Report on “Thiol Levels in Bacillus Species
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Comparative Analysis of Mutants in the Mycothiol Biosynthesis Pathway in Mycobacterium Smegmatis
Biochemical and Biophysical Research Communications 363 (2007) 71–76 www.elsevier.com/locate/ybbrc Comparative analysis of mutants in the mycothiol biosynthesis pathway in Mycobacterium smegmatis Mamta Rawat a, Chantale Johnson a, Vanessa Cadiz a, Yossef Av-Gay b,* a Department of Biology, California State University-Fresno, Fresno, CA 937401, USA b Department of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, BC, Canada V5Z 3J5 Received 17 August 2007 Available online 31 August 2007 Abstract The role of mycothiol in mycobacteria was examined by comparative analysis of mutants disrupted in the four known genes encoding the protein machinery needed for mycothiol biosynthesis. These mutants were sensitive to acid stress, antibiotic stress, alkylating stress, and oxidative stress indicating that mycothiol and mycothiol-dependent enzymes protect the mycobacterial cell against attack from various different types of stresses and toxic agents. Ó 2007 Elsevier Inc. All rights reserved. Keywords: Mycothiol; Mycothiol deacetylase; Mycothiol ligase; Mycothiol synthase; Oxidative stress; Toxins; Xenobiotics Mycobacteria, like most other Gram-positive bacteria do We have previously reported that Mycobacterium not make glutathione but produce another low molecular smegmatis mutants disrupted in the four known genes weight thiol, mycothiol (MSH) (Fig. 1), 1-D-myoinosityl- [3,9–11] involved in mycothiol biosynthesis are resistant to 2-(n-acetyl-L-cysteinyl)-amido-2-deoxy-a-D-glucopyranoside. isoniazid, a front-line drug used in the treatment of tubercu- Since MSH is unique to actinomycetales [1], enzymes losis. We have also reported that M. smegmatis mutants involved in MSH biosynthesis and metabolism are poten- lacking mycothiol ligase activity and thus mycothiol are tial targets for drugs directed against pathogenic mycobac- sensitive to a wide range of antibiotics, alkylating agents, teria like Mycobacterium tuberculosis. -
Great South African Molecules: the Case for Mycothiol
REVIEW ARTICLE C.M. Nkambule, 67 S. Afr. J. Chem., 2017, 70, 67–81, <http://journals.sabinet.co.za/sajchem/>. Great South African Molecules: The Case For Mycothiol Comfort M. Nkambule Department of Chemistry, Tshwane University of Technology, Pretoria, 0001, South Africa. Received 13 September 2016, revised 15 March 2017, accepted 17 March 2017. ABSTRACT South Africa has one of the oldest chemical societies in the world and has a long history of natural products, synthetic, and medici- nal chemistry yet the visibility of molecules discovered or synthesized in South Africa is very low. Is this because South African scientists are incapable of discovering influential and celebrated molecules, or is there inadequate publicity of such discoveries? Perspective profiles on the discovery and scope of research on ‘Great South African Molecules’ should be a good start to redress this state of affairs. One such molecule deserving publicity is the antioxidant mycothiol which is produced by mycobacteria. This is a molecule of interest not only because of its medicinal potential in the fight against tuberculosis, but also from synthetic methodology and enzyme inhibition studies. This review aims to illuminate the scope of research in mycothiol chemistry for the purpose of promoting multidisciplinary investigations related to this South African molecule. KEYWORDS Mycothiol, Mycobacterium tuberculosis, great molecules, chemistry Nobel Prize. Table of Contents 1. What is a Great Molecule?· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 67 2. Is Mycothiol a Great Molecule? · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 71 2.1. Is Mycothiol a South African Molecule? · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 71 3. Why is Mycothiol a Molecule of Great Potential? · · · · · · · · · · · · · · · · · · · · · · · · · · · 72 3.1. Mycothiol’s Significance to the TB Problem· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 72 3.2. -
Identification of the S-Transferase Like Superfamily Bacillithiol Transferases Encoded by Bacillus Subtilis
