 81.4% 79.0% Assembly 70.4% 70.1% 61.0% C ++ 35.9% 39.4% 46.6% Visual Basic 13.0% 16.2% 14.4% Pascal 4.2% 2.6% 2.0% Ada 6.4% 4.9% 6.1% Java 6.1% 7.0% 9.3% HDL / VHDL 6.1% 5.2% 6.6% Basic 12.5% 9.3% 8.5% Forth 3.4% 2.3% 2.2% eC++ - - .7% Base: 409 1997 345 1998 1997- 1999 ESP Subscriber Studies 410 1999 Have you used an object-oriented methodology for your embedded designs in the last 12 months? Yes…………………. 47.3% Are you considering an object-oriented methodology in the next 12 months? Yes…………………. 69.0% Base: 410 1999 ESP Subscriber Study Which of the following object-oriented programming methodologies have you used for your embedded designs? OMT/UML 44.8% Booch 31.4% Shlaer-Mellor 16.5% SDL 5.7% ROOM 2.1% S/ART 1.0% Base:
    [Show full text]
  • 16/32 BIT MICROCONTROLLER TOSHIBA TLCS-900 Family
    TLCS-900 16/32 BIT MICROCONTROLLER TLCS-900 Family TOSHIBA TOSHIBA CES_16BIT_V1.2 * TLCS-900 CPU-CORE LINE UP R4400 R4600 64-bit R5900 R3900 32-bit R3000A R1900 TLCS-900/H2 16-bit 68000 ASSP TLCS-900/L1 TLCS-900/H 68HC000 TLCS-900/L TLCS-900 8-bit 68HC11 TLCS-870 Std/ X/ C TLCS-90 Z80 ASSP 68HC05 4-bit TLCS-47E/47/470470A ALLIANCETOSHIBA ORIGINAL ALLIANCE TOSHIBA CES_16BIT_V1.2 * TLCS-900 The Family Key Features •CPU-core : 16/32 Bit • High-speed processing, ➨ Min. inst. exec. time: ➨200ns (@10MHz) - TLCS-900,900/L ➨160ns (@12.5MHz) - TLCS-900/H,900/L1 ➨ 50ns ((@20MHz) - TLCS-900/H2 •Large linear address space (16M bytes) • Powerful instruction set ➨ Regular instruction sets and many addressing modes •Many bit-processing operations • Powerful real-time processing ➨ using register banks •High-speed data transfer using µDMA • For systems using both 8- and 16-bit buses ➨ dynamic bus sizing function TOSHIBA CES_16BIT_V1.2 * TLCS-900 CPU CORES TOSHIBA CES_16BIT_V1.2 * TLCS-900 The Road Map [MIPS] 4 times TLCS-900/H2 performance of TLCS-900/H 10 • High performance TLCS-900/H TLCS-900/L1 TLCS-900 * TLCS-900,900/L,900/H devices will be • Mnemonic TLCS-900/L object compatible with TLCS-900/H2 1 Compatible • Standard • Low Power Family. PERFORMANCE TLCS-90 Z80 • Upward Compatible 8-bit 16-bit 32-bit TOSHIBA CES_16BIT_V1.2 * TLCS-900 The Family Key Features ITEM H2 H & L1 Stand.& L Max. operating 20 MHz 12.5 MHz 10 MHz frequency (external) (@10 MHz) (@25 MHz) (@20 MHz) Min.
