Magnetic Field Analysis of Permanent Magnet Motor with Magnetoanisotropic Materials Nd–Fe–B M

Total Page:16

File Type:pdf, Size:1020Kb

Magnetic Field Analysis of Permanent Magnet Motor with Magnetoanisotropic Materials Nd–Fe–B M IEEE TRANSACTIONS ON MAGNETICS, VOL. 39, NO. 3, MAY 2003 1373 Magnetic Field Analysis of Permanent Magnet Motor With Magnetoanisotropic Materials Nd–Fe–B M. Enokizono, Member, IEEE, S. Takahashi, and T. Kiyohara Abstract—In this paper, we propose the method to analyze the magnetization distribution in magnetoanisotropic materials by using the finite-element method considering the improved variable magnetization and Stoner–Wohlfarth model. By using this method, furthermore, the effect of the eddy currents induced in permanent magnets was analyzed. From the analyzed result, it is clarified how the magnetization distribution affects the performance of the surface permanent magnet-type motors. Index Terms—Anisotropic material, demagnetization factor tensor, magnetic field analysis, magnetization, Nd–Fe–B, perma- nent magnet motor, Stoner–Wohlfarth model. Fig. 1. Definition of vector relation and notations. I. INTRODUCTION II. FORMULATION N GENERAL, magnetic properties of the permanent mag- I nets must be explained with the vector relation between mag- A. Calculation of Initial Magnetization Process netic field strength vector and the magnetization vector in When an external magnetic field strength vector induces materials. The magnetic field analysis on products made from the vector, the volumetric free energy can be expressed by the hard magnetic material with uniaxial anisotropy usually re- the following: quires a large number of data from two-dimensional magnetiza- tion curves, because vector and vector are not always par- (1) allel to each other in the material. As such analysis is tedious, a smaller number of material data is more desirable. Furthermore, though it is necessary to obtain the inside distribution of the In the calculation of the free energy, the vector char- vector in permanent magnets when we carry out the analysis of acteristic curve is required. This curve involves the effect of the electrical machinery, it cannot be given in fact. It is impossible material shape. Therefore, the curve has to be obtained at every to measure the inside distribution of the vector. The distri- element and consider the demagnetization factor. It can be ex- bution must be treated as an unknown value [1]. However, up to pressed by the following: now, it has been treated as a given value. In the case of the strong hard magnetic materials such as Nd–Fe–B alloy having a strong anisotropy, it is impossible to directly measure the inside distri- bution of vector in the arbitrary direction. In order to analyze such problems, the demagnetization factor tensor method was (2) developed [3]. It is significant that the analytical method for the magnetizing process of the anisotropic hard magnetic material where, is the demagnetizing field vector and is the is established. By using this method, we can treat the magneti- effective field vector; subscripts “ ” and “ ” are the magnetic zation vector quantity, in other words, the absolute value of field components of the magnetizing easy direction and hard magnetization and the directional angle. direction, respectively. This paper gives the new magnetic field analysis method, To calculate (2), the curve is required and is ex- which requires only two kinds of data from the magnetization pressed by two kinds of characteristic curves, and curves measured along the easy direction and hard direction of curve. The principal axes of the demagnetization the hard magnetic material. factor are named the -axis and the -axis. A general spheroidal magnetic body in the uniform effective field is shown in Fig. 1. The self-energy is written as follows: Manuscript received June 18, 2002. The authors are with the Department of Electrical and Electronic Engi- neering, the Faculty of Engineering, Oita University, Oita 870-1192, Japan (e-mail: [email protected]). Digital Object Identifier 10.1109/TMAG.2003.810422 (3) 0018-9464/03$17.00 © 2003 IEEE 1374 IEEE TRANSACTIONS ON MAGNETICS, VOL. 39, NO. 3, MAY 2003 Fig. 3. Residual magnetization process. where and are given by [1], is the length to -axis, Fig. 2. Rectangular element. the length of the element “ ” for a polygon element, and is the number of apex on rectangular elements, as shown in Fig. 2. The where and are the magnetic susceptibility of the easy and relationship between and can be expressed by means of hard direction, respectively. The and are the the coefficient of demagnetization factor tensor as follows: demagnetizing factor in the -axis and -axis. The , , and are expressed as shown in Fig. 1. The -axis makes an angle from the easy axis. The total energy is minimized by the following conditions: , when . Then the following can be obtained: when (10) This tensor was used instead of the arbitrary vector curve, which could not be measured. (4) C. Calculation of