Nucleobase and Nucleoside Analogues: Resistance and Re-Sensitisation at the Level of Pharmacokinetics, Pharmacodynamics and Metabolism

Total Page:16

File Type:pdf, Size:1020Kb

Nucleobase and Nucleoside Analogues: Resistance and Re-Sensitisation at the Level of Pharmacokinetics, Pharmacodynamics and Metabolism cancers Review Nucleobase and Nucleoside Analogues: Resistance and Re-Sensitisation at the Level of Pharmacokinetics, Pharmacodynamics and Metabolism Nikolaos Tsesmetzis 1, Cynthia B. J. Paulin 2, Sean G. Rudd 2,* ID and Nikolas Herold 1,3,* ID 1 Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, 171 77 Stockholm, Sweden; [email protected] 2 Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden; [email protected] 3 Paediatric Oncology, Theme of Children’s and Women’s Health, Karolinska University Hospital Solna, 171 76 Stockholm, Sweden * Correspondence: [email protected] (S.G.R.): [email protected] (N.H.) Received: 1 July 2018; Accepted: 20 July 2018; Published: 23 July 2018 Abstract: Antimetabolites, in particular nucleobase and nucleoside analogues, are cytotoxic drugs that, starting from the small field of paediatric oncology, in combination with other chemotherapeutics, have revolutionised clinical oncology and transformed cancer into a curable disease. However, even though combination chemotherapy, together with radiation, surgery and immunotherapy, can nowadays cure almost all types of cancer, we still fail to achieve this for a substantial proportion of patients. The understanding of differences in metabolism, pharmacokinetics, pharmacodynamics, and tumour biology between patients that can be cured and patients that cannot, builds the scientific basis for rational therapy improvements. Here, we summarise current knowledge of how tumour-specific and patient-specific factors can dictate resistance to nucleobase/nucleoside analogues, and which strategies of re-sensitisation exist. We revisit well-established hurdles to treatment efficacy, like the blood-brain barrier and reduced deoxycytidine kinase activity, but will also discuss the role of novel resistance factors, such as SAMHD1. A comprehensive appreciation of the complex mechanisms that underpin the failure of chemotherapy will hopefully inform future strategies of personalised medicine. Keywords: chemoresistance; sensitisation; novel therapy; combination therapy; antimetabolites; nucleoside analogues; nucleobase analogues; cytarabine; gemcitabine; clofarabine; fludarabine; nelarabine; cladribine; 5-fluorouracil; capecitabine; SAMHD1; ribonucleotide reductase; precision medicine 1. Introduction Since metastatic potential is a hallmark of cancer [1], management of malignant disease usually requires systemic treatment in order to prevent and treat tumour spread. Combination chemotherapy still constitutes the current paradigm to achieve systemic disease control in clinical oncology, even though immunotherapeutic approaches are becoming a viable complement at least for a subset of patients [2,3]. Antimetabolites were the first class of cytotoxic drugs systematically tested in clinical trials that elicited complete clinical responses as monotherapies, albeit with inevitable relapse [4]. Even though this review will–with few exceptions–mainly focus on monotherapy, it is important to keep in mind that, empirically, combination of chemotherapeutic agents is a sine qua non for the cure of the vast majority of cancers. On the other hand, a reductionist understanding of the mechanisms underlying the insufficiency of monotherapies is a prerequisite to rationally improve existing therapy Cancers 2018, 10, 240; doi:10.3390/cancers10070240 www.mdpi.com/journal/cancers CancersCancers 20182018, 10,,10 x , 240 2 of2 37 of 38 understanding of the mechanisms underlying the insufficiency of monotherapies is a prerequisite to rationallymodalities. improve This reviewexisting aims therapy to give modalities. an overview This ofreview the current aims to understanding give an overview of chemoresistance, of the current understandingbut will exclusively of chemoresistance, focus on nucleoside but will and exclusively nucleobase analoguesfocus on (Figurenucleoside1), the and major nucleobase subgroup analoguesof antimetabolites. (Figure 1), the major subgroup of antimetabolites. FigureFigure 1. 