    [Show full text]
  • Antisleep Alarm
    www.final-yearproject.com PROJECT REPORT ON ANTISLEEP ALARM Submitted as partial fulfilment of award of BACHELOR OF TECHNOLOGY DEGREE Session 2011-2012 In ELECTRICAL AND ELECTRONICS ENGINEERING By ABHISHEK KUMAR 0819421001 KAMLESH KUMAR 0819421020 SATYAVIR SINGH 0719421048 Under guidance of : Miss. Niharika singh H. R. INSTITUTE OF TECHNOLOGY, GHAZIABAD Estd. 2005 (AICTE Approved) AFFILATED TO GAUTAM BUDDH TECHNICAL UNIVERSITY, LUCKNOW PROJECT REPORT ON ANTISLEEP ALARM Submitted as partial fulfilment of award of BACHELOR OF TECHNOLOGY DEGREE Session 2011-2012 In ELECTRICAL AND ELECTRONICS ENGINEERING By ABHISHEK KUMAR 0819421001 Under guidance of : Miss. Niharika Singh H. R. INSTITUTE OF TECHNOLOGY, GHAZIABAD Estd. 2005 (AICTE Approved) AFFILATED TO GAUTAM BUDDH TECHNICAL UNIVERSITY, LUCKNOW DECLARATION I hereby declare that the work being presented in this report entitled “ANTISLEEP ALARM” is an authentic record of my own work carried out under the supervision of “Miss. NIHARIKA SINGH ”. The matter embodied in this report has not been submitted by us for the award of any other degree. Signature of student Date:................... (ABHISHEK KUMAR) This is to certify above statement made by the candidate(s) is correct to the best of my knowledge. Signature of HOD Signature of Supervisor Sukhbir singh Niharika Dept. Of E.N. Dept. Of E.N. Date.................. FRONT PIECE ACKNOWLEDGEMENT ACKNOWLEDGEMENT This is the reflection i am showing to reveal the sense of regard and reverence we are having for our HOD Mr. Sukhbir singh , for appointing the projectchosen by us and for his invaluable inspiration and motivation which help us to successfully complete the project. Our sincere thanks to our project guide Miss.
    [Show full text]
  • Verktyg För Inbyggda System Linux Och Windows CE Mognar
    ELT012223Q4nyckeln 03-01-20 14.15 Sida 22 (1,1) 22 MARKNADSNYCKELN NR 1 • 24 JANUARI 2003 Verktyg för inbyggda system Linux och Windows CE mognar ■ INBYGGDA SYSTEM Microsofts operativsystem Win- dukter. De är halvfärdiga plattfor- Sista steget är att glömma pro- modellverktyg från Rational, IAR Förra årets nyckel klagade över dows CE har mognat och finns som mar, inklusive support och rekom- gramspråket helt. Ett exempel är och Telelogic. brist på Linuxrepresentation. startpaket från Hectronics. Opera- menderad hårdvara, för olika till- Matlab-verktygen från Comsol, I nyckeln finns också den andra Den åtgärdas nu av nykomlingar- tivsystemet levereras också via lämpningsområden. som genererar C-kod från grafiska extremen, verktyg som kryper na Montavista och Sysgo. svenska Microsoft. Verktyg som genererar program- beskrivningar. Inom modellspråket mycket nära hårdvaran. Svenska Mercurys MC/OS har försvunnit kod på egen hand fungerar numera UML är kodgenerering nu standar- simulatorn Simics bygger modeller Montavista har etablerat en nisch ur nyckeln i och med att Mercury även för realtidstillämpningar. Pro- diserad. Ericsson har under ett par av enstaka processorer med sådan för Linux inom telekom och börjar flyttat den svenska representatio- grammeringsutvecklingen har gått år jobbat med automatgenerad kod effektivitet att det blir realistiskt att nu också visa intresse för hem- nen till Storbritannien. från maskinspråk till assembler, till från UML, med enligt egen uppgift simulera programkörning i system elektronik. Sysgos modulära Linux, VxWorks och Tornado från C, till C++/Java. Flexibiliteten ökar mycket positiva erfarenheter. I av ickeexisterande hårdvara. ElinOS, är populär i Tyskland. Wind River har svällt till flera pro- och antalet buggar minskar.
    [Show full text]
  • Microcomputers
    2010-8 PRODUCT GUIDE Microcomputers http://www.semicon.toshiba.co.jp/eng Toshiba Microcomputers Protecting the global environment is all-important, and more and more electronic appliances are being designed with this end in view. In these circumstances, sensing, power electronics and energy management technologies hold the key to addressing the needs of electronics manufacturers. When it comes to these technology areas, we recognize that it is necessary to improve accuracy and performance and, at the same time, reduce power consumption. Toshiba's product offerings now include mixed-signal controllers and those featuring a high-performance ARM CPU core. Additionally, Toshiba provides system solutions that combine these microcontrollers with a wide array of semiconductor devices such as power drivers. Microcomputer Lineup TX ARM Core-Based Microcontrollers Mixed-Signal Controllers TX 09 ARM926EJ-STM TX 03 MSC ARM CortexTM-M3 TLCS Family TX TX System RISC TX 49 TLCS-900 TX 39 MIPSIII* MIPSII* TLCS-870 TX 19 MIPSII* & MIPS16 *These are original cores developed independently by Toshiba based on each MIPS architecture. 8 bit 16 bit 32 bit 64 bit Contents Toshiba Microcomputers ..................................................................... 2 to 3 Toshiba’s ARM Core-Based Microcontrollers ............................................. 4 Toshiba’s ARM Core-Based Microcontroller Development Environment.... 5 Toshiba’s ARM Core-Based Microcontroller Part Number List ............ 6 to 7 Toshiba TX System RISC..........................................................................
    [Show full text]
  • SDCC Compiler User Guide
    SDCC Compiler User Guide SDCC 3.0.1 $Date:: 2011-03-02 #$ $Revision: 6253 $ Contents 1 Introduction 6 1.1 About SDCC.............................................6 1.2 Open Source..............................................7 1.3 Typographic conventions.......................................7 1.4 Compatibility with previous versions.................................7 1.5 System Requirements.........................................8 1.6 Other Resources............................................9 1.7 Wishes for the future.........................................9 2 Installing SDCC 10 2.1 Configure Options........................................... 10 2.2 Install paths.............................................. 12 2.3 Search Paths.............................................. 13 2.4 Building SDCC............................................ 14 2.4.1 Building SDCC on Linux.................................. 14 2.4.2 Building SDCC on Mac OS X................................ 15 2.4.3 Cross compiling SDCC on Linux for Windows....................... 15 2.4.4 Building SDCC using Cygwin and Mingw32........................ 15 2.4.5 Building SDCC Using Microsoft Visual C++ 6.0/NET (MSVC).............. 16 2.4.6 Windows Install Using a ZIP Package............................ 17 2.4.7 Windows Install Using the Setup Program.......................... 17 2.4.8 VPATH feature........................................ 17 2.5 Building the Documentation..................................... 18 2.6 Reading the Documentation....................................
    [Show full text]
  • Fast Symmetric Crypto on Embedded Cpus
    Fast symmetric crypto on embedded CPUs Peter Schwabe Radboud University Nijmegen, The Netherlands June 5, 2014 Summer School on the design and security of cryptographic algorithms and devices for real-world applications Embedded CPUs 4-bit CPUs 16-bit CPUs I TMS 1000 I TI MSP430 I Intel 4004 I Microchip Technology PIC24 I Atmel MARC4 I Toshiba TLCS-47 32-bit CPUs I ARM11 8-bit CPUs I ARM Cortex-M∗ I Atmel AVR I ARM Cortex-A∗ I Intel 8051 I Atmel AVR32 I Microchip Technology PIC I MIPS32 I STMicroelectronics STM8 I AIM 32-bit PowerPC I STMicroelectronics STM32 Fast symmetric crypto on embedded CPUs2 Symmetric crypto Fast symmetric crypto on embedded CPUs3 Symmetric crypto Fast symmetric crypto on embedded CPUs3 Symmetric crypto Fast symmetric crypto on embedded CPUs3 Symmetric crypto Fast symmetric crypto on embedded CPUs3 Symmetric crypto Fast symmetric crypto on embedded CPUs3 I Throughput: number of instructions (of a certain type) we can do per cycle I Latency of an instruction: number of cycles we have to wait before using the result I Latency and throughput are determined by the microarchitecture I Optimizing software in assembly means: I Find good representation of data I Choose suitable instructions that implement the algorithm I Schedule those instruction to hide latencies I Assign registers efficiently (avoid spills) Optimizing crypto I This talk: optimize for speed I Implement algorithms in assembly I Available instructions and registers are determined by the target architecture Fast symmetric crypto on embedded CPUs4 I Latency
    [Show full text]