UC San Diego UC San Diego Previously Published Works Title Identification of the S-transferase like superfamily bacillithiol transferases encoded by Bacillus subtilis. Permalink https://escholarship.org/uc/item/1tn9d97t Journal PloS one, 13(2) ISSN 1932-6203 Authors Perera, Varahenage R Lapek, John D Newton, Gerald L et al. Publication Date 2018 DOI 10.1371/journal.pone.0192977 Peer reviewed eScholarship.org Powered by the California Digital Library University of California RESEARCH ARTICLE Identification of the S-transferase like superfamily bacillithiol transferases encoded by Bacillus subtilis Varahenage R. Perera1, John D. Lapek, Jr.2, Gerald L. Newton1, David J. Gonzalez2, Kit Pogliano1* 1 Division of Biological Sciences, University of California, San Diego, La Jolla, CA, United States of America, 2 Department of Pharmacology and Pharmacy, School of Medicine, University of California, San Diego, La a1111111111 Jolla, CA, United States of America a1111111111 a1111111111 * [email protected] a1111111111 a1111111111 Abstract Bacillithiol is a low molecular weight thiol found in Firmicutes that is analogous to glutathi- one, which is absent in these bacteria. Bacillithiol transferases catalyze the transfer of bacil- OPEN ACCESS lithiol to various substrates. The S-transferase-like (STL) superfamily contains over 30,000 Citation: Perera VR, Lapek JD, Jr., Newton GL, putative members, including bacillithiol transferases. Proteins in this family are extremely Gonzalez DJ, Pogliano K (2018) Identification of the divergent and are related by structural rather than sequence similarity, leaving it unclear if all S-transferase like superfamily bacillithiol transferases encoded by Bacillus subtilis. PLoS share the same biochemical activity. Bacillus subtilis encodes eight predicted STL super- ONE 13(2): e0192977. -
Biosynthesis and Functions of Bacillithiol, a Major Low-Molecular-Weight Thiol in Bacilli
Biosynthesis and functions of bacillithiol, a major low-molecular-weight thiol in Bacilli Ahmed Gaballaa,1, Gerald L. Newtonb,1, Haike Antelmannc, Derek Parsonaged, Heather Uptone, Mamta Rawate, Al Claiborned, Robert C. Faheyb, and John D. Helmanna,2 aDepartment of Microbiology, Cornell University, Ithaca, NY 14853-8101; bDepartment of Chemistry and Biochemistry, University of California, La Jolla, CA 92093-0314; cInstitute for Microbiology, Ernst-Moritz-Arndt-University of Greifswald, D-17487 Greifswald, Germany; dCenter for Structural Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157; and eDepartment of Biology, California State University, Fresno, CA 93740 Edited* by Richard M. Losick, Harvard University, Cambridge, MA, and approved February 25, 2010 (received for review January 26, 2010) Bacillithiol (BSH), the α-anomeric glycoside of L-cysteinyl-D-glucosamine disulfide oxidoreductases (TDORs) including thioredoxins (Trx) with L-malic acid, is a major low-molecular-weight thiol in Bacillus sub- and glutaredoxins (5). Oxidized glutaredoxins are reduced by GSH tilis and related bacteria. Here, we identify genes required for BSH generating oxidized GSSG, which is in turn reduced by glutathione biosynthesis and provide evidence that the synthetic pathway has sim- reductase at the expense of NADPH. Thioredoxins are directly ilarities to that established for the related thiol (mycothiol) in the reduced by Trx reductase. Actinobacteria. Consistent with a key role for BSH in detoxification of In addition to disulfide bond formation, thiols can function as electrophiles, the BshA glycosyltransferase and BshB1 deacetylase are nucleophiles to form S-conjugates (6, 7). Thiols react rapidly with encoded in an operon with methylglyoxal synthase. BshB1 is partially some alkylating agents (e.g., N-ethylmaleimide, iodoacetamide) redundant in function with BshB2, a deacetylase of the LmbE family. -
The Significance of N-Methylation of Bacillithiol on Its Biological Activity As a Redox Cofactor
THE SIGNIFICANCE OF N-METHYLATION OF BACILLITHIOL ON ITS BIOLOGICAL ACTIVITY AS A REDOX COFACTOR Hazel Nicole Moxham A thesis submitted for the Degree of Master of Science by Research University of East Anglia School of Pharmacy September 2018 This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with the author and that use of any information derived therefrom must be in accordance with current UK Copyright Law. In addition, any quotation or extract must include full attribution. 