Moving Pearl Vortices in Thin-Film Superconductors

Total Page:16

File Type:pdf, Size:1020Kb

Moving Pearl Vortices in Thin-Film Superconductors Article Moving Pearl Vortices in Thin-Film Superconductors Vladimir Kogan 1,* and Norio Nakagawa 2 1 Ames Laboratory—DOE, Ames, IA 50011, USA 2 Center for Nondestructive Evaluation, Iowa State University, Ames, IA 50011, USA; [email protected] * Correspondence: [email protected] Abstract: The magnetic field hz of a moving Pearl vortex in a superconducting thin-film in (x, y) plane is studied with the help of the time-dependent London equation. It is found that for a vortex at the origin moving in +x direction, hz(x, y) is suppressed in front of the vortex, x > 0, and enhanced behind (x < 0). The distribution asymmetry is proportional to the velocity and to the conductivity of normal quasiparticles. The vortex self-energy and the interaction of two moving vortices are evaluated. Keywords: thin films; Pearl vortex 1. Introduction The time-dependent Ginzburg–Landau equations (GL) are the major tool in modeling vortex motion. Although this approach is applicable only for gapless systems near the critical temperature [1], it is gauge invariant and reproduces correctly major features of the vortex motion. A simpler linear London approach has been employed through the years to describe static or nearly static vortex systems. The London equations express the basic Meissner effect and can be used at any temperature for problems where vortex cores are irrelevant. Moving vortices are commonly considered the same as static which are displaced as a Citation: Kogan, V.; Nakagawa, N. whole. Moving Pearl Vortices in Thin-Film However, recently it has been shown that this is not the case for moving vortex- Superconductors. Condens. Matter like topological defects in, e.g., neutral superfluids or liquid crystals [2]. This is not so 2021, 6, 4. https://doi.org/10.3390/ in superconductors within the time-dependent London theory (TDL) which takes into condmat6010004 account normal currents, a necessary consequence of moving magnetic structure of a vortex [3,4]. In this paper, the magnetic field distribution of moving Pearl vortices in thin Received: 22 December 2020 films is considered. It is shown that the self-energy of a moving vortex decreases with Accepted: 20 January 2021 increasing velocity. The interaction energy of two vortices moving with the same velocity Published: 24 January 2021 becomes anisotropic; it is enhanced when the vector R connecting vortices is parallel to the velocity v and suppressed if R ? v. The magnetic flux carried by moving vortex is equal Publisher’s Note: MDPI stays neu- tral with regard to jurisdictional clai- to flux quantum, but this flux is redistributed so that the part of it in front of the vortex is ms in published maps and institutio- depleted, whereas the part behind it is enhanced. nal affiliations. In time-dependent situations, the current consists, in general, of normal and supercon- ducting parts: 2e2jYj2 f J = sE − A + 0 rc , (1) mc 2p Copyright: © 2021 by the authors. Li- censee MDPI, Basel, Switzerland. where E is the electric field and Y is the order parameter. This article is an open access article The conductivity s approaches the normal state value sn when the temperature T distributed under the terms and con- approaches Tc; in s-wave superconductors it vanishes fast with decreasing temperature ditions of the Creative Commons At- along with the density of normal excitations. This is not the case for strong pair breaking tribution (CC BY) license (https:// when superconductivity becomes gapless, and the density of states approaches the normal creativecommons.org/licenses/by/ state value at all temperatures. Unfortunately, there is not much experimental information 4.0/). Condens. Matter 2021, 6, 4. https://doi.org/10.3390/condmat6010004 https://www.mdpi.com/journal/condensedmatter Condens. Matter 2021, 6, 4 2 of 9 about the T dependence of s. Theoretically, this question is still debated; e.g., [5] discusses the possible enhancement of s due to inelastic scattering. Within the London approach jYj is a constant Y0, and Equation (1) becomes: 4p 4ps 1 f J = E − A + 0 rc , (2) c c l2 2p 2 2 2 2 where l = mc /8pe jY0j is the London penetration depth. By acting on this via