Inglés AC27 Doc. 25.2 CONVENCIÓN SOBRE EL COMERCIO

Total Page:16

File Type:pdf, Size:1020Kb

Inglés AC27 Doc. 25.2 CONVENCIÓN SOBRE EL COMERCIO Idioma original: inglés AC27 Doc. 25.2 CONVENCIÓN SOBRE EL COMERCIO INTERNACIONAL DE ESPECIES AMENAZADAS DE FAUNA Y FLORA SILVESTRES ____________ Vigésimo séptima reunión del Comité de Fauna Veracruz (México), 28 de abril – 3 de mayo de 2014 Interpretación y aplicación de la Convención Comercio y conservación de especies Nomenclatura normalizada NOMENCLATURA REVISADA PARA POICEPHALUS ROBUSTUS Y CORDYLUS 1. Este documento ha sido preparado por la Autoridad Científica de Sudáfrica*. 2. El informe adjunto sobre la sistemática y filogeografía del lorito robusto (Coetzer et al.) se inscribe en el marco siguiente: a) La nomenclatura actual adoptada por la CITES para Poicephalus robustus no está actualizada. Siguiendo esta taxonomía obsoleta, el lorito robusto, especie endémica y en peligro de Sudáfrica, está siendo actualmente objeto de comercio conjuntamente con P. r. suahelicus, lo que le dificulta la acción de conservación en Sudáfrica y el control del comercio de especímenes del lorito robusto. b) Se pide al Comité de Fauna que examine la nomenclatura revisada actualmente utilizada por la Unión Internacional de Ornitólogos y BirdLife Sudáfrica y recomiende que sea adoptada para los Apéndices y las listas de referencia de la CITES. 3. La publicación adjunta de Stanley et al. (2011) se inscribe en el marco siguiente: a) Una revisión taxonómica de la familia de lagartos subsahariana Cordylidae tuvo como resultado que las especies incluidas en el Apéndice II de la CITES dentro del género Cordylus ha sido transferida a los géneros Smaug, Ninurta, Pseudocordylus, Ouroborus, Karusasaurus, Namazonorus y Hemicordylus. b) Se puede generar confusión cuando los operadores comerciales utilicen los viejos y nuevos nombres. Las especies exportadas a partir de Sudáfrica incluyen Cordylus cataphractus (ahora Ouroborus cataphractus), Cordylus cordylus, Cordylus giganteus (ahora Smaug giganteus) y Cordylus niger. c) Se pide al Comité de Fauna que examine la nomenclatura revisada y recomiende que se actualicen de la manera correspondiente los Apéndices y listas de referencia de la CITES para garantizar que Autoridades Administrativas CITES puedan supervisar adecuadamente todos los especímenes que son objeto de comercio internacional. * Las denominaciones geográficas empleadas en este documento no implican juicio alguno por parte de la Secretaría CITES o del Programa de las Naciones Unidas para el Medio Ambiente sobre la condición jurídica de ninguno de los países, zonas o territorios citados, ni respecto de la delimitación de sus fronteras o límites. La responsabilidad sobre el contenido del documento incumbe exclusivamente a su autor. AC27 Doc. 25.2 – p. 1 AC27 Doc. 25.2 Anexo 1 Informe intermedio de proyecto al Instituto Nacional de Sudáfrica para la Biodiversidad Tesis doctoral: Sistemática y filogeografía del lorito robusto (Poicephalus robustus) W.G. Coetzer, C.T. Downs, M.R. Perrin and S. Willows-Munro Escuela de Ciencias de la Vida, Universidad de KwaZulu-Natal, Pietermaritzburg Introducción El lorito robusto (Poicephalus robustus) es endémico de Sudáfrica y su presencia se limita a los bosques Afromontane del Cabo Oriental y de las provincias de KwaZulu-Natal con vestigios de poblaciones en la provincia oriental de Mpumalanga y la provincia septentrional de Limpopo en Sudáfrica (Wirminghaus 1997). La distribución histórica de estos loritos se ha reducido drásticamente, especialmente en la parte meridional de KwaZulu-Natal y a lo largo de los escarpes de Mpumalanga (Downs 2005; Symes et al. 2004; Wirminghaus et al. 2000). Durante los años 1950 se observaron grandes bandadas de loritos robustos (Symes and Downs 2002), pero las poblaciones de este loro han estado disminuyendo a lo largo del último siglo (Downs et al. 2013). Los avistamientos ahora generalmente sólo tiene lugar cuando los loros se encuentran en situación de escasez