1 Abstract Low molecular weight thiols play a crucial role in a multitude of biological processes such as maintaining redox homeostasis and the detoxification of chemical stressors. Different classes of microorganisms utilise different low molecular weight thiols. For example: glutathione is found eukaryotes and most gram-negative bacteria, mycothiol is found in the actinomycetes, and bacillithiol is found in the firmicutes. This study focused on N-methyl-bacillithiol, the novel low molecular weight thiol found in the green sulfur bacteria. Due to the unavailability of the thiol, the biophysical properties of a series of related derivatives were analysed and compared. Six thiols were examined so that each of their macroscopic and microscopic pKa values as well as their thiol-disulfide exchange rate constants and their copper catalysed autoxidation rates were isolated. The results determined that each thiol maintains its own set of biophysical properties that are unique to each compound. These were then observed alongside others within the literature to compare and contrast. Predictions were made regarding the properties of N-methylated bacillithiol by associating the data of those with similar structural differences. -
Suppression of Macrophomina Phaseolina and Rhizoctonia Solani and Yield Enhancement in Peanut
International Journal of ChemTech Research CODEN (USA): IJCRGG, ISSN: 0974-4290, ISSN(Online):2455-9555 Vol.9, No.06 pp 142-152, 2016 Soil application of Bacillus pumilus and Bacillus subtilis for suppression of Macrophomina phaseolina and Rhizoctonia solani and yield enhancement in peanut 1 2 1 Hassan Abd-El-Khair *, Karima H. E. Haggag and Ibrahim E. Elshahawy 1Plant Pathology Department, Agricultural and Biological Research Division, National Research Centre, Giza, Egypt . 2Pest Rearing Department , Central Agricultural Pesticides Laboratory, Agricultural Research Centre, Dokki, Giza, Egypt . Abstract : Macrophomina phaseolina and Rhizoctonia solani were isolated from the root of peanut plants collected from field with typical symptoms of root rot in Beheira governorate, Egypt. The two isolated fungi were able to attack peanut plants (cv. Giza 4) causing damping- off and root rot diseases in the pathogenicity test. Thirty rhizobacteria isolates (Rb) were isolated from the rhizosphere of healthy peanut plants. The inhibition effect of these isolates to the growth of M. phaseolina and R. solani was in the range of 11.1- 88.9%. The effective isolates of Rb 14 , Rb 18 and Rb 28 , which showed a strong antagonistic effect (reached to 88.9) in dual culture against the growth of M. phaseolina and R. solani , were selected and have been identified according the morphological, cultural and biochemical characters as Bacillus pumilus (Rb 14 ), Bacillus subtilis (Rb 18 ) and Bacillus subtilis (Rb 28 ). Control of peanut damping-off and root rot by soil application with these rhizobacteria isolates in addition to two isolates of B. pumilus (Bp) and B. subtilis (Bs) obtained from Plant Pathology Dept., National Research Centre, was attempted in pots and in field trials. -
Bacillus Pumilus Reveals a Remarkably High Resistance to Hydrogen Peroxide Provoked Oxidative Stress
Bacillus pumilus Reveals a Remarkably High Resistance to Hydrogen Peroxide Provoked Oxidative Stress Stefan Handtke1., Rebecca Schroeter2., Britta Ju¨ rgen2, Karen Methling3, Rabea Schlu¨ ter1, Dirk Albrecht1 , Sacha A. F. T. van Hijum4 , Johannes Bongaerts5 , Karl-Heinz Maurer6 , Michael3 Lalk , Thomas Schweder2,7, Michael Hecker1,7, Birgit Voigt1,7* 1 Institute for Microbiology, University of Greifswald, Greifswald, Germany, 2 Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany, 3 Institute of Biochemistry, University of Greifswald, Greifswald, Germany, 4 Centre for Molecular and Biomolecular Informatics (CMBI), Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands; and Division Processing and Safety, NIZO Food Research B.V., Ede, The Netherlands, 5 Department of Chemistry and Biotechnology, Aachen University of Applied Sciences, Ju¨lich, Germany, 6 AB Enzymes GmbH, Darmstadt, Germany, 7 Institute of Marine Biotechnology, Greifswald, Germany Abstract Bacillus pumilus is characterized by a higher oxidative stress resistance than other comparable industrially relevant Bacilli such as B. subtilis or B. licheniformis. In this study the response of B. pumilus to oxidative stress was investigated during a treatment with high concentrations of hydrogen peroxide at the proteome, transcriptome and metabolome level. Genes/ proteins belonging to regulons, which are known to have important functions in the oxidative stress response of other organisms, were found to be upregulated, such as the Fur, Spx, SOS or CtsR regulon. Strikingly, parts of the fundamental PerR regulon responding to peroxide stress in B. subtilis are not encoded in the B. pumilus genome. Thus, B. pumilus misses the catalase KatA, the DNA-protection protein MrgA or the alkyl hydroperoxide reductase AhpCF. -