curling, one obtains: 1 4ps ¶h f − r2 + + = 0 ( − ) h 2 h 2 2 z ∑ d r rn , (3) l c ¶t l n where rn(t) is the position of the n-th vortex; z is the direction of vortices. Equation (3) can be considered as a general form of the time-dependent London equation. The time-dependent version of London Equation (3) is valid only outside vortex cores, similarly to the static London approach. As such, it may give useful results for materials with large GL parameter k values in fields away from the upper critical field Hc2. On the other hand, Equation (3) is a useful, albeit approximate tool for low temperatures where GL theory does not work and the microscopic theory is forbiddingly complex. 2. Thin Films Let the film of thickness d be in the xy plane. Integration of Equation (3) over the film thickness gives, for the z component of the field, a Pearl vortex moving with velocity v: 2pL ¶h curl g + h + t z = f d(r − vt). (4) c z z ¶t 0 Here, f0 is the flux quantum; g is the sheet current density related to the tangential field components at the upper film face by 2pg/c = zˆ × h; L = 2l2/d is the Pearl length; and t = 4psl2/c2. With the help of divh = 0, this equation is transformed to: ¶h ¶h h − L z + t z = f d(r − vt). (5) z ¶z ¶t 0 As was shown by Pearl [6], a large contribution to the energy of a vortex in a thin film comes from stray fields. In fact, the problem of a vortex in a thin film is reduced to that of the field distribution in free space subject to the boundary condition supplied by solutions of Equation (4) at the film’s surface. Outside the film curlh = divh = 0, one can introduce a scalar potential for the outside field: h = rj, r2 j = 0 . (6) The general form of the potential satisfying Laplace equation that vanishes at z ! ¥ of the empty upper half-space is Z d2k j(r, z) = j(k)eik·r−kz . (7) 4p2 Here, k = (kx, ky), r = (x, y), and j(k) is the two-dimensional Fourier transform of j(r, z = 0). In the lower half-space, one has to replace z ! −z in Equation (7). As is done in [3], one applies the 2D Fourier transform to Equation (5) to obtain a linear differential equation for hzk(t). Since hzk = −kjk, we obtain: f e−ik·vt j = − 0 . (8) k k(1 + Lk − ik · vt) Condens. Matter 2021, 6, 4 3 of 9 In fact, this gives distributions for all field components outside the film, its surface included. In particular, hz at z = +0 (the upper film face) is given by f e−ik·vt h = −kj = 0 . (9) zk k 1 + Lk − ik · vt We are interested in the vortex’s motion with constant velocity v = vxˆ, so that we can evaluate this field in real space for the vortex at the origin at t = 0: f Z d2k eik·r ( ) = 0 hz r 2 . (10) 4p 1 + Lk − ikxvt It is convenient in the following to use Pearl L as the unit length and measure the field in 2 2 units f0/4p L : Z d2k eik·r vt hz(r) = , s = . (11) 1 + k − ikxs L (we left the same notations for hz and k in new units; when needed, we indicate formulas written in common units). 2.1. Evaluation of hz(r) With the help of identity Z ¥ −1 −u(1+k−ikxs) (1 + k − ikxs) = e du , (12) 0 one rewrites the field as Z ¥ Z −u 2 ik·r−uk hz(r) = du e d k e , 0 r = (x + us, y). (13) To evaluate the last integral over k, we note that the three-dimensional (3D) Coulomb Green’s function is 1 1 Z d3q 1 Z d2k = eiq·R = eik·r−kz. (14) 4pR (2p)3 q2 8p2 k To do here the last step, we used R = (r, z), q = (k, qz) and Z ¥ eiqzz p e−kjzj = dqz 2 2 . (15) −¥ k + qz k It follows from Equation (14) Z ¶ 1 2pz d2k eik·r−kz = −2p p = . (16) ¶z r2 + z2 (r2 + z2)3/2 p Replace now r ! r, z ! u, R ! r2 + u2 to obtain instead of Equation (13): Z ¥ u e−u hz(r) = 2p du . (17) 0 (r2 + u2)3/2 After integrating by parts, one obtains: " # 1 Z ¥ du e−u s(x + su) hz = 2p − p 1 + . (18) r 0 r2 + u2 r2 + u2 Condens. Matter 2021, 6, 4 4 of 9 For the Pearl vortex at rest s = 0, r = r, and the known result follows; see, e.g., [7]: 1 p h (r) = 2p + [Y (r) − H (r)] , (19) z r 2 0 0 Y0 and H0 are second-kind Bessel and Struve functions. Hence, we succeeded in reducing the double integral (11) to a single integral over u. Besides, the singularity at r = 0 is now explicitly represented by 1/r, whereas the integral over u is convergent and can be evaluated numerically. The results are shown in Figure1. y 4 0.1 2 0.4 hz(x,0) 0.5 3 y 0 x 0.2 0.6 0.3 2 -2 1 -4 x -4 -2 0 2 4 -4 -2 2 4 x 2 2 Figure 1.
Recommended publications
  • Technical Note 1
    Gravito-Electromagnetic Properties of Superconductors - A Brief Review - C. J. de Matos1, M. Tajmar2 June 20th, 2003 Starting from the generalised London equations, which include a gravitomagnetic term, the gravitational and the electromagnetic properties of superconductors are derived. A phenomenological synthesis of those properties is proposed. Table of Contents I) Introduction................................................................................................2 II) Generalised London equations .................................................................2 II-a) Second generalised London equation .............................................3 II-b) First generalised London equation..................................................3 III) Gravito-electromagnetic properties of SCs .............................................3 III-a) Generalised Meissner effect ..........................................................4 III-b) SCs do not shield gravitomagnetic and / or gravitational fields....5 III-c) Generalised quantum fluxoid condition ........................................6 III-d) Supercurrents generated by GM fields..........................................7 III-e) Generalised London moment.........................................................8 III-f) Electric conductivity of SCs in a gravitational field......................9 III-g) Electrical fields in accelerated SCs .............................................13 IV) Conclusion.............................................................................................14
    [Show full text]
  • New Magnetosphere for the Earth in Future
    WSEAS TRANSACTIONS on ENVIRONMENT and DEVELOPMENT Tara Ahmadi New Magnetosphere for the Earth In Future TARA AHMADI Student At Smart High School Kurdistan, Sanandaj, Ghazaly Street No3 IRAN [email protected] Abstract:- All of us know the earth magnetic field come to be less and this problem can be a serious problem in future but now we find other problems that can destroy our planet life or in minimum state can damage it such as FTE theory , solar activities , reversing magnetic poles, increasing speed of reversing that last reverse, reducing magnetic strength ,finding leaks in magnetosphere ,etc. some of these reasons will be factors for increasing the solar energy that hit to the Earth and perhaps changing in our life and conditions of the Earth . In this paper , I try to show a way to against to these problems and reduce their damages to the Earth perhaps The Earth will repair himself but this repair need many time that humans could not be wait. In the past time magnetic field was reversed but now we are against to the other problems that can increase the influence of reversing magnetic field for the Earth and all these events can be a separated problem for us, these problem may be can not destroyed humans life but can be cause of several problems that occur for our healthy and our technology in space. This way is building a system that produce a new magne tic field that will be in one way with old magnetic field this system will construe by superconductors and a metal that is not dipole.