1.StructuresStructures of ofnucleobase nucleobase and and nucleoside nucleoside analogues analogues discussed discussed in inthis this review. review. Endogenous Endogenous nucleobase/nucleosidesnucleobase/nucleosides are arelabelled labelled in inbold bold and and synthetic synthetic analogues analogues with with sugar sugar-modifications‐modifications (indicated(indicated in inblue) blue) or orbase base-modifications‐modifications (indicated (indicated in inred) red) are are shown. shown. AntimetabolitesAntimetabolites can can be be grouped grouped into into folate folate antagonists antagonists and and nucleobase/nucleoside nucleobase/nucleoside analogues. analogues. DueDue to totheir their structural structural similarity, similarity, folate folate antagonists, antagonists, or orantifolates, antifolates, either either inhibit inhibit conversion conversion of of dihydrofolatedihydrofolate to to tetrahydrofolate tetrahydrofolate by by targeting targeting dihydrofolate reductasereductase (DHFR)(DHFR) or or directly directly inhibit inhibit one oneor moreor ofmore the enzymesof the that enzymes require tetrahydrofolatethat require astetrahydrofolate a co-factor, e.g., phosphoribosylglycinamideas a co‐factor, e.g., phosphoribosylglycinamideformyltransferase (GARFT) formyltransferase and thymidylate synthase(GARFT) (TS);and keythymidylate enzymes insynthase de novo (TS); synthesis key of enzymesnucleic acidin de precursors novo synthesis (discussed of nucleic in more acid detail precursors below) [5 ,(discussed6]. Antifolates in more are, however, detail below) not within [5,6]. the Antifolatesscope of the are, current however, review not article;within the comprehensive scope of the reviews current arereview to be article; found comprehensive elsewhere [7,8]. reviews are to beNucleobase found elsewhere and nucleoside [7,8]. analogues exert their cytotoxic effects by mimicking endogenous nucleosidesNucleobase (and and following nucleoside phosphorylation, analogues exert nucleotides). their cytotoxic This effects can either by mimicking be mediated endogenous by enzyme nucleosidesinhibition (and or by following substituting phosphorylation, endogenous nucleoside nucleotides). species This as can substrates, either be leading mediated to DNA by enzyme and RNA inhibitiondamage or and by interference substituting with endogenous DNA methylation. nucleoside Nucleosidespecies as substrates, analogues leading have to to reach DNA tumour and RNA sites, damageniches and and interference sanctuaries with at sufficient DNA methylation. concentration Nucleoside (delivery) analogues and in a non-degraded have to reach formtumour (stability), sites, nichesbe taken and sanctuaries up into the at cancer sufficient cell (usuallyconcentration by nucleoside (delivery) transport and in a proteins),non‐degraded and beform converted (stability), into betheir taken active up into metabolites the cancer (activation) cell (usually before by nucleoside they can hit transport their molecular proteins), target and be (pharmacodynamic converted into theiractivity) active (Figure metabolites2 and Table(activation)1). Both before disease- they and can patient-specific hit their molecular treatment target failure (pharmacodynamic to one or several activity)nucleobase (Figure or nucleoside2 and Table analogues 1). Both disease can be caused‐ and patient at one‐specific or more treatment of these steps. failure Strategies to one or to rationallyseveral nucleobaseimprove antimetabolicor nucleoside treatments analogues have can thusbe caused to take at into one account or more all ofof these these mechanisms steps. Strategies and assess to rationallytheir relative improve contribution. antimetabolic treatments have thus to take into account all of these mechanisms and assess their relative contribution. Cancers 2018, 10, 240 3 of 38 Cancers 2018, 10, x 3 of 37 Figure 2. Schematic representation of the levels of resistance to nucleobase/nucleoside analogues. Figure 2. Schematic representation of the levels of resistance to nucleobase/nucleoside analogues. Resistance to nucleobase/nucleoside analogues can occur at the pharmacokinetic levels of delivery Resistance to nucleobase/nucleoside analogues can occur at the pharmacokinetic levels of (e.g., due to the blood‐brain barrier), stability (e.g., due to plasmatic catabolic activity), membrane delivery (e.g., due to the blood-brain barrier), stability (e.g., due to plasmatic catabolic activity), transport (e.g., due to down‐regulation of influx transporters), and intracellular activation (due to an membrane transport (e.g., due to down-regulation of influx transporters), and intracellular activation imbalance in anabolic and catabolic enzymes). Further downstream, pharmacodynamic resistance (due to an imbalance in anabolic and catabolic enzymes). Further downstream, pharmacodynamic can occur (e.g., due to overexpression of drug targets). Drug efficacy critically depends on the resistance can occur (e.g., due to overexpression of drug targets). Drug efficacy critically depends underlying tumour biology that determines the general susceptibility to cytotoxicity (for details, see on the underlying tumour biology that determines the general susceptibility to cytotoxicity text). Examples for re‐sensitisation strategies are given. NsA, nucleoside analogue; TDM, therapeutic (for details, see text). Examples for re-sensitisation strategies are given. NsA, nucleoside analogue;
Recommended publications
  • PROTEOMIC ANALYSIS of HUMAN URINARY EXOSOMES. Patricia
    ABSTRACT Title of Document: PROTEOMIC ANALYSIS OF HUMAN URINARY EXOSOMES. Patricia Amalia Gonzales Mancilla, Ph.D., 2009 Directed By: Associate Professor Nam Sun Wang, Department of Chemical and Biomolecular Engineering Exosomes originate as the internal vesicles of multivesicular bodies (MVBs) in cells. These small vesicles (40-100 nm) have been shown to be secreted by most cell types throughout the body. In the kidney, urinary exosomes are released to the urine by fusion of the outer membrane of the MVBs with the apical plasma membrane of renal tubular epithelia. Exosomes contain apical membrane and cytosolic proteins and can be isolated using differential centrifugation. The analysis of urinary exosomes provides a non- invasive means of acquiring information about the physiological or pathophysiological state of renal cells. The overall objective of this research was to develop methods and knowledge infrastructure for urinary proteomics. We proposed to conduct a proteomic analysis of human urinary exosomes. The first objective was to profile the proteome of human urinary exosomes using liquid chromatography-tandem spectrometry (LC- MS/MS) and specialized software for identification of peptide sequences from fragmentation spectra. We unambiguously identified 1132 proteins. In addition, the phosphoproteome of human urinary exosomes was profiled using the neutral loss scanning acquisition mode of LC-MS/MS. The phosphoproteomic profiling identified 19 phosphorylation sites corresponding to 14 phosphoproteins. The second objective was to analyze urinary exosomes samples isolated from patients with genetic mutations. Polyclonal antibodies were generated to recognize epitopes on the gene products of these genetic mutations, NKCC2 and MRP4. The potential usefulness of urinary exosome analysis was demonstrated using the well-defined renal tubulopathy, Bartter syndrome type I and using the single nucleotide polymorphism in the ABCC4 gene.
    [Show full text]
  • Cancer Drug Pharmacology Table
    CANCER DRUG PHARMACOLOGY TABLE Cytotoxic Chemotherapy Drugs are classified according to the BC Cancer Drug Manual Monographs, unless otherwise specified (see asterisks). Subclassifications are in brackets where applicable. Alkylating Agents have reactive groups (usually alkyl) that attach to Antimetabolites are structural analogues of naturally occurring molecules DNA or RNA, leading to interruption in synthesis of DNA, RNA, or required for DNA and RNA synthesis. When substituted for the natural body proteins. substances, they disrupt DNA and RNA synthesis. bendamustine (nitrogen mustard) azacitidine (pyrimidine analogue) busulfan (alkyl sulfonate) capecitabine (pyrimidine analogue) carboplatin (platinum) cladribine (adenosine analogue) carmustine (nitrosurea) cytarabine (pyrimidine analogue) chlorambucil (nitrogen mustard) fludarabine (purine analogue) cisplatin (platinum) fluorouracil (pyrimidine analogue) cyclophosphamide (nitrogen mustard) gemcitabine (pyrimidine analogue) dacarbazine (triazine) mercaptopurine (purine analogue) estramustine (nitrogen mustard with 17-beta-estradiol) methotrexate (folate analogue) hydroxyurea pralatrexate (folate analogue) ifosfamide (nitrogen mustard) pemetrexed (folate analogue) lomustine (nitrosurea) pentostatin (purine analogue) mechlorethamine (nitrogen mustard) raltitrexed (folate analogue) melphalan (nitrogen mustard) thioguanine (purine analogue) oxaliplatin (platinum) trifluridine-tipiracil (pyrimidine analogue/thymidine phosphorylase procarbazine (triazine) inhibitor)
    [Show full text]
  • WO 2012/063085 A3 18 May 2012 (18.05.2012) WIPOIPCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2012/063085 A3 18 May 2012 (18.05.2012) WIPOIPCT International Patent Classification: House, Wigan Lane, Wigan WN1 2TB (GB). PALIN, C07D 205/08 (2006.01) C07D 281/06 (2006.01) Ronald [GB/GB]; c/o Redx Pharma Limited, Douglas C07D 209/18 (2006.01) C07D 295/02 (2006.01) Bank House, Wigan Lane, Wigan WN1 2TB (GB). MUR­ C07D 213/60 (2006.01) C07D 307/00 (2006.01) RAY, Neil [GB/GB]; Redx Pharma Limited, Douglas Bank C07D 233/54 (2006.01) C07D 309/32 (2006.01) House, Wigan Lane, Wigan WN1 2TB (GB). LINDSAY, C07D 235/16 (2006.01) C07D 313/04 (2006.01) Derek [GB/GB]; c/o Redx Pharma Limited, Douglas Bank C07D 241/04 (2006.01) C07D 401/04 (2006.01) House, Wigan Lane, Wigan WN 1 2TB (GB). C07D 257/04 (2006.01) C07D 401/12 (2006.01) (74) Agent: HARRISON GODDARD FOOTE; C07D 277/40 (2006.01) Belgrave Hall, Belgrave Street, Leeds, Yorkshire LS2 8DD (GB). (21) International Application Number: PCT/GB2011/052211 (81) Designated States (unless otherwise indicated, for every kind of national protection available)·. AE, AG, AL, AM, (22) International Filing Date: AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, 11 November 2011 (11.11.2011) CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, (25) Filing Language: English HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, (26) Publication Language: English KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (30) Priority Data: OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, 1019078.3 11 November2010 (11.11.2010) GB SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, 1019527.9 18 November 2010 (18.11.2010) GB TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]
  • The Nutrition and Food Web Archive Medical Terminology Book
    The Nutrition and Food Web Archive Medical Terminology Book www.nafwa.
    [Show full text]
  • The Biochemistry of Gout: a USMLE Step 1 Study Aid
    The Biochemistry of Gout: A USMLE Step 1 Study Aid BMS 6204 May 26, 2005 Compiled by: Todd Kerensky Elizabeth Ballard Brendan Prendergast Eric Ritchie 1 Introduction Gout is a systemic disease caused by excess uric acid as the result of deficient purine metabolism. Clinically, gout is marked by peripheral arthritis and painful inflammation in joints resulting from deposition of uric acid in joint synovia as monosodium urate crystals. Although gout is the most common crystal-induced arthritis, a condition known as pseudogout can commonly be mistaken for gout in the clinic. Pseudogout results from deposition of calcium pyrophosphatase (CPP) crystals in synovial spaces, but causes nearly identical clinical presentation. Clinical findings Crystal-induced arthritis such as gout and pseudogout differ from other types of arthritis in their clinical presentations. The primary feature differentiating gout from other types of arthritis is the spontaneity and abruptness of onset of inflammation. Additionally, the inflammation from gout and pseudogout are commonly found in a single joint. Gout and pseudogout typically present with Podagra, a painful inflammation of the metatarsal- phalangeal joint of the great toe. However, gout can also present with spontaneous edema and painful inflammation of any other joint, but most commonly the ankle, wrist, or knee. As an exception, a spontaneous painful inflammation in the glenohumeral joint is usually the result of pseudogout. It is important to recognize the clinical differences between gout, pseudogout and other types of arthritis because the treatments differ markedly (Kaplan 2005). Pathophysiology and Treatment of Gout Although gout affects peripheral joints in clinical presentation, it is important to recognize that it is a systemic disorder caused by either overproduction or underexcretion of uric acid.
    [Show full text]
  • Analysis of Tautomeric Equilibrium of the Analogue D(Dinitro-Tc(O))TP During Incorporation by the Klenow Fragment of DNA Polymerase I
    Analysis of Tautomeric Equilibrium of the Analogue d(dinitro-tC(O))TP During Incorporation by the Klenow Fragment of DNA Polymerase I Arielle Baker Monday, April 7th, 2014: 4:00pm Thesis Advisor Robert Kuchta, Ph.D. | Dept. of Chemistry and Biochemistry Committee Members Robert Knight, Ph.D. | Dept. of Chemistry and Biochemistry Jennifer Martin, Ph.D. | Dept. of Molecular, Cellular and Developmental Biology This thesis is submitted in partial fulfillment of the requirements for graduation with honors in the Department of Molecular, Cellular and Developmental Biology at the University of Colorado, Boulder. Acknowledgements My most heartfelt thanks goes to my advisor, mentor and friend Dr. Rob Kuchta, for his unending patience and willingness to share his knowledge with me, as well as his continued support for my pursuit of science. I would like to thank my friends in the Kuchta lab, and to some colleagues in particular. Thank you to Dr. Andrew Olsen and Dr. Gudrun Stengel for being the very first overseers of my work, and for not scaring me off. Thanks to Dr. Ashwani Vashishtha, Dr. Joshua Gosling, Sarah Dickerson, Clarinda Hougen and Taylor Minckley for the many laughs we’ve shared benchside, and for answering even the most insignificant of questions. Thank you to my committee members, Dr. Jennifer Martin and Dr. Rob Knight, for their assistance in navigating my thesis work. My work would not have been possible without generous funding from the National Institutes of Health. Thank you to my dear friend Makenna Morck for always being available to discuss biochemistry with me in the wee hours of the morning.
    [Show full text]
  • DNMT-Focused Library
    DNMT-focused library Medicinal and Computational Chemistry Dept., ChemDiv, Inc., 6605 Nancy Ridge Drive, San Diego, CA 92121 USA, Service: +1 877 ChemDiv, Tel: +1 858-794-4860, Fax: +1 858-794-4931, Email: [email protected] DNA methylation is an essential intracellular event critically involved in a wide range of endogenous processes that play significant role in the foundation of genetic phenomena and diseases. Such epigenetic modifications play a key role in the patho-physiology of many tumors and the current use of agents targeting epigenetic changes has become a topic of intense interest in cancer research. Particularly, DNA methyltransferase (DNMT) is a crucial enzyme for cytosine methylation in DNA [1]. In mammals, DNMTs can be broadly divided into two functional families (DNMT1 and DNMT3). All mammalian DNA methyltransferases are encoded by their own single gene, and consisted of catalytic and regulatory regions (except DNMT2). Via interactions between functional domains in the regulatory or catalytic regions and other adaptors or cofactors, DNA methyltransferases can be localized at selective areas (specific DNA/nucleotide sequence) and linked to specific chromosome status (euchromatin/heterochromatin, various histone modification status). With assistance from UHRF1 and DNMT3L or other factors in DNMT1 and DNMT3a/ DNMT3b, mammalian DNA methyltransferases can be recruited, and then specifically bind to hemimethylated and unmethylated double-stranded DNA sequence to maintain and de novo setup patterns for DNA methylation. Complicated
    [Show full text]
  • Purine Analogue 6-Methylmercaptopurine Riboside Inhibits Early and Late Phases of the Angiogenesis Process1
    [CANCER RESEARCH 59, 2417–2424, May 15, 1999] Purine Analogue 6-Methylmercaptopurine Riboside Inhibits Early and Late Phases of the Angiogenesis Process1 Marco Presta,2 Marco Rusnati, Mirella Belleri, Lucia Morbidelli, Marina Ziche, and Domenico Ribatti Unit of General Pathology and Immunology, Department of Biomedical Sciences and Biotechnology, School of Medicine, University of Brescia, 25123 Brescia [M. P., M. R., M. B.]; Centro Interuniversitario di Medicina Molecolare e Biofisica Applicata (C.I.M.M.B.A.), Department of Pharmacology, University of Florence, 50134 Florence [L. M., M. Z.]; and Institute of Human Anatomy, Histology, and General Embryology, University of Bari, 70124 Bari [D. R.], Italy ABSTRACT purine synthesis and purine interconversion reactions, and their me- tabolites can be incorporated into nucleic acids (3). 6-TG3 and Angiogenesis has been identified as an important target for antineo- 6-MMPR also alter membrane glycoprotein synthesis (4). Purine plastic therapy. The use of purine analogue antimetabolites in combina- analogues can act as protein kinase inhibitors; 6-MMPR is a highly tion chemotherapy of solid tumors has been proposed. To assess the possibility that selected purine analogues may affect tumor neovascular- effective inhibitor of nerve growth factor-activated protein kinase N ization, 6-methylmercaptopurine riboside (6-MMPR), 6-methylmercapto- (5), and 2-AP inhibits proto-oncogene and IFN gene transcription (6). purine, 2-aminopurine, and adenosine were evaluated for the capacity to Moreover, purine analogues have found application in immunosup- inhibit angiogenesis in vitro and in vivo. 6-MMPR inhibited fibroblast pressive and antiviral therapy (3). At present, 6-MMP and 6-TG growth factor-2 (FGF2)-induced proliferation and delayed the repair of continue to be used mainly in the management of acute leukemia.
    [Show full text]
  • Protoporphyrin IX Is a Dual Inhibitor of P53/MDM2 and P53/MDM4
    Jiang et al. Cell Death Discovery (2019) 5:77 https://doi.org/10.1038/s41420-019-0157-7 Cell Death Discovery ARTICLE Open Access Protoporphyrin IX is a dual inhibitor of p53/ MDM2 and p53/MDM4 interactions and induces apoptosis in B-cell chronic lymphocytic leukemia cells Liren Jiang 1,2,3, Natasha Malik 1, Pilar Acedo 1 and Joanna Zawacka-Pankau1 Abstract p53 is a tumor suppressor, which belongs to the p53 family of proteins. The family consists of p53, p63 and p73 proteins, which share similar structure and function. Activation of wild-type p53 or TAp73 in tumors leads to tumor regression, and small molecules restoring the p53 pathway are in clinical development. Protoporphyrin IX (PpIX), a metabolite of aminolevulinic acid, is a clinically approved drug applied in photodynamic diagnosis and therapy. PpIX induces p53-dependent and TAp73-dependent apoptosis and inhibits TAp73/MDM2 and TAp73/MDM4 interactions. Here we demonstrate that PpIX is a dual inhibitor of p53/MDM2 and p53/MDM4 interactions and activates apoptosis in B-cell chronic lymphocytic leukemia cells without illumination and without affecting normal cells. PpIX stabilizes p53 and TAp73 proteins, induces p53-downstream apoptotic targets and provokes cancer cell death at doses non-toxic to normal cells. Our findings open up new opportunities for repurposing PpIX for treating lymphoblastic leukemia with wild-type TP53. 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; Introduction than women and leukemia incidence in both genders B-cell chronic lymphocytic leukemia (CLL) is one of the increases above the age of 554. most common forms of blood cancers1,2. The incidence of Common chromosomal aberrations in CLL include CLL in the western world is 4.2/100 000 per year.
    [Show full text]
  • De Novo Macrocyclic Peptides Dissect Energy Coupling of a Heterodimeric
    RESEARCH ARTICLE De novo macrocyclic peptides dissect energy coupling of a heterodimeric ABC transporter by multimode allosteric inhibition Erich Stefan1†, Richard Obexer2†, Susanne Hofmann1, Khanh Vu Huu3, Yichao Huang2, Nina Morgner3, Hiroaki Suga2*, Robert Tampe´ 1* 1Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt, Germany; 2Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan; 3Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Frankfurt, Germany Abstract ATP-binding cassette (ABC) transporters constitute the largest family of primary active transporters involved in a multitude of physiological processes and human diseases. Despite considerable efforts, it remains unclear how ABC transporters harness the chemical energy of ATP to drive substrate transport across cell membranes. Here, by random nonstandard peptide integrated discovery (RaPID), we leveraged combinatorial macrocyclic peptides that target a heterodimeric ABC transport complex and explore fundamental principles of the substrate translocation cycle. High-affinity peptidic macrocycles bind conformationally selective and display potent multimode inhibitory effects. The macrocycles block the transporter either before or after unidirectional substrate export along a single conformational switch induced by ATP binding. Our study reveals mechanistic principles of ATP binding, conformational switching, and energy *For correspondence: transduction for substrate transport of ABC export
    [Show full text]
  • Mechanisms for the Inhibition of DNA Methyltransferases by Tea Catechins and Bioflavonoids
    Molecular Pharmacology Fast Forward. Published on July 21, 2005 as DOI: 10.1124/mol.104.008367 Molecular PharmacologyThis article has Fastnot been Forward. copyedited Publishedand formatted. Theon finalJuly version 21, 2005 may differ as doi:10.1124/mol.104.008367from this version. MOL 8367 Mechanisms for the Inhibition of DNA Methyltransferases by Tea Catechins and Bioflavonoids Downloaded from Won Jun Lee, Joong-Youn Shim and Bao Ting Zhu1 Department of Basic Pharmaceutical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA (W.J.L., B.T.Z.) molpharm.aspetjournals.org and J. L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707 (J.-Y.S.) at ASPET Journals on September 27, 2021 1 Copyright 2005 by the American Society for Pharmacology and Experimental Therapeutics. Molecular Pharmacology Fast Forward. Published on July 21, 2005 as DOI: 10.1124/mol.104.008367 This article has not been copyedited and formatted. The final version may differ from this version. MOL 8367 Running title: Modulation of DNA methylation by dietary polyphenols Corresponding author: Bao Ting Zhu, Ph.D. Frank and Josie P. Fletcher Professor of Pharmacology and an American Cancer Society Research Scholar, and to whom requests for reprints should be addressed at the Department of Basic Pharmaceutical Sciences, College of Pharmacy, University of South Carolina, Room 617 of Coker Life Sciences Building, 700 Sumter Street, Columbia, SC 29208 (USA). PHONE: 803-777-4802; FAX: 803-777-8356; E-MAIL: [email protected] Number of text pages : 34 Downloaded from Number of tables : 2 Number of figures : 10 Number of references : 39 molpharm.aspetjournals.org Number of words in abstract : 229 Number of words in introduction : 458 Number of words in discussion : 1567 at ASPET Journals on September 27, 2021 2 Molecular Pharmacology Fast Forward.
    [Show full text]
  • Characterization of Timed Changes in Hepatic Copper Concentrations, Methionine Metabolism, Gene Expression, and Global DNA Methylation in the Jackson Toxic Milk Mouse Model Of
    Int. J. Mol. Sci. 2014, 15, 8004-8023; doi:10.3390/ijms15058004 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Article Characterization of Timed Changes in Hepatic Copper Concentrations, Methionine Metabolism, Gene Expression, and Global DNA Methylation in the Jackson Toxic Milk Mouse Model of Wilson Disease Anh Le 1, Noreene M. Shibata 2, Samuel W. French 3, Kyoungmi Kim 4, Kusum K. Kharbanda 5, Mohammad S. Islam 6, Janine M. LaSalle 7, Charles H. Halsted 2, Carl L. Keen 1 and Valentina Medici 2,* 1 Department of Nutrition, University of California Davis, 3135 Meyer Hall, One Shields Avenue, Davis, CA 95616, USA; E-Mails: [email protected] (A.L.); [email protected] (C.L.K.) 2 Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of California Davis, 4150 V Street, Suite 3500, Sacramento, CA 95817, USA; E-Mails: [email protected] (N.M.S.); [email protected] (C.H.H.) 3 Department of Pathology, UCLA/Harbor Medical Center, 1000 West Carson Street, Torrance, CA 90502, USA; E-Mail: [email protected] 4 Department of Public Health Sciences, Division of Biostatistics, University of California Davis, One Shields Avenue, Med-Sci 1C, Davis, CA 95616, USA; E-Mail: [email protected] 5 Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, VA Medical Center R-151, 4101 Woolworth Avenue, Omaha, NE 68105, USA; E-Mail: [email protected] 6 Department of Medical Microbiology and Immunology, University of California Davis, One Shields Avenue, Tupper Hall, Davis, CA 95616, USA; E-Mail: [email protected] 7 Department of Medical Microbiology and Immunology Genome Center, and MIND Institute, University of California Davis, One Shields Avenue, Tupper Hall, Davis, CA 95616, USA; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-916-734-3751; Fax: +1-916-734-7908.
    [Show full text]