Production of Antimicrobial Agents by Bacillus Spp. Isolated from Al-Khor Coast Soils, Qatar
Vol. 11(41), pp. 1510-1519, 7 November, 2017 DOI: 10.5897/AJMR2017.8705 Article Number: EA9F76966550 ISSN 1996-0808 African Journal of Microbiology Research Copyright © 2017 Author(s) retain the copyright of this article http://www.academicjournals.org/AJMR Full Length Research Paper Production of antimicrobial agents by Bacillus spp. isolated from Al-Khor coast soils, Qatar Asmaa Missoum* and Roda Al-Thani Microbiology Laboratory, Department of Biological and Environmental Sciences, College of Arts and Sciences, University of Qatar, Doha, Qatar. Received 12 September, 2017; Accepted 6 October, 2017 Bacilli are Gram-positive, sporulating bacteria that can be found in diverse habitats, but mostly in soil. Many recent studies showed the importance of their antimicrobial agents that mainly target other Gram- positive bacteria. This study was conducted to assess the antibacterial activity of Al-Khor coastal soil Bacillus strains against four bacterial strains (Staphylococcus aureus, Staphylococcus epidermis, Escherichia coli, and Pseudomonas aeruginosa) by agar diffusion method as well as investigating best strain antibiotic production in liquid medium. The 25 isolated strains were identified using physical and biochemical tests. Results show that most strains possess significant antibacterial potential against S. aureus and S. epidermis, but however less toward E. coli. Strain 2B-1B optimum activity was achieved using Luria Bertani broth and at 35°C, with pH 9. Therefore, antimicrobial compounds from these strains can be good candidates for future antibiotics production. Further screening for antimicrobial agents should be carried out in search of novel therapeutic compounds. Key words: Al-Khor, zone of inhibition, Bacillus, coastal soil, antimicrobial agent. INTRODUCTION Bacillus bacteria belong to the Firmicutes phylum, the facultative aerobes, some can be anaerobic (Prieto et al., Bacillaceae family, and are Gram-positive bacteria that 2014). -
Antimicrobial Activities of Bacteria Associated with the Brown Alga Padina Pavonica
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Frontiers - Publisher Connector ORIGINAL RESEARCH published: 12 July 2016 doi: 10.3389/fmicb.2016.01072 Antimicrobial Activities of Bacteria Associated with the Brown Alga Padina pavonica Amel Ismail 1, Leila Ktari 1, Mehboob Ahmed 2, 3, Henk Bolhuis 2, Abdellatif Boudabbous 4, Lucas J. Stal 2, 5, Mariana Silvia Cretoiu 2 and Monia El Bour 1* 1 National Institute of Marine Sciences and Technologies, Salammbô, Tunisia, 2 Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research and Utrecht University, Yerseke, Netherlands, 3 Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan, 4 Faculty of Mathematical, Physical and Natural Sciences of Tunis, Tunis El Manar University, Tunis, Tunisia, 5 Department of Aquatic Microbiology, Institute of Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands Macroalgae belonging to the genus Padina are known to produce antibacterial compounds that may inhibit growth of human- and animal pathogens. Hitherto, it was unclear whether this antibacterial activity is produced by the macroalga itself or by secondary metabolite producing epiphytic bacteria. Here we report antibacterial Edited by: activities of epiphytic bacteria isolated from Padina pavonica (Peacocks tail) located on Olga Lage, northern coast of Tunisia. Eighteen isolates were obtained in pure culture and tested University of Porto, Portugal for antimicrobial activities. Based on the 16S rRNA gene sequences the isolates were Reviewed by: closely related to Proteobacteria (12 isolates; 2 Alpha- and 10 Gammaproteobacteria), Franz Goecke, Norwegian University of Life Sciences, Firmicutes (4 isolates) and Actinobacteria (2 isolates). -
Biocontrol of Fusarium Wilt by Bacillus Pumilus, Pseudomonas Alcaligenes, and Rhizobium Sp
Turk J Biol 34 (2010) 1-7 © TÜBİTAK doi:10.3906/biy-0809-12 Biocontrol of Fusarium wilt by Bacillus pumilus, Pseudomonas alcaligenes, and Rhizobium sp. on lentil Mohd Sayeed AKHTAR*, Uzma SHAKEEL, Zaki Anwar SIDDIQUI Department of Botany, Aligarh Muslim University, Aligarh - INDIA Received: 12.09.2008 Abstract: The present study examined the effects of Bacillus pumilus, Pseudomonas alcaligenes,and Rhizobium sp. on wilt disease caused by Fusarium oxysporum f. sp. lentis and on the growth of lentil. Inoculation with F. oxysporum caused significant wilting, and reduced plant growth, the number of pods, and nodulation. