A Marine Isolate of Bacillus Pumilus Secretes a Pumilacidin Active Against Staphylococcus Aureus
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bacillus Safensis FO-36B and Bacillus Pumilus SAFR-032: a Whole Genome Comparison of Two Spacecraft Assembly Facility Isolates
bioRxiv preprint doi: https://doi.org/10.1101/283937; this version posted April 24, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Bacillus safensis FO-36b and Bacillus pumilus SAFR-032: A Whole Genome 2 Comparison of Two Spacecraft Assembly Facility Isolates 3 Madhan R Tirumalai1, Victor G. Stepanov1, Andrea Wünsche1, Saied Montazari1, 4 Racquel O. Gonzalez1, Kasturi Venkateswaran2, George. E. Fox1§ 5 1Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204-5001. 6 2 Biotechnology & Planetary Protection Group, NASA Jet Propulsion Laboratories, California 7 Institute of Technology, Pasadena, CA, 91109. 8 9 §Corresponding author: 10 Dr. George E. Fox 11 Dept. Biology & Biochemistry 12 University of Houston, Houston, TX 77204-5001 13 713-743-8363; 713-743-8351 (FAX); email: [email protected] 14 15 Email addresses: 16 MRT: [email protected] 17 VGS: [email protected] 18 AW: [email protected] 19 SM: [email protected] 20 ROG: [email protected] 21 KV: [email protected] 22 GEF: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/283937; this version posted April 24, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 23 Keywords: Planetary protection, Bacillus endospores, extreme radiation resistance, peroxide 24 resistance, genome comparison, phage insertions 25 26 Background 27 Microbial persistence in built environments such as spacecraft cleanroom facilities [1-3] is often 28 characterized by their unusual resistances to different physical and chemical factors [1, 4-7]. -
Novel Bacterial Strains Pseudomonas Sp. and Bacillus Sp. Isolated from Petroleum Oil Contaminated Soils for Degradation of Flourene and Phenanthrene
Pollution, 5(3): 657-669, Summer 2019 DOI: 10.22059/poll.2019.274084.571 Print ISSN: 2383-451X Online ISSN: 2383-4501 Web Page: https://jpoll.ut.ac.ir, Email: [email protected] Novel Bacterial Strains Pseudomonas sp. and Bacillus sp. Isolated from Petroleum Oil Contaminated Soils for Degradation of Flourene and Phenanthrene Bharti, V., Gupta, B. and Kaur, J.* UIET, Biotechnology Branch, Panjab University, Chandigarh, P.O. Box 160014, India. Received: 16.01.2019 Accepted: 10.04.2019 ABSTRACT: Flourene and phenanthrene are organic compounds with high hydrophobicity and toxicity. Being recalcitrant in nature they are accumulating in the environment at an alarming concentration, posing serious threat to living beings. Thus in the present study, microorganisms were screened for their ability to degrade these contaminants at high concentrations in least period of time. Two out of fifteen isolates screened showed growth in basal medium containing 25 mg/l of fluorene/phenanthrene as the only carbon source. These selected isolates were acclimatised with step wise increased concentrations of flourene/phenanthrene for 165 days in basal medium. The acclimatised strains were identified and characterised on the basis of their morphological and biochemical characteristics and 16S rRNA gene sequence analysis. Results showed close relatedness of the isolates to Pseudomonas aeruginosa sp. and Bacillus safensis sp. Biodegradation studies carried out with these acclimatised strains at optimum conditions (pH 7 and temperature 30°C) showed 62.44% degradation of fluorene and 54.21% of phenanthrene in 10 days by Pseudomonas sp. VB92, whereas, Bacillus sp. JK17 degraded 43.64% of fluorene and 59.91% of phenanthrene in 12 days, at an initial concentration of 200 mg/l, as determined by HPTLC. -
Suppression of Macrophomina Phaseolina and Rhizoctonia Solani and Yield Enhancement in Peanut