Residual Magnetization As the applied magnetizing field decreases, both and decrease. Finally, when the becomes zero, the and (5) change the and , respectively, as shown in Fig. 3. The Utilizing two kinds of magnetization curves, the residual angle is the angle due to the residual magnetization and curves, it can solve these two simultaneous equa- from the easy direction. It occurs when the direction of tions. These curves can be obtained by the measurement of is not parallel to the easy direction. The relationship between two directions, “ ” and “ ”. Therefore, the initial magnetizing and can be expressed experimentally as follows [4]: process can be analyzed in the above procedure. Equation (5) is (11) the Stoner–Wohlfarth equation (2) with two kinds of anisotropic fields, too: the shape magnetic anisotropic field and the intrinsic where, is the square ratio in the easy direc- anisotropic field. tion. The residual magnetization is given from the Stoner–Wohl- farth equation (2) by the following: B. Calculation of Demagnetization Factor Tensor As shown in Fig. 2, when the rectangular element is magne- (12) tized uniformly, the magnetic charge induced in an element “ ” is expressed by the following: (6) The rectangular element is more useful than the triangular ele- (13) ment [1]. The demagnetizing field component and which the magnetic charge makes for the point where is the anisotropic magnetic field strength to the are shown as follows: magnetization . The value of can be obtained by using the Stoner–Wohlfarth equation. In this way, the magnetizing process can be analyzed in all the elements. As a result, the final (7) inside distribution of the residual magnetization in the perma- nent magnets can be analyzed, and then the magnetic field in- duced by the permanent magnets can be calculated. By introducing Kirchhof’s law, the exciting circuit equation (8) for calculating the distribution of initial magnetization is given as follows [5], [6]: (9) (14) ENOKIZONO et al.: MAGNETIC FIELD ANALYSIS OF PERMANENT MAGNET MOTOR 1375 (a) (b) (c) Fig. 6. Top part of teeth. (a) Model 1. (b) Model 2. (c) Model 3. Fig. 4. Analytical model of magnetizer. Fig. 7. Initial magnetization curve of Nd–Fe–B material. Fig. 5. Analytical model of surface-type permanent magnet motor. where is the interlinkage flux to the winding and is the initial electric charge of the capacitor. The current can be expressed using the charge as . D. Calculation of Demagnetization Process For the with the from the easy axis, when the external Fig. 8. Equivalent circuit of magnetizer. field applies to direction of angle , the is shown as follows: (15) (16) In the demagnetization curve of the easy axis, is a gradient of the demagnetization characteristic curve in the second quadrant. Fig. 9. Flux distribution of magnetizer. E. Fundamental Equation of Permanent Magnet Motor initial magnetizing curve of two directions, as shown in Fig. 7, The fundamental equation of the surface permanent typed are used in this analysis. Fig. 8 shows the equivalent circuit motor is given by of the magnetizer and the capacitance is 2400 , the total resistance is 0.031 . The charging voltage is 3187 V. III. ANALYTICAL RESULTS (17) Fig. 9 shows the flux distribution in the magnetizer at mag- where is the magnetic vector potential. and are the netizing state (Model 1). It looks like a successful magnetizing reluctivity and the conductivity, respectively. Fig. 4 shows a state from the flux distribution. However, as shown in Fig. 10, full model of a magnetizer. The magnetizer is used to magne- the value of the eddy current density induced in permanent tize the four poles hard magnetic materials, Nd–Fe–B alloy. magnet was different from each other at each time steps. The The pole pieces are made of steel, and its conductivity is time change of the eddy current was drawn at positions A, B, S/m. Fig. 5 shows the model of the permanent and C as shown in Fig. 11. The eddy current increases in the magnet motor. Fig. 6(a), (b), and (c) shows magnetizer models, boundary neighborhood of the magnetic pole. Fig. 12 shows which have the different shape of the top part of teeth. The the inside distributions of the magnetization vector after the 1376 IEEE TRANSACTIONS ON MAGNETICS, VOL. 39, NO. 3, MAY 2003 Fig. 10. Value of eddy current density with time. Fig. 14. Characteristic curve of the cogging torque. motor was analyzed. Fig. 14 shows that the characteristic curve of the cogging torque was obtained for each model. The least pulsation of cogging torque was obtained when the magnetizer Model 2 was used. IV. CONCLUSION Fig. 11. Calculated points. In this paper, finite-element method introduced the improved VSWM method considering eddy current for anisotropic perma- nent magnet was presented. We have carried out the magnetic field analysis of the permanent magnet motor considering the distribution of the residual magnetization vector. As a result, it has been shown that it is important to consider the magnetiza- tion process of permanent magnets.
Recommended publications
  • Basic Magnetic Measurement Methods
    Basic magnetic measurement methods Magnetic measurements in nanoelectronics 1. Vibrating sample magnetometry and related methods 2. Magnetooptical methods 3. Other methods Introduction Magnetization is a quantity of interest in many measurements involving spintronic materials ● Biot-Savart law (1820) (Jean-Baptiste Biot (1774-1862), Félix Savart (1791-1841)) Magnetic field (the proper name is magnetic flux density [1]*) of a current carrying piece of conductor is given by: μ 0 I dl̂ ×⃗r − − ⃗ 7 1 - vacuum permeability d B= μ 0=4 π10 Hm 4 π ∣⃗r∣3 ● The unit of the magnetic flux density, Tesla (1 T=1 Wb/m2), as a derive unit of Si must be based on some measurement (force, magnetic resonance) *the alternative name is magnetic induction Introduction Magnetization is a quantity of interest in many measurements involving spintronic materials ● Biot-Savart law (1820) (Jean-Baptiste Biot (1774-1862), Félix Savart (1791-1841)) Magnetic field (the proper name is magnetic flux density [1]*) of a current carrying piece of conductor is given by: μ 0 I dl̂ ×⃗r − − ⃗ 7 1 - vacuum permeability d B= μ 0=4 π10 Hm 4 π ∣⃗r∣3 ● The Physikalisch-Technische Bundesanstalt (German national metrology institute) maintains a unit Tesla in form of coils with coil constant k (ratio of the magnetic flux density to the coil current) determined based on NMR measurements graphics from: http://www.ptb.de/cms/fileadmin/internet/fachabteilungen/abteilung_2/2.5_halbleiterphysik_und_magnetismus/2.51/realization.pdf *the alternative name is magnetic induction Introduction It
    [Show full text]
  • Coey-Slides-1.Pdf
    These lectures provide an account of the basic concepts of magneostatics, atomic magnetism and crystal field theory. A short description of the magnetism of the free- electron gas is provided. The special topic of dilute magnetic oxides is treated seperately. Some useful books: • J. M. D. Coey; Magnetism and Magnetic Magnetic Materials. Cambridge University Press (in press) 600 pp [You can order it from Amazon for £ 38]. • Magnétisme I and II, Tremolet de Lachesserie (editor) Presses Universitaires de Grenoble 2000. • Theory of Ferromagnetism, A Aharoni, Oxford University Press 1996 • J. Stohr and H.C. Siegmann, Magnetism, Springer, Berlin 2006, 620 pp. • For history, see utls.fr Basic Concepts in Magnetism J. M. D. Coey School of Physics and CRANN, Trinity College Dublin Ireland. 1. Magnetostatics 2. Magnetism of multi-electron atoms 3. Crystal field 4. Magnetism of the free electron gas 5. Dilute magnetic oxides Comments and corrections please: [email protected] www.tcd.ie/Physics/Magnetism 1 Introduction 2 Magnetostatics 3 Magnetism of the electron 4 The many-electron atom 5 Ferromagnetism 6 Antiferromagnetism and other magnetic order 7 Micromagnetism 8 Nanoscale magnetism 9 Magnetic resonance Available November 2009 10 Experimental methods 11 Magnetic materials 12 Soft magnets 13 Hard magnets 14 Spin electronics and magnetic recording 15 Other topics 1. Magnetostatics 1.1 The beginnings The relation between electric current and magnetic field Discovered by Hans-Christian Øersted, 1820. ∫Bdl = µ0I Ampère’s law 1.2 The magnetic moment Ampère: A magnetic moment m is equivalent to a current loop. Provided the current flows in a plane m = IA units Am2 In general: m = (1/2)∫ r × j(r)d3r where j is the current density; I = j.A so m = 1/2∫ r × Idl = I∫ dA = m Units: Am2 1.3 Magnetization Magnetization M is the local moment density M = δm/δV - it fluctuates wildly on a sub-nanometer and a sub-nanosecond scale.
