Effective Demagnetization Factors of Diamagnetic Samples of Various

Total Page:16

File Type:pdf, Size:1020Kb

Effective Demagnetization Factors of Diamagnetic Samples of Various Effective Demagnetizing Factors of Diamagnetic Samples of Various Shapes R. Prozorov1, 2, ∗ and V. G. Kogan1, y 1Ames Laboratory, Ames, IA 50011 2Department of Physics & Astronomy, Iowa State University, Ames, IA 50011 (Dated: Submitted: 16 December 2017; accepted in Phys. Rev. Applied: 26 June 2018) Effective demagnetizing factors that connect the sample magnetic moment with the applied mag- netic field are calculated numerically for perfectly diamagnetic samples of various non-ellipsoidal shapes. The procedure is based on calculating total magnetic moment by integrating the magnetic induction obtained from a full three dimensional solution of the Maxwell equations using adaptive mesh. The results are relevant for superconductors (and conductors in AC fields) when the London penetration depth (or the skin depth) is much smaller than the sample size. Simple but reasonably accurate approximate formulas are given for practical shapes including rectangular cuboids, finite cylinders in axial and transverse field as well as infinite rectangular and elliptical cross-section strips. I. INTRODUCTION state to compute the approximate N−factors for a 2D sit- uation of infinitely long strips of rectangular cross-section Correcting results of magnetic measurements for the in perpendicular field and he extended these results to fi- distortion of the magnetic field inside and around a finite nite 3D cylinders (also of rectangular cross-section) in sample of arbitrary shape is not trivial, but necessary the axial magnetic field. We find an excellent agreement part of experimental studies in magnetism and super- between our calculations and Brandt's results for these conductivity. The internal magnetic field is uniform only geometries. Also, in our earlier work, the 2D numerical in ellipsoids (see Fig. 2) for which demagnetizing factors solutions of the Maxwell equations obtained using finite can be calculated analytically [1, 2]. In general, however, element method were generalized to 3D cylinders and magnetic field is highly non-uniform inside and outside brought similar results [10]). of finite samples of arbitrary (non-ellipsoidal) shapes and Yet, despite multiple attempts, results published so various approaches were used to handle the problem [3{ far do not describe three dimensional finite samples of 9]. As discussed below, the major obstacle has been that arbitrary non-ellipsoidal shapes to answer an important so far the total magnetic moment of arbitrary shaped practical question: What is the total magnetic mo- samples could not be calculated and approximations and ment of a three dimensional sample of a particular shape assumptions had to be made. As a result, various ap- in a fixed applied magnetic field, H0? We answer this proximate demagnetizing factors were introduced. For question by finding a way to calculate total magnetic mo- example, so-called \magnetometric" demagnetizing fac- ment from the first principles with no assumptions and tor, Nm, is based on equating magnetostatic self-energy introducing the effective demagnetizing factors without to the energy of a fully magnetized ferromagnetic prism referring to the details of the spatial distribution of the or, more generally, considering volume-average magneti- magnetic induction. We will first consider how these ef- zation in magnetized [4, 5, 7] or perfectly diamagnetic fective demagnetizing factors depend on finite magnetic [6] media. Similarly, so-called “fluxmetric” or \ballistic" permeability, µr, which highlights the difference between demagnetizing factor, Nf , is based on the average mag- ellipsoidal and non-ellipsoidal shapes. Complete treat- netization in the sample mid-plane [4, 6]. In these for- ment of finite µr requires separate papers in which we mulations, micromagnetic calculations are used to find will focus on (a) the London-Meissner state in supercon- the distribution of surface magnetic dipoles density that ductors of arbitrary shape with finite London penetration satisfies the boundary conditions and the assumptions depth and (b) demagnetizing corrections in local and lin- made. Then the average magnetization is calculated and ear magnetic media with arbitrary µr. used to compute the N factors using formulas similar In this work we focus on perfectly diamagnetic sam- to those used in this work. One common, but generally ples, the magnetic induction B = 0 inside, which allows arXiv:1712.06037v2 [cond-mat.supr-con] 2 Jul 2018 incorrect, assumption is that the sum of demagnetizing studying pure effects of sample shape. The results can be factors along three principal axes equals to one. This is used for the interpretation of magnetic measurement of true only for ellipsoids. Notably, E. H. Brandt has used a superconductors when London penetration depth is much different approach by numerically calculating the slope, smaller than the sample dimensions (a good approxima- dm=dH , of the magnetic moment m vs. applied mag- 0 tion almost up to 0:95T ) or in conducting samples sub- netic field H in a perfect superconductor in the Meissner c 0 ject to AC magnetic field when the skin depth is small. Our goal is to find simple to use, but accurate enough, approximate formulas suitable for the calculations of the ∗ Corresponding author: [email protected] demagnetizing correction for many shapes that can ap- y [email protected] proximate realistic samples, such as finite cylinders and 2 cuboids (rectangular prisms). 1 1 N = − : (7) II. DEFINITIONS χ0 χ where −1 ≤ χ ≤ 1 and −∞ ≤ χ0 ≤ χ. To eliminate the In local and magnetically linear media without demag- influence of the material, for calculations of N we will netizing effects (infinite slab or cylinder in parallel mag- consider a perfect diamagnet with χ = −1, so that when netic field), χ0 = χ = −1, N = 0 as it should be in case of no de- magnetizing effects (infinite slab or a cylinder in parallel B = µH = µ0 (M + H) ; (1) field) and N ! 1 for infinite plate in perpendicular field B M = − H = χH (2) where χ0 ! −∞, while χ is still equals -1. µ0 The main issue in using Eq. (7) to calculate demagne- −7 2 tizing factors is to calculate the total magnetic moment of where µ0 = 4π ×10 [N/A or H/m] is magnetic perme- ability of free space; µ and χ are linear magnetic perme- a sample of a given (arbitrary) shape. There are two ways ability and susceptibility (in general these quantities are of approaching this. In non-magnetic (super)conductors, second rank tensors, but here we consider the isotropic one first solves Maxwell equations with the help of one of case.) existing numerical software packages (such as COMSOL, It follows then that, [13]), to find the transport current density j(r). Then, the total magnetic moment is given by [1], µ χ = − 1 = µr − 1 (3) 1 Z µ0 m = [r × j(r)] dV (8) 2 where µr = µ/µ0 is relative magnetic permeability; µr = 1 for non-magnetic media and µr = 0 and χ = −1 for a The integral here can be evaluated over the entire space, perfect diamagnet. but the integrand is non-zero only inside the sample For finite samples of ellipsoidal shape, constant demag- where the currents flow. netizing factors N connect the applied magnetic field H0 The second way to calculate the total magnetic mo- along certain principle direction with the internal field, ment, m, is given by, H, Z B(r) 3 m = α − H0 d r; (9) µ0 H = H0 − NM (4) where B(r) is the actual field and H0 is the uniform and in terms of an applied field the magnetization is: applied field. Here the integral must be evaluated in a χ region that includes the sample (can be the entire space). M = H (5) We show in the next section that this integral is not 1 + χN 0 unique, but depends on the way chosen for the integra- In arbitrary shaped samples this simple description tion. This is accounted for by a constant α in Eq. (9), breaks down and we have to introduce similarly struc- α = 3=2 for integration over the large spherical domain tured effective equations, albeit applicable only for inte- that includes the whole sample, whereas α = 1 for inte- gral quantities. Namely, upon application of an exter- gration domain as a large cylinder with the axis parallel to H0. It turns out that for numerical reasons, the cylin- nal field H0, a finite sample of a given shape develops a measurable total magnetic moment m. We now define drical domain is preferable and we used it for our numer- “effective" (or \integral", or \apparent") magnetic sus- ical work. Equation (9) is central to the present work, because it allows calculations without using the current ceptibility, χ0, and corresponding demagnetizing factor, N, by writing relations structurally similar to Eq. (5) distribution. This equation (with α = 3=2) can be found in Jackson's textbook, Ref. [11], Eq. (5.62). A related χH V discussion about the multipole representation of the field m = χ H V = 0 (6) 0 0 1 + χN outside the region where the field sources are localized is given in Ref. [12]. which reduces to conventional equations in the case of For evaluation of B(r), one can use approximation of a a linear magnetic material of ellipsoidal shape. Impor- fully diamagnetic sample imposing \magnetic shielding" tantly, Eq. (6) contains only one property to be deter- boundary conditions available in the COMSOL software. mined - intrinsic susceptibility, χ provided the demag- Employing Eq. (9) with B(r) simplifies numerical pro- netizing factor N can be calculated for given geome- cedure and improves accuracy considerably. However, try. This can be done for model materials with known proving Eq. (9) is not at all trivial and we derive it ana- (assumed) χ and numerically evaluated χ0 by inverting lytically in the next section. We also verified the results Eq. (6) to obtain: by calculating total magnetic moment m utilizing both 3 approaches evaluating current distribution in supercon- Hence, we have ducting samples using London equations and employing Eq.