    [Show full text]
  • Electrodynamics of Superconductors Has to According to Maxwell’S Equations, Just As the Four-Vectors J a Be Describable by Relativistically Covariant Equations
    Electrodynamics of superconductors J. E. Hirsch Department of Physics, University of California, San Diego La Jolla, CA 92093-0319 (Dated: December 30, 2003) An alternate set of equations to describe the electrodynamics of superconductors at a macroscopic level is proposed. These equations resemble equations originally proposed by the London brothers but later discarded by them. Unlike the conventional London equations the alternate equations are relativistically covariant, and they can be understood as arising from the ’rigidity’ of the superfluid wave function in a relativistically covariant microscopic theory. They predict that an internal ’spontaneous’ electric field exists in superconductors, and that externally applied electric fields, both longitudinal and transverse, are screened over a London penetration length, as magnetic fields are. The associated longitudinal dielectric function predicts a much steeper plasmon dispersion relation than the conventional theory, and a blue shift of the minimum plasmon frequency for small samples. It is argued that the conventional London equations lead to difficulties that are removed in the present theory, and that the proposed equations do not contradict any known experimental facts. Experimental tests are discussed. PACS numbers: I. INTRODUCTION these equations are not correct, and propose an alternate set of equations. It has been generally accepted that the electrodynam- There is ample experimental evidence in favor of Eq. ics of superconductors in the ’London limit’ (where the (1b), which leads to the Meissner effect. That equation response to electric and magnetic fields is local) is de- is in fact preserved in our alternative theory. However, scribed by the London equations[1, 2]. The first London we argue that there is no experimental evidence for Eq.
    [Show full text]
  • Arxiv:0807.1883V2 [Cond-Mat.Soft] 29 Dec 2008 Asnmes 14.M 36.A 60.B 45.70.Mg 46.05.+B, 83.60.La, 81.40.Lm, Numbers: PACS Model
    Granular Solid Hydrodynamics Yimin Jiang1, 2 and Mario Liu1 1Theoretische Physik, Universit¨at T¨ubingen,72076 T¨ubingen, Germany 2Central South University, Changsha 410083, China (Dated: October 27, 2018) Abstract Granular elasticity, an elasticity theory useful for calculating static stress distribution in gran- ular media, is generalized to the dynamic case by including the plastic contribution of the strain. A complete hydrodynamic theory is derived based on the hypothesis that granular medium turns transiently elastic when deformed. This theory includes both the true and the granular tempera- tures, and employs a free energy expression that encapsulates a full jamming phase diagram, in the space spanned by pressure, shear stress, density and granular temperature. For the special case of stationary granular temperatures, the derived hydrodynamic theory reduces to hypoplasticity, a state-of-the-art engineering model. PACS numbers: 81.40.Lm, 83.60.La, 46.05.+b, 45.70.Mg arXiv:0807.1883v2 [cond-mat.soft] 29 Dec 2008 1 Contents I. Introduction 3 II. Sand – a Transiently Elastic Medium 8 III. Jamming and Granular Equilibria 10 A. Liquid Equilibrium 10 B. Solid Equilibrium 11 C. Granular Equilibria 12 IV. Granular Temperature Tg 13 A. The Equilibrium Condition for Tg 13 B. The Equation of Motion for sg 14 C. Two Fluctuation-Dissipation Theorems 16 V. Elastic and Plastic Strain 17 VI. The Granular Free Energy 18 A. The Elastic Energy 20 B. Density Dependence of 22 B C. Higher-Order Strain Terms 23 D. Pressure Contribution From Agitated Grains 25 E. The Edwards Entropy 27 VII. Granular Hydrodynamic Theory 28 A.
    [Show full text]
  • The London Equations Aria Yom Abstract: the London Equations Were the First Successful Attempt at Characterizing the Electrodynamic Behavior of Superconductors
    The London Equations Aria Yom Abstract: The London Equations were the first successful attempt at characterizing the electrodynamic behavior of superconductors. In this paper we review the motivation, derivation, and modification of the London equations since 1935. We also mention further developments by Pippard and others. The shaping influences of experiments on theory are investigated. Introduction: Following the discovery of superconductivity in supercooled mercury by Heike Onnes in 1911, and its subsequent discovery in various other metals, the early pioneers of condensed matter physics were faced with a mystery which continues to be unraveled today. Early experiments showed that below a critical temperature, a conventional conductor could abruptly transition into a superconducting state, wherein currents seemed to flow without resistance. This motivated a simple model of a superconductor as one in which charges were influenced only by the Lorentz force from an external field, and not by any dissipative interactions. This would lead to the following equation: 푚 푑퐽 = 퐸 (1) 푛푒2 푑푡 Where m, e, and n are the mass, charge, and density of the charge carriers, commonly taken to be electrons at the time this equation was being considered. In the following we combine these variables into a new constant both for convenience and because the mass, charge, and density of the charge carriers are often subtle concepts. 푚 Λ = 푛푒2 This equation, however, seems to imply that the crystal lattice which supports superconductivity is somehow invisible to the superconducting charges themselves. Further, to suggest that the charges flow without friction implies, as the Londons put it, “a premature theory.” Instead, the Londons desired a theory more in line with what Gorter and Casimir had conceived [3], whereby a persistent current is spontaneously generated to minimize the free energy of the system.