    [Show full text]
  • Magnetization and Demagnetization Studies of a HTS Bulk in an Iron Core Kévin Berger, Bashar Gony, Bruno Douine, Jean Lévêque
    Magnetization and Demagnetization Studies of a HTS Bulk in an Iron Core Kévin Berger, Bashar Gony, Bruno Douine, Jean Lévêque To cite this version: Kévin Berger, Bashar Gony, Bruno Douine, Jean Lévêque. Magnetization and Demagnetization Stud- ies of a HTS Bulk in an Iron Core. IEEE Transactions on Applied Superconductivity, Institute of Electrical and Electronics Engineers, 2016, 26 (4), pp.4700207. 10.1109/TASC.2016.2517628. hal- 01245678 HAL Id: hal-01245678 https://hal.archives-ouvertes.fr/hal-01245678 Submitted on 19 Dec 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1PoBE_12 1 Magnetization and Demagnetization Studies of a HTS Bulk in an Iron Core Kévin Berger, Bashar Gony, Bruno Douine, and Jean Lévêque Abstract—High Temperature Superconductors (HTS) are large quantity, with good and homogeneous properties, they promising materials in variety of practical applications due to are still the most promising materials for the applications of their ability to act as powerful permanent magnets. Thus, in this superconductors. paper, we have studied the influence of some pulsed and There are several ways to magnetize HTS bulks; but we pulsating magnetic fields applied to a magnetized HTS bulk assume that the most convenient one is to realize a method in sample.
    [Show full text]
  • Apparatus for Magnetization and Efficient Demagnetization of Soft
    3274 IEEE TRANSACTIONS ON MAGNETICS, VOL. 45, NO. 9, SEPTEMBER 2009 Apparatus for Magnetization and Efficient Demagnetization of Soft Magnetic Materials Paul Oxley Physics Department, The College of the Holy Cross, Worcester, MA 01610 USA This paper describes an electrical circuit that can be used to automatically magnetize and ac-demagnetize moderately soft magnetic materials and with minor modifications could be used to demagnetize harder magnetic materials and magnetic geological samples. The circuit is straightforward to replicate, easy to use, and low in cost. Independent control of the demagnetizing current frequency, am- plitude, and duration is available. The paper describes the circuit operation in detail and shows that it can demagnetize a link-shaped specimen of 430FR stainless steel with 100% efficiency. Measurements of the demagnetization efficiency of the specimen with different ac-demagnetization frequencies are interpreted using eddy-current theory. The experimental results agree closely with the theoretical predictions. Index Terms—Demagnetization, demagnetizer, eddy currents, magnetic measurements, magnetization, residual magnetization. I. INTRODUCTION to magnetize a magnetic sample by delivering a current propor- HERE is a widespread need for a convenient and eco- tional to an input voltage provided by the user and can be used T nomical apparatus that can ac-demagnetize magnetic ma- to measure magnetic properties such as - hysteresis loops terials. It is well known that to accurately measure the mag- and magnetic permeability. netic properties of a material, it must first be in a demagnetized Our apparatus is simple, easy to use, and economical. It state. For this reason, measurements of magnetization curves uses up-to-date electronic components, unlike many previous and hysteresis loops use unmagnetized materials [1], [2] and it designs [9]–[13], which therefore tend to be rather compli- is thought that imprecise demagnetization is a leading cause for cated.
    [Show full text]
  • Quantum Mechanics Magnetization This Article Is About Magnetization As It Appears in Maxwell's Equations of Classical Electrodynamics
    Quantum Mechanics_magnetization This article is about magnetization as it appears in Maxwell's equations of classical electrodynamics. For a microscopic description of how magnetic materials react to a magnetic field, see magnetism. For mathematical description of fields surrounding magnets and currents, see magnetic field. In classical Electromagnetism, magnetization [1] ormagnetic polarization is the vector field that expresses the density of permanent or inducedmagnetic dipole moments in a magnetic material. The origin of the magnetic moments responsible for magnetization can be either microscopic electric currents resulting from the motion of electrons inatoms, or the spin of the electrons or the nuclei. Net magnetization results from the response of a material to an external magnetic field, together with any unbalanced magnetic dipole moments that may be inherent in the material itself; for example, inferromagnets. Magnetization is not alwayshomogeneous within a body, but rather varies between different points. Magnetization also describes how a material responds to an appliedmagnetic field as well as the way the material changes the magnetic field, and can be used to calculate the forces that result from those interactions. It can be compared to electric polarization, which is the measure of the corresponding response of a material to an Electric field in Electrostatics. Physicists and engineers define magnetization as the quantity of magnetic moment per unit volume. It is represented by a vector M. Contents 1 Definition 2 Magnetization in Maxwell's equations 2.1 Relations between B, H, and M 2.2 Magnetization current 2.3 Magnetostatics 3 Magnetization dynamics 4 Demagnetization 4.1 Applications of Demagnetization 5 See also 6 Sources Definition Magnetization can be defined according to the following equation: Here, M represents magnetization; m is the vector that defines the magnetic moment; V represents volume; and N is the number of magnetic moments in the sample.
    [Show full text]
  • Demagnetizing Fields and Magnetization Reversal in Permanent Magnets
    https://doi.org/10.1016/j.scriptamat.2017.11.020 Searching the weakest link: Demagnetizing fields and magnetization reversal in permanent magnets J. Fischbacher1, A. Kovacs1, L. Exl2,3, J. Kühnel4, E. Mehofer4, H. Sepehri-Amin5, T. Ohkubo5, K. Hono5, T. Schrefl1 1 Center for Integrated Sensor Systems, Danube University Krems, 2700 Wiener Neustadt, Austria 2 Faculty of Physics, University of Vienna, 1090 Vienna, Austria 3 Faculty of Mathematics, University of Vienna, 1090 Vienna, Austria 4 Faculty of Computer Science, University of Vienna, 1090 Vienna, Austria 5 Elements Strategy Initiative Center for Magnetic Materials, National Institute for Materials Science, Tsukuba 305-0047, Japan Abstract Magnetization reversal in permanent magnets occurs by the nucleation and expansion of reversed domains. Micromagnetic theory offers the possibility to localize the spots within the complex structure of the magnet where magnetization reversal starts. We compute maps of the local nucleation field in a Nd2Fe14B permanent magnet using a model order reduction approach. Considering thermal fluctuations in numerical micromagnetics we can also quantify the reduction of the coercive field due to thermal activation. However, the major reduction of the coercive field is caused by the soft magnetic grain boundary phases and misorientation if there is no surface damage. 1. Introduction With the rise of sustainable energy production and eco-friendly transport there is an increasing demand for permanent magnets. The generator of a direct drive wind mill requires high performance magnets of 400 kg/MW power; and on average a hybrid and electric vehicle needs 1.25 kg of high end permanent magnets [1]. Modern high-performance magnets are based on Nd2Fe14B.
    [Show full text]
  • Ch. 2 Magnetostatics Ki-Suk Lee Class Lab
    Tue Thur 13:00-14:15 (S103) Ch. 2 Magnetostatics Ki-Suk Lee Class Lab. Materials Science and Engineering Nano Materials Engineering Track Goal of this class Goal of this class Goal of this class Goal of this class Goal of this chapter We begin with magnetostatics, the classical physics of the magnetic fields, forces and energies associated with distributions of magnetic material and steady electric currents. The concepts presented here underpin the magnetism of solids. Magnetostatics refers to situations where there is no time dependence. 2.1 The magnetic dipole moment The elementary quantity in solid-state magnetism is the magnetic moment m. The local magnetization M(r ) fluctuates on an atomic scale – dots represent the atoms. The mesoscopic average, shown by the dashed line, is uniform. the local magnetization M(r,t ) which fluctuates wildly on a subnanometre scale, and also rapidly in time on a subnanosecond scale. But for our purposes, it is more useful to define a mesoscopic average <M(r,t )> over a distance of order a few Nanometres, and times of order a few microseconds to arrive at a steady, homogeneous, local magnetization M(r). The time-averaged magnetic moment δm in a mesoscopic volume δV is 2.1 The magnetic dipole moment Continuous medium approximation The representation of the magnetization of a solid by the quantity M(r) which varies smoothly on a mesoscopic scale. The concept of magnetization of a ferromagnet is often extended to cover the macroscopic average over a sample: According to Amp`ere, a magnet is equivalent to a circulating electric current; the elementary magnetic moment m can be represented by a tiny current loop.
    [Show full text]
  • 1 Dipolar Interaction and Demagnetizing Effects In
    1 Dipolar interaction and demagnetizing effects in magnetic nanoparticle dispersions: introducing the Mean Field Interacting Superparamagnet Model (MFISP Model) F.H. Sánchez 1*, P. Mendoza Zélis 1,2 , M.L. Arciniegas 1, G.A. Pasquevich 1,2 and M.B. Fernández van Raap 1 1IFLP-CCT- La Plata-CONICET and Departamento de Física, Facultad de Ciencias Exactas, C. C. 67, Universidad Nacional de La Plata, 1900 La Plata, Argentina 2Departamento de Ciencias Básicas, Facultad de Ingeniería, Universidad Nacional de La Plata, 1900 La Plata, Argentina *corresponding autor: [email protected] Abstract A model is developed with the aim of analyzing relevant aspects of interacting magnetic nanoparticles systems (frequently called interacting superparamagnets). Model is built from magnetic dipolar interaction and demagnetizing mean field concepts. By making reasonable simplifying approximations a simple and useful expression for effective demagnetizing factors is achieved, which allows for the analysis of uniform and non-uniform spatial distributions of nanoparticles, in particular for the occurrence of clustering. This expression is a function of demagnetizing factors associated with specimen and clusters shapes, and of the mean distances between near neighbor nanoparticles and between clusters, relative to the characteristic sizes of each of these two types of objects, respectively. It explains effects of magnetic dipolar interactions, such as the observation of apparent nanoparticle magnetic- moments smaller than real ones and approaching zero as temperature decreases. It is shown that by performing a minimum set of experimental determinations along principal directions of geometrically well-defined specimens, model application allows retrieval of nanoparticle intrinsic properties, like mean volume, magnetic moment and susceptibility in the absence of interactions.
    [Show full text]
  • Numerical Micromagnetics : Finite Difference Methods
    Numerical Micromagnetics : Finite Difference Methods J. Miltat1 and M. Donahue2 1 Laboratoire de Physique des Solides, Universit´eParis XI Orsay & CNRS, 91405 Orsay, France [email protected] 2 Mathematical & Computational Sciences Division, National Institute of Standards and Technology, Gaithersburg MD 20899-8910, USA [email protected] Key words: micromagnetics, finite differences, boundary conditions, Landau- Lifshitz-Gilbert, magnetization dynamics, approximation order Summary. Micromagnetics is based on the one hand on a continuum approxima- tion of exchange interactions, including boundary conditions, on the other hand on Maxwell equations in the non-propagative (static) limit for the evaluation of the demagnetizing field. The micromagnetic energy is most often restricted to the sum of the exchange, demagnetizing or (self-)magnetostatic, Zeeman and anisotropy en- ergies. When supplemented with a time evolution equation, including field induced magnetization precession, damping and possibly additional torque sources, micro- magnetics allows for a precise description of magnetization distributions within finite bodies both in space and time. Analytical solutions are, however, rarely available. Numerical micromagnetics enables the exploration of complexity in small size mag- netic bodies. Finite difference methods are here applied to numerical micromag- netics in two variants for the description of both exchange interactions/boundary conditions and demagnetizing field evaluation. Accuracy in the time domain is also discussed and a simple tool provided in order to monitor time integration accuracy. A specific example involving large angle precession, domain wall motion as well as vortex/antivortex creation and annihilation allows for a fine comparison between two discretization schemes with as a net result, the necessity for mesh sizes well below the exchange length in order to reach adequate convergence.
    [Show full text]
  • Understanding Permanent Magnets
    TECHNotes Understanding Permanent Magnets Theory and Applications moment alone is insufficient to cause ferromagnetism. Modern permanent magnets play a vital role in a wide Additionally, there must be cooperative interatomic range of industrial, consumer and defense products. exchange forces between electrons of neighboring atoms. Efficient use of permanent magnets in these devices The groups of atoms form domains or regions within the requires a basic understanding of magnetic theory. To ferro-magnetic body that exhibit a net magnetic moment. achieve this end it is helpful to understand that all The magnetization direction of the many domains need magnetic fields are the result of electrons in motion. not be parallel. When a magnet is demagnetized it is only demagnetized in that there is no net external field. The individual domains are not “demagnetized” but domains are magnetized in random, opposite and mutually canceling directions. The magnet becomes “magnetized” when an external magnetizing field is applied to the magnet of sufficient magnitude to cause all the domains to align in the direction of the applied field. Figure 1: Magnetic field resulting from current flow in a coil. In the electrical circuit in Figure 1, a DC voltage is provided by the battery which causes a current, I, to flow through the wires to the load. This current flow, which is the movement of electrons along atoms in the conductor, causes a magnetic field to be established around the wire. The magnitude of the field is measured in ampere-turns Figure 3: Magnetic induction – flux (Φ) per meter in the International System (SI) or in oersteds in the gram-centimeter-second (cgs) system and is When a ferromagnetic material is placed in the coil of designated by the symbol H.
    [Show full text]
  • J. M. D. Coey School of Physics and CRANN, Trinity College Dublin Ireland
    Fundamentals of Magnetism – 1 J. M. D. Coey School of Physics and CRANN, Trinity College Dublin Ireland. 1. Introduction; basic quantities 2. Magnetic Phenomena. SUMMER SCHOOL 3. Units Comments and corrections please: [email protected] www.tcd.ie/Physics/Magnetism ! Lecture 1 covers basic concepts in magnetism; Firstly magnetic moment, magnetization and the two magnetic fields are presented. Internal and external fields are distinguished. Magnetic energy and forces are discussed. Magnetic phenomena exhibited by functional magnetic materials are briefly presented, and ferromagnetic, ferrimagnetic and antiferromagnetic order introduced. SI units are explained, and dimensions are provided for magnetic, electrical and other physical properties. An elementary knowledge of vector calculus and electromagnetism is assumed. Books Some useful books include: • J. M. D. Coey; Magnetism and Magnetic Magnetic Materials. Cambridge University Press (2010) 614 pp An up to date, comprehensive general text on magnetism. Indispensable! • S. Blundell Magnetism in Condensed Matter, Oxford 2001 A good, readable treatment of the basics. • D. C. Jilles An Introduction to Magnetism and Magnetic Magnetic Materials, Magnetic Sensors and Magnetometers, 3rd edition CRC Press, 2014 480 pp Q & A format. • R. C. O’Handley. Modern Magnetic Magnetic Materials, Wiley, 2000, 740 pp Q & A format. •J. Stohr and H. C. Siegman Magnetism: From fundamentals to nanoscale dynamics Springer 2006, 820 pp. Good for spin transport and magnetization dynamics. Unconventional definition of M • K. M. Krishnan Fundamentals and Applications of Magnetic Material, Oxford, 2017, 816 pp Recent general text.. Good for imaging, nanoparticles and medical applications. IEEE Santander 2017 1 Introduction 2 Magnetostatics 3 Magnetism of the electron 4 The many-electron atom 5 Ferromagnetism 6 Antiferromagnetism and other magnetic order 7 Micromagnetism 8 Nanoscale magnetism 9 Magnetic resonance 10 Experimental methods 11 Magnetic materials 12 Soft magnets 13 Hard magnets 14 Spin electronics and magnetic recording 614 pages.
    [Show full text]
  • Effective Demagnetization Factors of Diamagnetic Samples of Various
    Effective Demagnetizing Factors of Diamagnetic Samples of Various Shapes R. Prozorov1, 2, ∗ and V. G. Kogan1, y 1Ames Laboratory, Ames, IA 50011 2Department of Physics & Astronomy, Iowa State University, Ames, IA 50011 (Dated: Submitted: 16 December 2017; accepted in Phys. Rev. Applied: 26 June 2018) Effective demagnetizing factors that connect the sample magnetic moment with the applied mag- netic field are calculated numerically for perfectly diamagnetic samples of various non-ellipsoidal shapes. The procedure is based on calculating total magnetic moment by integrating the magnetic induction obtained from a full three dimensional solution of the Maxwell equations using adaptive mesh. The results are relevant for superconductors (and conductors in AC fields) when the London penetration depth (or the skin depth) is much smaller than the sample size. Simple but reasonably accurate approximate formulas are given for practical shapes including rectangular cuboids, finite cylinders in axial and transverse field as well as infinite rectangular and elliptical cross-section strips. I. INTRODUCTION state to compute the approximate N−factors for a 2D sit- uation of infinitely long strips of rectangular cross-section Correcting results of magnetic measurements for the in perpendicular field and he extended these results to fi- distortion of the magnetic field inside and around a finite nite 3D cylinders (also of rectangular cross-section) in sample of arbitrary shape is not trivial, but necessary the axial magnetic field. We find an excellent agreement part of experimental studies in magnetism and super- between our calculations and Brandt's results for these conductivity. The internal magnetic field is uniform only geometries.
    [Show full text]