International Journal of ChemTech Research CODEN (USA): IJCRGG, ISSN: 0974-4290, ISSN(Online):2455-9555 Vol.9, No.06 pp 142-152, 2016 Soil application of Bacillus pumilus and Bacillus subtilis for suppression of Macrophomina phaseolina and Rhizoctonia solani and yield enhancement in peanut 1 2 1 Hassan Abd-El-Khair *, Karima H. E. Haggag and Ibrahim E. Elshahawy 1Plant Pathology Department, Agricultural and Biological Research Division, National Research Centre, Giza, Egypt . 2Pest Rearing Department , Central Agricultural Pesticides Laboratory, Agricultural Research Centre, Dokki, Giza, Egypt . Abstract : Macrophomina phaseolina and Rhizoctonia solani were isolated from the root of peanut plants collected from field with typical symptoms of root rot in Beheira governorate, Egypt. The two isolated fungi were able to attack peanut plants (cv. Giza 4) causing damping- off and root rot diseases in the pathogenicity test. Thirty rhizobacteria isolates (Rb) were isolated from the rhizosphere of healthy peanut plants. The inhibition effect of these isolates to the growth of M. phaseolina and R. solani was in the range of 11.1- 88.9%. The effective isolates of Rb 14 , Rb 18 and Rb 28 , which showed a strong antagonistic effect (reached to 88.9) in dual culture against the growth of M. phaseolina and R. solani , were selected and have been identified according the morphological, cultural and biochemical characters as Bacillus pumilus (Rb 14 ), Bacillus subtilis (Rb 18 ) and Bacillus subtilis (Rb 28 ). Control of peanut damping-off and root rot by soil application with these rhizobacteria isolates in addition to two isolates of B. pumilus (Bp) and B. subtilis (Bs) obtained from Plant Pathology Dept., National Research Centre, was attempted in pots and in field trials. -
Characterisation of Bacteria Isolated from the Stingless Bee, Heterotrigona Itama, Honey, Bee Bread and Propolis
Characterisation of bacteria isolated from the stingless bee, Heterotrigona itama, honey, bee bread and propolis Mohamad Syazwan Ngalimat1,2,*, Raja Noor Zaliha Raja Abd. Rahman1,2, Mohd Termizi Yusof2, Amir Syahir1,3 and Suriana Sabri1,2,* 1 Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia 2 Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia 3 Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia * These authors contributed equally to this work. ABSTRACT Bacteria are present in stingless bee nest products. However, detailed information on their characteristics is scarce. Thus, this study aims to investigate the characteristics of bacterial species isolated from Malaysian stingless bee, Heterotrigona itama, nest products. Honey, bee bread and propolis were collected aseptically from four geographical localities of Malaysia. Total plate count (TPC), bacterial identification, phenotypic profile and enzymatic and antibacterial activities were studied. The results indicated that the number of TPC varies from one location to another. A total of 41 different bacterial isolates from the phyla Firmicutes, Proteobacteria and Actinobacteria were identified. Bacillus species were the major bacteria found. Therein, Bacillus cereus was the most frequently isolated species followed by -
Unraveling the Underlying Heavy Metal Detoxification Mechanisms Of
microorganisms Review Unraveling the Underlying Heavy Metal Detoxification Mechanisms of Bacillus Species Badriyah Shadid Alotaibi 1, Maryam Khan 2 and Saba Shamim 2,* 1 Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia; [email protected] 2 Institute of Molecular Biology and Biotechnology (IMBB), Defence Road Campus, The University of Lahore, Lahore 55150, Pakistan; [email protected] * Correspondence: [email protected] Abstract: The rise of anthropogenic activities has resulted in the increasing release of various contaminants into the environment, jeopardizing fragile ecosystems in the process. Heavy metals are one of the major pollutants that contribute to the escalating problem of environmental pollution, being primarily introduced in sensitive ecological habitats through industrial effluents, wastewater, as well as sewage of various industries. Where heavy metals like zinc, copper, manganese, and nickel serve key roles in regulating different biological processes in living systems, many heavy metals can be toxic even at low concentrations, such as mercury, arsenic, cadmium, chromium, and lead, and can accumulate in intricate food chains resulting in health concerns. Over the years, many physical and chemical methods of heavy metal removal have essentially been investigated, but their disadvantages like the generation of chemical waste, complex downstream processing, and the uneconomical cost of both methods, have rendered them inefficient,. Since then, microbial bioremediation, particularly the Citation: Alotaibi, B.S.; Khan, M.; use of bacteria, has gained attention due to the feasibility and efficiency of using them in removing Shamim, S. Unraveling the heavy metals from contaminated environments. Bacteria have several methods of processing heavy Underlying Heavy Metal metals through general resistance mechanisms, biosorption, adsorption, and efflux mechanisms. -