    [Show full text]
  • Some Analytical Solutions to Problems Using London Equations
    Module 3 : Superconductivity phenomenon Lecture 2 : Solution of London equations and free energy calculations Solution of London Equations for sample cases Flat slab in a magnetic field Consider a flat superconducting slab of thickness in a magnetic field parallel to the slab. The boundary condition is that field match at . Subject to this condition, the solution to the London equation , where is the microscopic value of the flux density, is easily determined to be a superposition of two exponentials. The result can be written as (13) Clearly, the minimum value of the flux density is attained at the mid-plane of the slab where it has a value . The field variation inside a superconducting slab is shown. Averaging this internal field over the sample thickness one gets (14) Let us consider the limit . This leads to deep inside the superconductor. In the other limit, i.e., , we expand . Therefore, approaches . Since , we get (15) As a consequence, magnetisation measurements can be made on thin films of known thicknesses and the penetration depth can be estimated from such measurements. Since the magnetisation is reduced below its Meissner value, the effective critical field for a thin sample is greater than that for bulk. The difference in the free energy between the normal state and the superconducting state is (16) For the case of complete flux expulsion, the above difference in free energies is (17) This energy, which stabilises the superconducting state is called the condensation energy and is called the thermodynamic critical field. For a thin film sample (with a field applied parallel to the plane) we get, (18) In terms of the bulk thermodynamic critical field (19) Critical current of a wire Consider a long superconducting wire having a circular cross-section of radius .
    [Show full text]
  • Non-Local Electrodynamics of Superconducting Wires: Implications for Flux Noise and Inductance
    Non-Local Electrodynamics of Superconducting Wires: Implications for Flux Noise and Inductance by Pramodh Viduranga Senarath Yapa Arachchige B.Sc., Carleton University, 2015 A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE in the Department of Physics and Astronomy c Pramodh Viduranga Senarath Yapa Arachchige, 2017 University of Victoria All rights reserved. This thesis may not be reproduced in whole or in part, by photocopying or other means, without the permission of the author. ii Non-Local Electrodynamics of Superconducting Wires: Implications for Flux Noise and Inductance by Pramodh Viduranga Senarath Yapa Arachchige B.Sc., Carleton University, 2015 Supervisory Committee Dr. Rog´eriode Sousa, Supervisor (Department of Physics and Astronomy) Dr. Reuven Gordon, Outside Member (Department of Electrical and Computer Engineering) iii Supervisory Committee Dr. Rog´eriode Sousa, Supervisor (Department of Physics and Astronomy) Dr. Reuven Gordon, Outside Member (Department of Electrical and Computer Engineering) ABSTRACT The simplest model for superconductor electrodynamics are the London equations, which treats the impact of electromagnetic fields on the current density as a localized phenomenon. However, the charge carriers of superconductivity are quantum me- chanical objects, and their wavefunctions are delocalized within the superconductor, leading to non-local effects. The Pippard equation is the generalization of London electrodynamics which incorporates this intrinsic non-locality through the introduc- tion of a new superconducting characteristic length, ξ0, called the Pippard coherence length. When building nano-scale superconducting devices, the inclusion of the coher- ence length into electrodynamics calculations becomes paramount. In this thesis, we provide numerical calculations of various electrodynamic quantities of interest in the non-local regime, and discuss their implications for building superconducting devices.