Recommended publications
  • Basic Magnetic Measurement Methods
    Basic magnetic measurement methods Magnetic measurements in nanoelectronics 1. Vibrating sample magnetometry and related methods 2. Magnetooptical methods 3. Other methods Introduction Magnetization is a quantity of interest in many measurements involving spintronic materials ● Biot-Savart law (1820) (Jean-Baptiste Biot (1774-1862), Félix Savart (1791-1841)) Magnetic field (the proper name is magnetic flux density [1]*) of a current carrying piece of conductor is given by: μ 0 I dl̂ ×⃗r − − ⃗ 7 1 - vacuum permeability d B= μ 0=4 π10 Hm 4 π ∣⃗r∣3 ● The unit of the magnetic flux density, Tesla (1 T=1 Wb/m2), as a derive unit of Si must be based on some measurement (force, magnetic resonance) *the alternative name is magnetic induction Introduction Magnetization is a quantity of interest in many measurements involving spintronic materials ● Biot-Savart law (1820) (Jean-Baptiste Biot (1774-1862), Félix Savart (1791-1841)) Magnetic field (the proper name is magnetic flux density [1]*) of a current carrying piece of conductor is given by: μ 0 I dl̂ ×⃗r − − ⃗ 7 1 - vacuum permeability d B= μ 0=4 π10 Hm 4 π ∣⃗r∣3 ● The Physikalisch-Technische Bundesanstalt (German national metrology institute) maintains a unit Tesla in form of coils with coil constant k (ratio of the magnetic flux density to the coil current) determined based on NMR measurements graphics from: http://www.ptb.de/cms/fileadmin/internet/fachabteilungen/abteilung_2/2.5_halbleiterphysik_und_magnetismus/2.51/realization.pdf *the alternative name is magnetic induction Introduction It
    [Show full text]
  • Coey-Slides-1.Pdf
    These lectures provide an account of the basic concepts of magneostatics, atomic magnetism and crystal field theory. A short description of the magnetism of the free- electron gas is provided. The special topic of dilute magnetic oxides is treated seperately. Some useful books: • J. M. D. Coey; Magnetism and Magnetic Magnetic Materials. Cambridge University Press (in press) 600 pp [You can order it from Amazon for £ 38]. • Magnétisme I and II, Tremolet de Lachesserie (editor) Presses Universitaires de Grenoble 2000. • Theory of Ferromagnetism, A Aharoni, Oxford University Press 1996 • J. Stohr and H.C. Siegmann, Magnetism, Springer, Berlin 2006, 620 pp. • For history, see utls.fr Basic Concepts in Magnetism J. M. D. Coey School of Physics and CRANN, Trinity College Dublin Ireland. 1. Magnetostatics 2. Magnetism of multi-electron atoms 3. Crystal field 4. Magnetism of the free electron gas 5. Dilute magnetic oxides Comments and corrections please: [email protected] www.tcd.ie/Physics/Magnetism 1 Introduction 2 Magnetostatics 3 Magnetism of the electron 4 The many-electron atom 5 Ferromagnetism 6 Antiferromagnetism and other magnetic order 7 Micromagnetism 8 Nanoscale magnetism 9 Magnetic resonance Available November 2009 10 Experimental methods 11 Magnetic materials 12 Soft magnets 13 Hard magnets 14 Spin electronics and magnetic recording 15 Other topics 1. Magnetostatics 1.1 The beginnings The relation between electric current and magnetic field Discovered by Hans-Christian Øersted, 1820. ∫Bdl = µ0I Ampère’s law 1.2 The magnetic moment Ampère: A magnetic moment m is equivalent to a current loop. Provided the current flows in a plane m = IA units Am2 In general: m = (1/2)∫ r × j(r)d3r where j is the current density; I = j.A so m = 1/2∫ r × Idl = I∫ dA = m Units: Am2 1.3 Magnetization Magnetization M is the local moment density M = δm/δV - it fluctuates wildly on a sub-nanometer and a sub-nanosecond scale.
    [Show full text]
  • Technical Note 1
    Gravito-Electromagnetic Properties of Superconductors - A Brief Review - C. J. de Matos1, M. Tajmar2 June 20th, 2003 Starting from the generalised London equations, which include a gravitomagnetic term, the gravitational and the electromagnetic properties of superconductors are derived. A phenomenological synthesis of those properties is proposed. Table of Contents I) Introduction................................................................................................2 II) Generalised London equations .................................................................2 II-a) Second generalised London equation .............................................3 II-b) First generalised London equation..................................................3 III) Gravito-electromagnetic properties of SCs .............................................3 III-a) Generalised Meissner effect ..........................................................4 III-b) SCs do not shield gravitomagnetic and / or gravitational fields....5 III-c) Generalised quantum fluxoid condition ........................................6 III-d) Supercurrents generated by GM fields..........................................7 III-e) Generalised London moment.........................................................8 III-f) Electric conductivity of SCs in a gravitational field......................9 III-g) Electrical fields in accelerated SCs .............................................13 IV) Conclusion.............................................................................................14
    [Show full text]
  • New Magnetosphere for the Earth in Future
    WSEAS TRANSACTIONS on ENVIRONMENT and DEVELOPMENT Tara Ahmadi New Magnetosphere for the Earth In Future TARA AHMADI Student At Smart High School Kurdistan, Sanandaj, Ghazaly Street No3 IRAN [email protected] Abstract:- All of us know the earth magnetic field come to be less and this problem can be a serious problem in future but now we find other problems that can destroy our planet life or in minimum state can damage it such as FTE theory , solar activities , reversing magnetic poles, increasing speed of reversing that last reverse, reducing magnetic strength ,finding leaks in magnetosphere ,etc. some of these reasons will be factors for increasing the solar energy that hit to the Earth and perhaps changing in our life and conditions of the Earth . In this paper , I try to show a way to against to these problems and reduce their damages to the Earth perhaps The Earth will repair himself but this repair need many time that humans could not be wait. In the past time magnetic field was reversed but now we are against to the other problems that can increase the influence of reversing magnetic field for the Earth and all these events can be a separated problem for us, these problem may be can not destroyed humans life but can be cause of several problems that occur for our healthy and our technology in space. This way is building a system that produce a new magne tic field that will be in one way with old magnetic field this system will construe by superconductors and a metal that is not dipole.
    [Show full text]
  • Magnetization and Demagnetization Studies of a HTS Bulk in an Iron Core Kévin Berger, Bashar Gony, Bruno Douine, Jean Lévêque
    Magnetization and Demagnetization Studies of a HTS Bulk in an Iron Core Kévin Berger, Bashar Gony, Bruno Douine, Jean Lévêque To cite this version: Kévin Berger, Bashar Gony, Bruno Douine, Jean Lévêque. Magnetization and Demagnetization Stud- ies of a HTS Bulk in an Iron Core. IEEE Transactions on Applied Superconductivity, Institute of Electrical and Electronics Engineers, 2016, 26 (4), pp.4700207. 10.1109/TASC.2016.2517628. hal- 01245678 HAL Id: hal-01245678 https://hal.archives-ouvertes.fr/hal-01245678 Submitted on 19 Dec 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1PoBE_12 1 Magnetization and Demagnetization Studies of a HTS Bulk in an Iron Core Kévin Berger, Bashar Gony, Bruno Douine, and Jean Lévêque Abstract—High Temperature Superconductors (HTS) are large quantity, with good and homogeneous properties, they promising materials in variety of practical applications due to are still the most promising materials for the applications of their ability to act as powerful permanent magnets. Thus, in this superconductors. paper, we have studied the influence of some pulsed and There are several ways to magnetize HTS bulks; but we pulsating magnetic fields applied to a magnetized HTS bulk assume that the most convenient one is to realize a method in sample.
    [Show full text]
  • Electrodynamics of Superconductors Has to According to Maxwell’S Equations, Just As the Four-Vectors J a Be Describable by Relativistically Covariant Equations
    Electrodynamics of superconductors J. E. Hirsch Department of Physics, University of California, San Diego La Jolla, CA 92093-0319 (Dated: December 30, 2003) An alternate set of equations to describe the electrodynamics of superconductors at a macroscopic level is proposed. These equations resemble equations originally proposed by the London brothers but later discarded by them. Unlike the conventional London equations the alternate equations are relativistically covariant, and they can be understood as arising from the ’rigidity’ of the superfluid wave function in a relativistically covariant microscopic theory. They predict that an internal ’spontaneous’ electric field exists in superconductors, and that externally applied electric fields, both longitudinal and transverse, are screened over a London penetration length, as magnetic fields are. The associated longitudinal dielectric function predicts a much steeper plasmon dispersion relation than the conventional theory, and a blue shift of the minimum plasmon frequency for small samples. It is argued that the conventional London equations lead to difficulties that are removed in the present theory, and that the proposed equations do not contradict any known experimental facts. Experimental tests are discussed. PACS numbers: I. INTRODUCTION these equations are not correct, and propose an alternate set of equations. It has been generally accepted that the electrodynam- There is ample experimental evidence in favor of Eq. ics of superconductors in the ’London limit’ (where the (1b), which leads to the Meissner effect. That equation response to electric and magnetic fields is local) is de- is in fact preserved in our alternative theory. However, scribed by the London equations[1, 2]. The first London we argue that there is no experimental evidence for Eq.
    [Show full text]
  • Arxiv:0807.1883V2 [Cond-Mat.Soft] 29 Dec 2008 Asnmes 14.M 36.A 60.B 45.70.Mg 46.05.+B, 83.60.La, 81.40.Lm, Numbers: PACS Model
    Granular Solid Hydrodynamics Yimin Jiang1, 2 and Mario Liu1 1Theoretische Physik, Universit¨at T¨ubingen,72076 T¨ubingen, Germany 2Central South University, Changsha 410083, China (Dated: October 27, 2018) Abstract Granular elasticity, an elasticity theory useful for calculating static stress distribution in gran- ular media, is generalized to the dynamic case by including the plastic contribution of the strain. A complete hydrodynamic theory is derived based on the hypothesis that granular medium turns transiently elastic when deformed. This theory includes both the true and the granular tempera- tures, and employs a free energy expression that encapsulates a full jamming phase diagram, in the space spanned by pressure, shear stress, density and granular temperature. For the special case of stationary granular temperatures, the derived hydrodynamic theory reduces to hypoplasticity, a state-of-the-art engineering model. PACS numbers: 81.40.Lm, 83.60.La, 46.05.+b, 45.70.Mg arXiv:0807.1883v2 [cond-mat.soft] 29 Dec 2008 1 Contents I. Introduction 3 II. Sand – a Transiently Elastic Medium 8 III. Jamming and Granular Equilibria 10 A. Liquid Equilibrium 10 B. Solid Equilibrium 11 C. Granular Equilibria 12 IV. Granular Temperature Tg 13 A. The Equilibrium Condition for Tg 13 B. The Equation of Motion for sg 14 C. Two Fluctuation-Dissipation Theorems 16 V. Elastic and Plastic Strain 17 VI. The Granular Free Energy 18 A. The Elastic Energy 20 B. Density Dependence of 22 B C. Higher-Order Strain Terms 23 D. Pressure Contribution From Agitated Grains 25 E. The Edwards Entropy 27 VII. Granular Hydrodynamic Theory 28 A.
    [Show full text]
  • Apparatus for Magnetization and Efficient Demagnetization of Soft
    3274 IEEE TRANSACTIONS ON MAGNETICS, VOL. 45, NO. 9, SEPTEMBER 2009 Apparatus for Magnetization and Efficient Demagnetization of Soft Magnetic Materials Paul Oxley Physics Department, The College of the Holy Cross, Worcester, MA 01610 USA This paper describes an electrical circuit that can be used to automatically magnetize and ac-demagnetize moderately soft magnetic materials and with minor modifications could be used to demagnetize harder magnetic materials and magnetic geological samples. The circuit is straightforward to replicate, easy to use, and low in cost. Independent control of the demagnetizing current frequency, am- plitude, and duration is available. The paper describes the circuit operation in detail and shows that it can demagnetize a link-shaped specimen of 430FR stainless steel with 100% efficiency. Measurements of the demagnetization efficiency of the specimen with different ac-demagnetization frequencies are interpreted using eddy-current theory. The experimental results agree closely with the theoretical predictions. Index Terms—Demagnetization, demagnetizer, eddy currents, magnetic measurements, magnetization, residual magnetization. I. INTRODUCTION to magnetize a magnetic sample by delivering a current propor- HERE is a widespread need for a convenient and eco- tional to an input voltage provided by the user and can be used T nomical apparatus that can ac-demagnetize magnetic ma- to measure magnetic properties such as - hysteresis loops terials. It is well known that to accurately measure the mag- and magnetic permeability. netic properties of a material, it must first be in a demagnetized Our apparatus is simple, easy to use, and economical. It state. For this reason, measurements of magnetization curves uses up-to-date electronic components, unlike many previous and hysteresis loops use unmagnetized materials [1], [2] and it designs [9]–[13], which therefore tend to be rather compli- is thought that imprecise demagnetization is a leading cause for cated.
    [Show full text]
  • The London Equations Aria Yom Abstract: the London Equations Were the First Successful Attempt at Characterizing the Electrodynamic Behavior of Superconductors
    The London Equations Aria Yom Abstract: The London Equations were the first successful attempt at characterizing the electrodynamic behavior of superconductors. In this paper we review the motivation, derivation, and modification of the London equations since 1935. We also mention further developments by Pippard and others. The shaping influences of experiments on theory are investigated. Introduction: Following the discovery of superconductivity in supercooled mercury by Heike Onnes in 1911, and its subsequent discovery in various other metals, the early pioneers of condensed matter physics were faced with a mystery which continues to be unraveled today. Early experiments showed that below a critical temperature, a conventional conductor could abruptly transition into a superconducting state, wherein currents seemed to flow without resistance. This motivated a simple model of a superconductor as one in which charges were influenced only by the Lorentz force from an external field, and not by any dissipative interactions. This would lead to the following equation: 푚 푑퐽 = 퐸 (1) 푛푒2 푑푡 Where m, e, and n are the mass, charge, and density of the charge carriers, commonly taken to be electrons at the time this equation was being considered. In the following we combine these variables into a new constant both for convenience and because the mass, charge, and density of the charge carriers are often subtle concepts. 푚 Λ = 푛푒2 This equation, however, seems to imply that the crystal lattice which supports superconductivity is somehow invisible to the superconducting charges themselves. Further, to suggest that the charges flow without friction implies, as the Londons put it, “a premature theory.” Instead, the Londons desired a theory more in line with what Gorter and Casimir had conceived [3], whereby a persistent current is spontaneously generated to minimize the free energy of the system.
    [Show full text]
  • Some Analytical Solutions to Problems Using London Equations
    Module 3 : Superconductivity phenomenon Lecture 2 : Solution of London equations and free energy calculations Solution of London Equations for sample cases Flat slab in a magnetic field Consider a flat superconducting slab of thickness in a magnetic field parallel to the slab. The boundary condition is that field match at . Subject to this condition, the solution to the London equation , where is the microscopic value of the flux density, is easily determined to be a superposition of two exponentials. The result can be written as (13) Clearly, the minimum value of the flux density is attained at the mid-plane of the slab where it has a value . The field variation inside a superconducting slab is shown. Averaging this internal field over the sample thickness one gets (14) Let us consider the limit . This leads to deep inside the superconductor. In the other limit, i.e., , we expand . Therefore, approaches . Since , we get (15) As a consequence, magnetisation measurements can be made on thin films of known thicknesses and the penetration depth can be estimated from such measurements. Since the magnetisation is reduced below its Meissner value, the effective critical field for a thin sample is greater than that for bulk. The difference in the free energy between the normal state and the superconducting state is (16) For the case of complete flux expulsion, the above difference in free energies is (17) This energy, which stabilises the superconducting state is called the condensation energy and is called the thermodynamic critical field. For a thin film sample (with a field applied parallel to the plane) we get, (18) In terms of the bulk thermodynamic critical field (19) Critical current of a wire Consider a long superconducting wire having a circular cross-section of radius .
    [Show full text]
  • Quantum Mechanics Magnetization This Article Is About Magnetization As It Appears in Maxwell's Equations of Classical Electrodynamics
    Quantum Mechanics_magnetization This article is about magnetization as it appears in Maxwell's equations of classical electrodynamics. For a microscopic description of how magnetic materials react to a magnetic field, see magnetism. For mathematical description of fields surrounding magnets and currents, see magnetic field. In classical Electromagnetism, magnetization [1] ormagnetic polarization is the vector field that expresses the density of permanent or inducedmagnetic dipole moments in a magnetic material. The origin of the magnetic moments responsible for magnetization can be either microscopic electric currents resulting from the motion of electrons inatoms, or the spin of the electrons or the nuclei. Net magnetization results from the response of a material to an external magnetic field, together with any unbalanced magnetic dipole moments that may be inherent in the material itself; for example, inferromagnets. Magnetization is not alwayshomogeneous within a body, but rather varies between different points. Magnetization also describes how a material responds to an appliedmagnetic field as well as the way the material changes the magnetic field, and can be used to calculate the forces that result from those interactions. It can be compared to electric polarization, which is the measure of the corresponding response of a material to an Electric field in Electrostatics. Physicists and engineers define magnetization as the quantity of magnetic moment per unit volume. It is represented by a vector M. Contents 1 Definition 2 Magnetization in Maxwell's equations 2.1 Relations between B, H, and M 2.2 Magnetization current 2.3 Magnetostatics 3 Magnetization dynamics 4 Demagnetization 4.1 Applications of Demagnetization 5 See also 6 Sources Definition Magnetization can be defined according to the following equation: Here, M represents magnetization; m is the vector that defines the magnetic moment; V represents volume; and N is the number of magnetic moments in the sample.
    [Show full text]
  • Non-Local Electrodynamics of Superconducting Wires: Implications for Flux Noise and Inductance
    Non-Local Electrodynamics of Superconducting Wires: Implications for Flux Noise and Inductance by Pramodh Viduranga Senarath Yapa Arachchige B.Sc., Carleton University, 2015 A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE in the Department of Physics and Astronomy c Pramodh Viduranga Senarath Yapa Arachchige, 2017 University of Victoria All rights reserved. This thesis may not be reproduced in whole or in part, by photocopying or other means, without the permission of the author. ii Non-Local Electrodynamics of Superconducting Wires: Implications for Flux Noise and Inductance by Pramodh Viduranga Senarath Yapa Arachchige B.Sc., Carleton University, 2015 Supervisory Committee Dr. Rog´eriode Sousa, Supervisor (Department of Physics and Astronomy) Dr. Reuven Gordon, Outside Member (Department of Electrical and Computer Engineering) iii Supervisory Committee Dr. Rog´eriode Sousa, Supervisor (Department of Physics and Astronomy) Dr. Reuven Gordon, Outside Member (Department of Electrical and Computer Engineering) ABSTRACT The simplest model for superconductor electrodynamics are the London equations, which treats the impact of electromagnetic fields on the current density as a localized phenomenon. However, the charge carriers of superconductivity are quantum me- chanical objects, and their wavefunctions are delocalized within the superconductor, leading to non-local effects. The Pippard equation is the generalization of London electrodynamics which incorporates this intrinsic non-locality through the introduc- tion of a new superconducting characteristic length, ξ0, called the Pippard coherence length. When building nano-scale superconducting devices, the inclusion of the coher- ence length into electrodynamics calculations becomes paramount. In this thesis, we provide numerical calculations of various electrodynamic quantities of interest in the non-local regime, and discuss their implications for building superconducting devices.
    [Show full text]