Klaus Et Al., 1997
UC Davis UC Davis Previously Published Works Title Growth of 48 built environment bacterial isolates on board the International Space Station (ISS). Permalink https://escholarship.org/uc/item/3sw238hb Journal PeerJ, 4(3) ISSN 2167-8359 Authors Coil, David A Neches, Russell Y Lang, Jenna M et al. Publication Date 2016 DOI 10.7717/peerj.1842 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Growth of 48 built environment bacterial isolates on board the International Space Station (ISS) David A. Coil1, Russell Y. Neches1, Jenna M. Lang1, Wendy E. Brown1,2, Mark Severance2,3, Darlene Cavalier2,3 and Jonathan A. Eisen1,4,5 1 Genome Center, University of California, Davis, CA, United States 2 Science Cheerleader, Philadelphia, PA, United States 3 SciStarter.com, Philadelphia, PA, United States 4 Department of Medical Microbiology and Immunology, University of California, Davis, CA, United States 5 Department of Evolution and Ecology, University of California, Davis, CA, United States ABSTRACT Background. While significant attention has been paid to the potential risk of pathogenic microbes aboard crewed spacecraft, the non-pathogenic microbes in these habitats have received less consideration. Preliminary work has demonstrated that the interior of the International Space Station (ISS) has a microbial community resembling those of built environments on Earth. Here we report the results of sending 48 bacterial strains, collected from built environments on Earth, for a growth experiment on the ISS. This project was a component of Project MERCCURI (Microbial Ecology Research Combining Citizen and University Researchers on ISS). Results. Of the 48 strains sent to the ISS, 45 of them showed similar growth in space and on Earth using a relative growth measurement adapted for microgravity. -
Production of Antimicrobial Agents by Bacillus Spp. Isolated from Al-Khor Coast Soils, Qatar
Vol. 11(41), pp. 1510-1519, 7 November, 2017 DOI: 10.5897/AJMR2017.8705 Article Number: EA9F76966550 ISSN 1996-0808 African Journal of Microbiology Research Copyright © 2017 Author(s) retain the copyright of this article http://www.academicjournals.org/AJMR Full Length Research Paper Production of antimicrobial agents by Bacillus spp. isolated from Al-Khor coast soils, Qatar Asmaa Missoum* and Roda Al-Thani Microbiology Laboratory, Department of Biological and Environmental Sciences, College of Arts and Sciences, University of Qatar, Doha, Qatar. Received 12 September, 2017; Accepted 6 October, 2017 Bacilli are Gram-positive, sporulating bacteria that can be found in diverse habitats, but mostly in soil. Many recent studies showed the importance of their antimicrobial agents that mainly target other Gram- positive bacteria. This study was conducted to assess the antibacterial activity of Al-Khor coastal soil Bacillus strains against four bacterial strains (Staphylococcus aureus, Staphylococcus epidermis, Escherichia coli, and Pseudomonas aeruginosa) by agar diffusion method as well as investigating best strain antibiotic production in liquid medium. The 25 isolated strains were identified using physical and biochemical tests. Results show that most strains possess significant antibacterial potential against S. aureus and S. epidermis, but however less toward E. coli. Strain 2B-1B optimum activity was achieved using Luria Bertani broth and at 35°C, with pH 9. Therefore, antimicrobial compounds from these strains can be good candidates for future antibiotics production. Further screening for antimicrobial agents should be carried out in search of novel therapeutic compounds. Key words: Al-Khor, zone of inhibition, Bacillus, coastal soil, antimicrobial agent. INTRODUCTION Bacillus bacteria belong to the Firmicutes phylum, the facultative aerobes, some can be anaerobic (Prieto et al., Bacillaceae family, and are Gram-positive bacteria that 2014). -
Antimicrobial Activities of Bacteria Associated with the Brown Alga Padina Pavonica
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Frontiers - Publisher Connector ORIGINAL RESEARCH published: 12 July 2016 doi: 10.3389/fmicb.2016.01072 Antimicrobial Activities of Bacteria Associated with the Brown Alga Padina pavonica Amel Ismail 1, Leila Ktari 1, Mehboob Ahmed 2, 3, Henk Bolhuis 2, Abdellatif Boudabbous 4, Lucas J. Stal 2, 5, Mariana Silvia Cretoiu 2 and Monia El Bour 1* 1 National Institute of Marine Sciences and Technologies, Salammbô, Tunisia, 2 Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research and Utrecht University, Yerseke, Netherlands, 3 Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan, 4 Faculty of Mathematical, Physical and Natural Sciences of Tunis, Tunis El Manar University, Tunis, Tunisia, 5 Department of Aquatic Microbiology, Institute of Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands Macroalgae belonging to the genus Padina are known to produce antibacterial compounds that may inhibit growth of human- and animal pathogens. Hitherto, it was unclear whether this antibacterial activity is produced by the macroalga itself or by secondary metabolite producing epiphytic bacteria. Here we report antibacterial Edited by: activities of epiphytic bacteria isolated from Padina pavonica (Peacocks tail) located on Olga Lage, northern coast of Tunisia. Eighteen isolates were obtained in pure culture and tested University of Porto, Portugal for antimicrobial activities. Based on the 16S rRNA gene sequences the isolates were Reviewed by: closely related to Proteobacteria (12 isolates; 2 Alpha- and 10 Gammaproteobacteria), Franz Goecke, Norwegian University of Life Sciences, Firmicutes (4 isolates) and Actinobacteria (2 isolates). -
Biocontrol of Fusarium Wilt by Bacillus Pumilus, Pseudomonas Alcaligenes, and Rhizobium Sp
Turk J Biol 34 (2010) 1-7 © TÜBİTAK doi:10.3906/biy-0809-12 Biocontrol of Fusarium wilt by Bacillus pumilus, Pseudomonas alcaligenes, and Rhizobium sp. on lentil Mohd Sayeed AKHTAR*, Uzma SHAKEEL, Zaki Anwar SIDDIQUI Department of Botany, Aligarh Muslim University, Aligarh - INDIA Received: 12.09.2008 Abstract: The present study examined the effects of Bacillus pumilus, Pseudomonas alcaligenes,and Rhizobium sp. on wilt disease caused by Fusarium oxysporum f. sp. lentis and on the growth of lentil. Inoculation with F. oxysporum caused significant wilting, and reduced plant growth, the number of pods, and nodulation. Inoculation with B. pumilus together with P. alcaligenes caused a greater increase in plant growth, number of pods, nodulation, and root colonization by rhizobacteria, and also reduced Fusarium wilting to a greater degree than did individual inoculation. Use of Rhizobium sp. resulted in a greater increase in plant growth, number of pods, and nodulation, and reduced wilting more than B. pumilus did. Combined application of B. pumilus and P. alcaligenes with Rhizobium sp. resulted in the greatest increase in plant growth, number of pods, nodulation, and root colonization by rhizobacteria, and also reduced wilting in Fusarium-inoculated plants. Key words: Bacillus, biocontrol, Fusarium, Pseudomonas, Rhizobium, wilting Mercimeklerdeki Fusarium solma hastalığının Bacillus pumilus, Pseudomonas alcaligenes ve Rhizobium sp. ile biyokontrolü Özet: Mercimek büyümesinde Fusarium oxysporum f. sp. Lentis’ in neden olduğu solma (wilt) hastalığı üzerine Bacillus pumilus, Pseudomonas alcaligenes ve Rhizobium sp. türlerinin etkisi çalışılmıştır. F. oxysporum inokulasyonu önemli ölçüde solmaya neden olur, bitki büyümesini, pod sayısını azaltır ve nodülasyona neden olur. B. pumilus ile birlikte P. -
Bacillus Pumilus Group Comparative Genomics: Toward Pangenome Features, Diversity, and Marine Environmental Adaptation
fmicb-12-571212 May 7, 2021 Time: 11:31 # 1 ORIGINAL RESEARCH published: 07 May 2021 doi: 10.3389/fmicb.2021.571212 Bacillus pumilus Group Comparative Genomics: Toward Pangenome Features, Diversity, and Marine Environmental Adaptation Xiaoteng Fu1,2,3, Linfeng Gong1,2,3, Yang Liu5, Qiliang Lai1,2,3, Guangyu Li1,2,3 and Zongze Shao1,2,3,4* 1 Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China, 2 State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen, China, 3 Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen, China, 4 Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China, 5 State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Microbial Culture Collection Center (GDMCC), Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China Edited by: John R. Battista, Background: Members of the Bacillus pumilus group (abbreviated as the Bp group) are Louisiana State University, United States quite diverse and ubiquitous in marine environments, but little is known about correlation Reviewed by: with their terrestrial counterparts. In this study, 16 marine strains that we had isolated Martín Espariz, before were sequenced and comparative genome analyses were performed with a Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), total of 52 Bp group strains. The analyses included 20 marine isolates (which included Instituto de Biología Molecular y the 16 new strains) and 32 terrestrial isolates, and their evolutionary relationships, Celular de Rosario (IBR), Argentina differentiation, and environmental adaptation. -
Enzyme Profiles and Antimicrobial Activities of Bacteria Isolated from the Kadiini Cave, Alanya, Turkey
Nihal Doğruöz-Güngör, Begüm Çandıroğlu, and Gülşen Altuğ. Enzyme profiles and antimicrobial activities of bacteria isolated from the Kadiini Cave, Alanya, Turkey. Journal of Cave and Karst Studies, v. 82, no. 2, p. 106-115. DOI:10.4311/2019MB0107 ENZYME PROFILES AND ANTIMICROBIAL ACTIVITIES OF BACTERIA ISOLATED FROM THE KADIINI CAVE, ALANYA, TURKEY Nihal Doğruöz-Güngör1,C, Begüm Çandıroğlu2, and Gülşen Altuğ3 Abstract Cave ecosystems are exposed to specific environmental conditions and offer unique opportunities for bacteriological studies. In this study, the Kadıini Cave located in the southeastern district of Antalya, Turkey, was investigated to doc- ument the levels of heterotrophic bacteria, bacterial metabolic avtivity, and cultivable bacterial diversity to determine bacterial enzyme profiles and antimicrobial activities. Aerobic heterotrophic bacteria were quantified using spread plates. Bacterial metabolic activity was investigated using DAPI staining, and the metabolical responses of the isolates against substrates were tested using VITEK 2 Compact 30 automated micro identification system. The phylogenic di- versity of fourty-five bacterial isolates was examined by 16S rRNA gene sequencing analyses. Bacterial communities were dominated by members of Firmicutes (86 %), Proteobacteria (12 %) and Actinobacteria (2 %). The most abundant genera were Bacillus, Staphylococcus and Pseudomonas. The majority of the cave isolates displayed positive proteo- lytic enzyme activities. Frequency of the antibacterial activity of the isolates was 15.5 % against standard strains of Bacillus subtilis, Staphylococcus epidermidis, S.aureus, and methicillin-resistant S.aureus. The findings obtained from this study contributed data on bacteriological composition, frequency of antibacterial activity, and enzymatic abilities regarding possible biotechnological uses of the bacteria isolated from cave ecosytems. -
In Vitro Degradation of Polycyclic Aromatic Hydrocarbons by Sphingobium Xenophagum, Bacillus Pumilus and Pseudomonas Plecoglossicida
J. Bio. & Env. Sci. 2015 Journal of Biodiversity and Environmental Sciences (JBES) ISSN: 2220-6663 (Print) 2222-3045 (Online) Vol. 6, No. 4, p. 246-259, 2015 http://www.innspub.net RESEARCH PAPER OPEN ACCESS In vitro degradation of polycyclic aromatic hydrocarbons by Sphingobium xenophagum, Bacillus pumilus and Pseudomonas plecoglossicida Imaneh Amini1*, Arezoo Tahmourespour2, Atousa Abdollahi3, Mansour Bayat4 1Department of Microbiology, Islamic Azad University, Falavarjan Branch, Falavarjan, Isfahan, Iran 2Department of Basic Medical Sciences, Islamic Azad University, Khorasgan (Isfahan) Branch, Isfahan, Iran 3Department of Basic Sciences, Islamic Azad University, Khorasgan (Isfahan) Branch, Isfahan, Iran 4Department of Medical and Veterinary Mycology, Faculty of Veterinary Specialized Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran Article published on April 21, 2015 Key words: Polycyclic aromatic hydrocarbons; Biodegradation; Sphingobium xenophagum; Bacillus pumilus; Pseudomonas plecoglossicida. Abstract Polycyclic aromatic hydrocarbons are a class of organic compounds with carcinogenic and genotoxic properties. Biodegradation of such pollutants using microorganisms, especially bacteria, would be a cheap and environmentally safe clean up method. In the present study, a total of 30 anthracene, phenanthrene and pyrene degrading bacteria were isolated from two petroleum contaminated soils in Isfahan-Iran using enrichment technique. Three isolates, showing the highest growth and the lowest pH in their media, were considered as the best hydrocarbon degraders. These isolates were identified to be Sphingobium xenophagum ATAI16, Bacillus pumilus ATAI17 and Pseudomonas plecoglossicida ATAI18 using 16S rDNA gene sequences analyses, and were submitted to GenBank under accession number of KF040087, KF040088 and KF113842, respectively. They were able to degrade 43.31% of phenanthrene, 56.94% of anthracene and 45.32% of pyrene after 9 days, respectively.