de alimentos durante la cual se agrupan en huertos agrícolas de cultivo de pacanas (Downs et al. 2013). Se han atribuido varios factores a la disminución de la población, entre los que se incluyen la pérdida de hábitat y la enfermedad del pico y las plumas de los psitaciformes (Wirminghaus et al. 1999; Wirminghaus et al. 2000). Aunque muchos autores anteriores (Clancey 1997; Perrin 2005; Wirminghaus et al. 2002), basándose en datos morfológicos, ecológicos y comportamentales, han sugerido que el lorito robusto debería ser considerado como una especie diferente, actualmente éste no ha sido reconocido por la Unión Internacional para la Conservación de la Naturaleza (UICN) como una especie diferente de P.r. suahelicus de África central y meridional. Ambos son considerados como subespecies de Poicephalus robustus. Estos dos taxa, conjuntamente con P.r. fuscicollis de África occidental pertenecen al complejo de especies Poicephalus robustus (Wirminghaus et al. 2002). Poicephalus robustus ha sido clasificada como "de menor preocupación" por la UICN. Sin embargo, el lorito robusto ha sido considerado como un taxón independiente por BirdLife Sudáfrica y reúne las condiciones para una clasificación como "en peligro". El lorito robusto ha sido incluido en el Apéndice II de la Convención sobre el Comercio Internacional de Especies Amenazadas de Fauna y Flora Silvestres (CITES) dentro del orden de los psitaciformes. Sin embargo, el control del comercio internacional del lorito robusto se ve dificultado por el hecho de que su comercio no se maneja y notifica separadamente del de P.r. suahelicus y P.r. fuscicollis. El hecho de que se reconozca como una especie independiente ayudaría al control del comercio tanto legal como ilegal y de las extracciones en el medio silvestre del lorito robusto El objetivo de este estudio es investigar las relaciones filogenéticas entre el lorito robusto (P. r. r ob us t us ) y los otros dos miembros del complejo de especies Poicephalus robustus. Se utilizó un conjunto de ocho marcadores microsatélites, que habían sido caracterizados anteriormente para el lorito robusto (Pillay et al. 2010), con el objetivo de realizar una comparación genética entre P.r. rob ustus, P.r. suahelicus y P.r. fuscicollis. Materiales y métodos Muestreo y extracción del ADN Para el análisis genético se recogieron un total de 77 muestras de las tres subespecies de P. robustus (48 de P. r. r obust us, 19 de P.r. suahelicus y 10 de P.r. fuscicollis). Estas muestras incluían tanto aves criadas en cautividad como capturadas en el medio silvestre (Tabla 1). 40 de las muestras de lorito robusto fueron entregadas por la Universidad de Ciudad del Cabo y habían sido tomadas en dos lugares del Cabo Oriental (30 en Fort Hare y 10 en King William’s Town). Otras ocho muestras de lorito robusto procedían de loros muertos en la región de Creighton en la zona de KwaZulu-Natal. Las muestras de P.r. suahelicus y P. r. fuscicollis eran todas muestras de sangre recogidas durante un estudio realizado en la Universidad de KwaZulu-Natal. También se utilizó una muestra de un ave híbrida de P. robustus x P.f. suahelicus criada en cautividad utilizando una tarjeta Whatman™ FTA™ Elute con protocolos normalizados. El espécimen híbrido fue añadido para ver si era posible identificar a un híbrido con la prueba de clasificación utilizada. Se utilizó el kit NucleoSpin® Tissue (Macherey-Nagel) para la extracción del ADN a partir de las muestras de sangre y tejidos siguiendo los protocolos del fabricante. La extracción del ADN a partir de las tarjetas FTA se AC27 Doc. 25.2 – p. 2 realizó siguiendo el protocolo del fabricante y el ADN extraído fue eluido en 30 μl de agua destilada (dH2O). Todos los ADN extraídos fueron almacenados a -20 °C. Amplificación de microsatélites y análisis Se seleccionaron ocho loci microsatélites a partir de una serie de marcadores caracterizadas anteriormente por Pillay et al. (2010). La amplificación se realizó en tres reacciones multiplex (Tabla 2). El kit KAPA2G™ Fast Multiplex PCR (KAPA Biosystems) fue utilizado en reacciones de 10 μl. Las reacciones PCR estuvieron compuestas por una mezcla de KAPA2G Fast Multiplex de 5 μl, 0.2 μM de cada iniciador, 0.8 μl de plantilla de ADN, y 3 μl de dH2O para los Multiplex 1 y 3, y 3.4 μl de dH2O para el Multiplex 2. Se utilizaron los siguientes parámetros del ciclo para la PCR: 94°C durante 4 min como paso inicial de desnaturalización, 30 ciclos a 94°C durante 15 segundos, 60°C durante 30 min, 72°C durante 30 min, con un paso final de elongación a 72°C durante 10 min y una retención a10°C. Los productos amplificados fueron enviados al Laboratorio Central de Analítica de la Universidad de Stellenbosch (Sudáfrica) para el análisis de los fragmentos. Se utilizó la aplicación informática Gene Marker® v2.4.0 (Soft Genetics) para la puntuación del genotipo. La frecuencia de alelos nulos fue determinada con la aplicación informática FreeNA (Chapuis y Estoup 2007). El análisis de la estructura de población se realizó con el programa informático Structure v2.3 (Pritchard et al. 2010). Este programa utiliza un marco bayesiano para asignar individuos a conjuntos/grupos con individuos genéticamente similares. Se seleccionó una duración de 1,000,000 réplicas de cadena Markov Monte Carlo tras una fase de prueba preliminar de 100,000 iteraciones y el número propuesto de conjuntos (K) con valores de 1 a 10. El modelo de frecuencia de alelos correlacionado fue seleccionado de manera que se pudiera detectar la ascendencia común entre las subespecies. Se seleccionó el modelo de ascendencia sin mezcla partiendo del supuesto de que cada individuo del que se tomó la muestra procedía o bien de una subespecie o de la otra. Pritchard et al. (2010) sugieren que el modelo sin mezcla es más conveniente para detectar estructuras genéticas sutiles. Se utilizó el recolector STRUCTURE (Earl 2009) para estimar el número óptimo de grupos genéticos utilizando la metodología establecida por Evanno et al. (2005). Las estimaciones de los valores FST y el número de alelos privados se calculó utilizando v3.5 (Excoffier et al.
Recommended publications
  • Herpetofaunal Survey of the Ongeluksnek (Malekgalonyane) Nature Reserve in the Foothills of the Drakensberg, Eastern Cape Province, South Africa
    Herpetology Notes, volume 13: 717-730 (2020) (published online on 25 August 2020) Herpetofaunal survey of the Ongeluksnek (Malekgalonyane) Nature Reserve in the foothills of the Drakensberg, Eastern Cape Province, South Africa Werner Conradie1,2,* Brian Reeves3, Sandile Mdoko3, Lwandiso Pamla3, and Oyama Gxabhu3 Abstract. The results of a herpetofaunal survey of Ongeluksnek Nature Reserve, Eastern Cape Province, South Africa are presented here. Combination of visual encounter survey methods and standard Y-shape trap arrays were used to conduct the survey. A total of 26 species (eight amphibians and 18 reptiles) were recorded, representing 29 quarter-degree grid cell records, of which 62% represented the first records for these units. Furthermore, we document the presence of three species of snakes (Crotaphopeltis hotamboeia, Hemachatus haemachatus and Homoroselaps lacteus) for the first time for the whole degree square of 3028 (approx. 100 km2). This study highlights the need to survey poorly known regions to enable us to understand and document the full distributional extent of species. We also discuss the impact of uncontrolled fires on the absence of grassland specialised species during our survey. Keywords. Amphibia, Reptilia, karroid, conservation, biodiversity, fire Introduction has been done in the southern and western regions (e.g. Branch and Braack, 1987), while the northern and The herpetofaunal richness of South Africa is central areas associated with the former homelands of considered to be amongst the highest in the world the Ciskei and Transkei remained poorly surveyed. In (Branch, 1998; Bates et al., 2014; Du Preez and recent years a series of rapid biodiversity studies has Carruthers, 2017; Tolley et al., 2019).
    [Show full text]
  • Freshwater Fishes
    WESTERN CAPE PROVINCE state oF BIODIVERSITY 2007 TABLE OF CONTENTS Chapter 1 Introduction 2 Chapter 2 Methods 17 Chapter 3 Freshwater fishes 18 Chapter 4 Amphibians 36 Chapter 5 Reptiles 55 Chapter 6 Mammals 75 Chapter 7 Avifauna 89 Chapter 8 Flora & Vegetation 112 Chapter 9 Land and Protected Areas 139 Chapter 10 Status of River Health 159 Cover page photographs by Andrew Turner (CapeNature), Roger Bills (SAIAB) & Wicus Leeuwner. ISBN 978-0-620-39289-1 SCIENTIFIC SERVICES 2 Western Cape Province State of Biodiversity 2007 CHAPTER 1 INTRODUCTION Andrew Turner [email protected] 1 “We live at a historic moment, a time in which the world’s biological diversity is being rapidly destroyed. The present geological period has more species than any other, yet the current rate of extinction of species is greater now than at any time in the past. Ecosystems and communities are being degraded and destroyed, and species are being driven to extinction. The species that persist are losing genetic variation as the number of individuals in populations shrinks, unique populations and subspecies are destroyed, and remaining populations become increasingly isolated from one another. The cause of this loss of biological diversity at all levels is the range of human activity that alters and destroys natural habitats to suit human needs.” (Primack, 2002). CapeNature launched its State of Biodiversity Programme (SoBP) to assess and monitor the state of biodiversity in the Western Cape in 1999. This programme delivered its first report in 2002 and these reports are updated every five years. The current report (2007) reports on the changes to the state of vertebrate biodiversity and land under conservation usage.
    [Show full text]
  • Selected Body Temperature and Thermoregulatory Behavior in the Sit-And-Wait Foraging Lizard Pseudocordylus Melanotus Melanotus
    Herpetological Monographs, 23 2009, 108–122 E 2009 by The Herpetologists’ League, Inc. SELECTED BODY TEMPERATURE AND THERMOREGULATORY BEHAVIOR IN THE SIT-AND-WAIT FORAGING LIZARD PSEUDOCORDYLUS MELANOTUS MELANOTUS 1,2 SUZANNE MCCONNACHIE ,GRAHAM J. ALEXANDER, AND MARTIN J. WHITING School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Private Bag 3, Wits, 2050, South Africa ABSTRACT: We investigated the thermoregulatory abilities and behavior of Pseudocordylus melanotus melanotus (Drakensberg crag lizard) in terms of the relationship between the operative temperature (Te), selected temperature (Tsel), set-point range (Tset) and field active body temperature (field Tsel), exposure to low temperature, body posture and activity. The Te range for P. m. melanotus was about 58 C (23.20 C in winter to 54.94 C in summer). In a laboratory thermal gradient, in a setting that is independent of ecological costs or thermal constraints, lizards maintained Tset (defined as the interquartile range of Tsel, after Hertz et al., 1993) between 29.00 6 0.36 C and 31.78 6 0.16 C in winter and 29.61 6 0.28 C and 32.47 6 0.18 C in summer. The mean Tsel was 30.08 6 0.14 C in winter and 30.99 6 0.11 C in summer. In the field, however, lizards achieved significantly lower Tb, which suggests that the thermal environment limited the Tb that lizards were able to achieve. Lizards were active for significantly longer and selected significantly higher Tb in summer than in winter. During winter, lizards spent a significant amount of time at Tb below their lower critical limiting temperature (defined by loss of righting).
    [Show full text]
  • Phylogenetic Perspectives on Viviparity, Gene-Tree Discordance, and Introgression in Lizards (Squamata)
    Phylogenetic Perspectives on Viviparity, Gene-Tree Discordance, and Introgression in Lizards (Squamata) Item Type text; Electronic Dissertation Authors Lambert, Shea Maddock Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction, presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 07/10/2021 08:50:17 Link to Item http://hdl.handle.net/10150/630229 1 PHYLOGENETIC PERSPECTIVES ON VIVIPARITY, GENE-TREE DISCORDANCE, AND INTROGRESSION IN LIZARDS (SQUAMATA). by Shea Maddock Lambert ____________________________ Copyright © Shea Maddock Lambert 2018 A Dissertation Submitted to the Faculty of the DEPARTMENT OF ECOLOGY AND EVOLUTIONARY BIOLOGY In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 2 THEUNIVERSITY OF ARIZONA GRADUATE COLLEGE Asmembers of the Dissertation Committee, we certify that we have read the dissertation prepared by Shea M. Lambert, titled "Phylogenetic perspectives on viviparity,gene-tree discordance, and introgressionin lizards {Squamata)" and recomme11dthat it be accepted as fulfillingthe dissertation requirem�t for the Degree of Doctor of Philosophy. _.c.---� ---------Date: May 21, 2018 _wJohn__ . �e� --�_:-_:-__:_ W_ -----�----'-------------------Date: May 21, 2018 Michael Barker M ichael ( s��t=t ��A". =----.�+o/-�i � -\.\----�--------._______ Date: May 21, 2018 Noa�man Final approval and acceptance· of this dissertation is contingent uporithe candidate's submission of the final copies of the· dissertation to the Graduate College. I hereby certify that I have read this dissertation prepared under my ditettion and recommend that it be accepted as fulfillin_;the �issertation requirement.
    [Show full text]
  • Foraging Modes of Cordyliform Lizards
    S. AfT. J. Zoo!. 1997.32(1) 9 Foraging modes of cordyliform lizards William E. Cooper, Jr.', Martin J. Whiting' and Johannes H. Van Wyk Department of Zoology, University of Stellenbosch. Stellenbosch. 7600, South Africa Received 27 May 1996; accepted 3 September 1996 The first quantitative data on foraging mode in the cordyliform lizards reveal different foraging behaviours between and within families. All species of cordylids studied (four Cordylus, two Pseudocordylus. and one P/aty­ saurus) are ambush foragers. However, the species of Cordy/us and Pseudocordylus microlepidotus are the most extreme ambushers. These species spent a significantly lower per cent time moving than did all of the other species studied and made significantly fewer movements per minute than Platysaurus capensis and ger­ rhosaurids. In addition, P. microlepidotus made significantly fewer movements per minute than did its congener Pseudocordylus capensis. Possible reasons for the high number of movements per minute in Platysaurus cap­ ensis are discussed. Very limited observations of two gerrhosaurid species show that Cordylosaurus subtBssel­ latus is an active forager and GBrrhosaurus validus forages actively at least some of the time. A tentative hypothesis of the evolution of cordyliform foraging behaviour based on very limited data hints that active foraging is plesiomorphic in the Gerrhosaurini and further that gerrhosaurids may have retained active foraging from the common ancestor of Scincidae and Cordyliformes. Somewhat stronger data suggest that ambush foraging arose in the common ancestor of Cordylidae or Cordylinae. Further study is needed to trace inter- and intrage­ neric changes in foraging mode in cordylids. Current addresses: 1 Department of Biology.
    [Show full text]
  • Nyika and Vwaza Reptiles & Amphibians Checklist
    LIST OF REPTILES AND AMPHIBIANS OF NYIKA NATIONAL PARK AND VWAZA MARSH WILDLIFE RESERVE This checklist of all reptile and amphibian species recorded from the Nyika National Park and immediate surrounds (both in Malawi and Zambia) and from the Vwaza Marsh Wildlife Reserve was compiled by Dr Donald Broadley of the Natural History Museum of Zimbabwe in Bulawayo, Zimbabwe, in November 2013. It is arranged in zoological order by scientific name; common names are given in brackets. The notes indicate where are the records are from. Endemic species (that is species only known from this area) are indicated by an E before the scientific name. Further details of names and the sources of the records are available on request from the Nyika Vwaza Trust Secretariat. REPTILES TORTOISES & TERRAPINS Family