    [Show full text]
  • Ultra-Low Temperature Measurements of London Penetration Depth in Iron Selenide Telluride Superconductors
    University of New Orleans ScholarWorks@UNO University of New Orleans Theses and Dissertations Dissertations and Theses Fall 12-20-2013 Ultra-low Temperature Measurements of London Penetration Depth in Iron Selenide Telluride Superconductors Andrei Diaconu University of New Orleans, [email protected] Follow this and additional works at: https://scholarworks.uno.edu/td Part of the Condensed Matter Physics Commons Recommended Citation Diaconu, Andrei, "Ultra-low Temperature Measurements of London Penetration Depth in Iron Selenide Telluride Superconductors" (2013). University of New Orleans Theses and Dissertations. 1731. https://scholarworks.uno.edu/td/1731 This Dissertation is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in University of New Orleans Theses and Dissertations by an authorized administrator of ScholarWorks@UNO. For more information, please contact [email protected]. Ultra-low Temperature Measurements of London Penetration Depth in Iron Selenide Telluride Superconductors A Dissertation Submitted to the Graduate Faculty of the University of New Orleans in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Engineering and Applied Science Physics by Andrei Diaconu B.S. “Alexandru Ioan Cuza” University, Iasi, Romania, 2006 M.S.
    [Show full text]
  • Physical Processes in Disordered Superconductors
    COMENIUS UNIVERSITY IN BRATISLAVA FACULTY OF MATHEMATICS, PHYSICS AND INFORMATICS Physical processes in disordered superconductors 2016 RNDr. Martin Zemliˇckaˇ COMENIUS UNIVERSITY IN BRATISLAVA FACULTY OF MATHEMATICS, PHYSICS AND INFORMATICS Physical processes in disordered superconductors Dissertation thesis 4.1.3 Condensed matter physics and acoustics Department of experimental physics Bratislava, 2016 RNDr. Martin Zemliˇckaˇ 51249511 Comenius University in Bratislava Faculty of Mathematics, Physics and Informatics THESIS ASSIGNMENT Name and Surname: Mgr. Martin Žemlička Study programme: Condense Matter Physics and Acoustics (Single degree study, Ph.D. III. deg., full time form) Field of Study: Physics Of Condensed Matter And Acoustics Type of Thesis: Dissertation thesis Language of Thesis: English Secondary language: Slovak Title: Physical processes in disordered superconductors. Literature: 1. A Tholen, Parametric amplification with weak-link nonlinearity in superconducting microresonators, arXiv:0906.2744v2 2.G. Wendin, V.S. Shumeiko,Superconducting Quantum Circuits, Qubits and Computing arXiv:cond-mat/0508729v1 3. A. M. ZAGOSKIN, QUANTUM ENGINEERING, Cambridge University Press 2011 4. L. Skrbek a kol. Fyzika nízkých teplot, matfyzpress PRAHA 2011 Aim: The aim of the thesis is the examination of physical processes in disordered superconductors and nonlinear effects in superconducting nanostructures. Such structures can be applied as very sensitive detectors usable in astronomy, experimental physics or in quantum information processing. Tutor: doc. RNDr. Miroslav Grajcar, DrSc. Department: FMFI.KEF - Department of Experimental Physics Head of prof. Dr. Štefan Matejčík, DrSc. department: Assigned: 01.09.2012 Approved: 01.03.2012 prof. RNDr. Peter Kúš, DrSc. Guarantor of Study Programme Student Tutor 51249511 Univerzita Komenského v Bratislave Fakulta matematiky, fyziky a informatiky ZADANIE ZÁVEREČNEJ PRÁCE Meno a priezvisko študenta: Mgr.
    [Show full text]
  • Table of Contents
    CONTENTS 1 - Introduction .............................................................................................................. 1 1.1 - A history of women and men ................................................................................... 1 1.2 - Experimental signs of superconductivity ................................................................. 1 1.2.1 - The discovery of superconductivity: the critical temperature ...................... 1 1.2.2 - The magnetic behavior of superconductors .................................................. 3 The MEISSNER-OCHSENFELD effect ....................................................................... 3 Critical fields and superconductors of types I and II ............................................. 3 1.2.3 - Critical current ............................................................................................... 3 1.2.4 - The isotope effect .......................................................................................... 4 1.2.5 - JOSEPHSON currents and flux quantification .................................................. 4 1.3 - Phenomenological models ........................................................................................ 5 1.3.1 - LONDON theory .............................................................................................. 5 1.3.2 - The thermodynamic approach ....................................................................... 6 1.3.3 - GINZBURG-LANDAU theory ...........................................................................
    [Show full text]
  • The London Equation
    Università degli Studi di Palermo Tesi di Dottorato SUPERCONDUCTIVITY EXPLAINED WITH THE TOOLS OF THE CLASSICAL ELECTROMAGNETISM Educational path for the secondary school and its experimentation Dottorando Sara Roberta Barbieri Tutor Coordinatore Prof. Claudio Fazio Prof. Aldo Brigaglia Co-Tutor Marco Giliberti SSD: Fis08 Università degli Studi di Palermo - Dipartimento di Fisica e Chimica Corso di Dottorato di Ricerca in Storia e Didattica delle Matematiche, della Fisica e della Chimica (XXIV Ciclo) – 2013 Università degli Studi di Palermo Tesi di Dottorato SUPERCONDUCTIVITY EXPLAINED WITH THE TOOLS OF THE CLASSICAL ELECTROMAGNETISM Educational path for the secondary school and its experimentation Dottorando Sara Roberta Barbieri Tutor Coordinatore Prof. Claudio Fazio Prof. Aldo Brigaglia Co-Tutor Marco Giliberti SSD: Fis08 Università degli Studi di Palermo - Dipartimento di Fisica e Chimica Corso di Dottorato di Ricerca in Storia e Didattica delle Matematiche, della Fisica e della Chimica (XXIV Ciclo) – 2013 Physics is such stuff as dreams are made on Contents Abstract 1 1. Introduction 3 2. The Higgs boson and the superconductivity 7 2.1. The Lagrangian formalism for the description of a system . .7 2.1.1. An example: the conservation of the linear momentum . .8 2.1.2. The importance of the theoretical framework . .9 2.2. The characterization of the unknown interactions . 10 2.2.1. Experimental hints for the description of the strong interaction 10 2.2.2. Theoretical hints for the description of the strong interaction . 11 2.3. The problem of the particle masses in the Standard Model . 14 2.3.1. Short range interactions are mediated by massive quanta .
    [Show full text]
  • Effective Demagnetization Factors of Diamagnetic Samples of Various
    Effective Demagnetizing Factors of Diamagnetic Samples of Various Shapes R. Prozorov1, 2, ∗ and V. G. Kogan1, y 1Ames Laboratory, Ames, IA 50011 2Department of Physics & Astronomy, Iowa State University, Ames, IA 50011 (Dated: Submitted: 16 December 2017; accepted in Phys. Rev. Applied: 26 June 2018) Effective demagnetizing factors that connect the sample magnetic moment with the applied mag- netic field are calculated numerically for perfectly diamagnetic samples of various non-ellipsoidal shapes. The procedure is based on calculating total magnetic moment by integrating the magnetic induction obtained from a full three dimensional solution of the Maxwell equations using adaptive mesh. The results are relevant for superconductors (and conductors in AC fields) when the London penetration depth (or the skin depth) is much smaller than the sample size. Simple but reasonably accurate approximate formulas are given for practical shapes including rectangular cuboids, finite cylinders in axial and transverse field as well as infinite rectangular and elliptical cross-section strips. I. INTRODUCTION state to compute the approximate N−factors for a 2D sit- uation of infinitely long strips of rectangular cross-section Correcting results of magnetic measurements for the in perpendicular field and he extended these results to fi- distortion of the magnetic field inside and around a finite nite 3D cylinders (also of rectangular cross-section) in sample of arbitrary shape is not trivial, but necessary the axial magnetic field. We find an excellent agreement part of experimental studies in magnetism and super- between our calculations and Brandt's results for these conductivity. The internal magnetic field is uniform only geometries.
    [Show full text]