Pelomedusidae Pelusios rhodesianus (Variable Hinged Terrapin) Vwaza LIZARDS Family Agamidae Acanthocercus branchi (Branch's Tree Agama) Nyika Agama kirkii kirkii (Kirk's Rock Agama) Vwaza Agama armata (Eastern Spiny Agama) Nyika Family Chamaeleonidae Rhampholeon nchisiensis (Nchisi Pygmy Chameleon) Nyika Chamaeleo dilepis (Common Flap-necked Chameleon) Nyika(Nchenachena), Vwaza Trioceros goetzei nyikae (Nyika Whistling Chameleon) Nyika(Nchenachena) Trioceros incornutus (Ukinga Hornless Chameleon) Nyika Family Gekkonidae Lygodactylus angularis (Angle-throated Dwarf Gecko) Nyika Lygodactylus capensis (Cape Dwarf Gecko) Nyika(Nchenachena), Vwaza Hemidactylus mabouia (Tropical House Gecko) Nyika Family Scincidae Trachylepis varia (Variable Skink) Nyika,
    [Show full text]
  • South Africa Mega Birding Tour I 6Th to 30Th January 2018 (25 Days) Trip Report
    South Africa Mega Birding Tour I 6th to 30th January 2018 (25 days) Trip Report Aardvark by Mike Bacon Trip report compiled by Tour Leader: Wayne Jones Rockjumper Birding Tours View more tours to South Africa Trip Report – RBT South Africa - Mega I 2018 2 Tour Summary The beauty of South Africa lies in its richness of habitats, from the coastal forests in the east, through subalpine mountain ranges and the arid Karoo to fynbos in the south. We explored all of these and more during our 25-day adventure across the country. Highlights were many and included Orange River Francolin, thousands of Cape Gannets, multiple Secretarybirds, stunning Knysna Turaco, Ground Woodpecker, Botha’s Lark, Bush Blackcap, Cape Parrot, Aardvark, Aardwolf, Caracal, Oribi and Giant Bullfrog, along with spectacular scenery, great food and excellent accommodation throughout. ___________________________________________________________________________________ Despite havoc-wreaking weather that delayed flights on the other side of the world, everyone managed to arrive (just!) in South Africa for the start of our keenly-awaited tour. We began our 25-day cross-country exploration with a drive along Zaagkuildrift Road. This unassuming stretch of dirt road is well-known in local birding circles and can offer up a wide range of species thanks to its variety of habitats – which include open grassland, acacia woodland, wetlands and a seasonal floodplain. After locating a handsome male Northern Black Korhaan and African Wattled Lapwings, a Northern Black Korhaan by Glen Valentine
    [Show full text]
  • Volume 2. Animals
    AC20 Doc. 8.5 Annex (English only/Seulement en anglais/Únicamente en inglés) REVIEW OF SIGNIFICANT TRADE ANALYSIS OF TRADE TRENDS WITH NOTES ON THE CONSERVATION STATUS OF SELECTED SPECIES Volume 2. Animals Prepared for the CITES Animals Committee, CITES Secretariat by the United Nations Environment Programme World Conservation Monitoring Centre JANUARY 2004 AC20 Doc. 8.5 – p. 3 Prepared and produced by: UNEP World Conservation Monitoring Centre, Cambridge, UK UNEP WORLD CONSERVATION MONITORING CENTRE (UNEP-WCMC) www.unep-wcmc.org The UNEP World Conservation Monitoring Centre is the biodiversity assessment and policy implementation arm of the United Nations Environment Programme, the world’s foremost intergovernmental environmental organisation. UNEP-WCMC aims to help decision-makers recognise the value of biodiversity to people everywhere, and to apply this knowledge to all that they do. The Centre’s challenge is to transform complex data into policy-relevant information, to build tools and systems for analysis and integration, and to support the needs of nations and the international community as they engage in joint programmes of action. UNEP-WCMC provides objective, scientifically rigorous products and services that include ecosystem assessments, support for implementation of environmental agreements, regional and global biodiversity information, research on threats and impacts, and development of future scenarios for the living world. Prepared for: The CITES Secretariat, Geneva A contribution to UNEP - The United Nations Environment Programme Printed by: UNEP World Conservation Monitoring Centre 219 Huntingdon Road, Cambridge CB3 0DL, UK © Copyright: UNEP World Conservation Monitoring Centre/CITES Secretariat The contents of this report do not necessarily reflect the views or policies of UNEP or contributory organisations.
    [Show full text]
  • Literature Cited in Lizards Natural History Database
    Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica.
    [Show full text]
  • Sexual Selection and Signalling in the Lizard Platysaurus Minor
    SEXUAL SELECTION AND SIGNALLING IN THE LIZARD PLATYSAURUS MINOR Belinda Ann Lewis A dissertation submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Master of Science. Johannesburg, 2006 I declare that this dissertation is my own unaided work. It is being submitted for the degree of Master of Science in the University of the Witwatersrand, Johannesburg. It has not been submitted before for any degree or examination in any other University. ________________________ Belinda A. Lewis 6th day of December 2006 i ABSTRACT Sexual selection may influence aspects of male morphology associated with territoriality, female choice, aggression and contest success. Attributes that are most commonly selected for include body size, condition, weaponry, endurance and bright coloration. I investigated the relationships between morphology, use of space and home range quality, and access to females. Specifically, I examined the relationships between colour, body size and condition, and whether morphology could predict aggression or contest success. Colour spectral data were analyzed using both traditional measures of colour (hue, chroma, brightness) and principal components. Males with darker, more saturated chests, and more saturated throats, had larger home ranges. Home range quality, as determined by refuge number and prey availability, was associated with blue chests and blue throats and chests, respectively. Males with larger home ranges had higher numbers of associated females and spent more time courting females. Larger males in better condition had darker, more saturated chests. Males in better body condition were also more aggressive. There was a consistent trend for larger males to win more contests, but this relationship was only significant in analyses using traditional measures of colour.
    [Show full text]
  • Reptiles and Amphibians of the Goegap Nature Reserve
    their time underground in burrows. These amphibians often leave their burrows after heavy rains that are seldom. Reptiles And Amphibians Of The There are reptiles included in this report, which don’t occur here in Goegap but at the Augrabies Falls NP. So you can find here also the Nile monitor and the flat liz- Goegap Nature Reserve ard. Measuring reptiles By Tanja Mahnkopf In tortoises and terrapins the length is measured at the shell. Straight along the mid- line of the carapace. The SV-Length is the length of head and body (Snout to Vent). In lizards it easier to look for this length because their tail may be a regenerated one Introduction and these are often shorter than the original one. The length that is mentioned for the The reptiles are an ancient class on earth. The earliest reptile fossils are about 315 species in this report is the average to the maximum length. For the snakes I tried to million years old. During the aeons of time they evolved a great diversity of extinct give the total length because it is often impossible to say where the tail begins and and living reptiles. The dinosaurs and their relatives dominated the earth 150 million the body ends without holding the snake. But there was not for every snake a total years ago. Our living reptiles are remnants of that period or from a period after the length available. dinosaurs were extinct. Except of the chameleons (there are only two) you can find all reptiles in the appen- Obviously it looks like reptiles are not as successful as mammals.
    [Show full text]
  • Description of a New Flat Gecko (Squamata: Gekkonidae: Afroedura) from Mount Gorongosa, Mozambique
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/320043814 Description of a new flat gecko (Squamata: Gekkonidae: Afroedura) from Mount Gorongosa, Mozambique Article in Zootaxa · September 2017 DOI: 10.11646/zootaxa.4324.1.8 CITATIONS READS 2 531 8 authors, including: William R Branch Jennifer Anna Guyton Nelson Mandela University Princeton University 250 PUBLICATIONS 4,231 CITATIONS 7 PUBLICATIONS 164 CITATIONS SEE PROFILE SEE PROFILE Andreas Schmitz Michael Barej Natural History Museum of Geneva Museum für Naturkunde - Leibniz Institute for Research on Evolution and Biodiver… 151 PUBLICATIONS 2,701 CITATIONS 38 PUBLICATIONS 274 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Monitoring and Managing Biodiversity Loss in South-East Africa's Montane Ecosystems View project Ad hoc herpetofauna observations View project All content following this page was uploaded by Jennifer Anna Guyton on 27 September 2017. The user has requested enhancement of the downloaded file. Zootaxa 4324 (1): 142–160 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2017 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4324.1.8 http://zoobank.org/urn:lsid:zoobank.org:pub:B4FF9A5F-94A7-4E75-9EC8-B3C382A9128C Description of a new flat gecko (Squamata: Gekkonidae: Afroedura) from Mount Gorongosa, Mozambique WILLIAM R. BRANCH1,2,13, JENNIFER A. GUYTON3, ANDREAS SCHMITZ4, MICHAEL F. BAREJ5, PIOTR NASKRECKI6,7, HARITH FAROOQ8,9,10,11, LUKE VERBURGT12 & MARK-OLIVER RÖDEL5 1Port Elizabeth Museum, P.O. Box 13147, Humewood 6013, South Africa 2Research Associate, Department of Zoology, Nelson Mandela University, P.O.
    [Show full text]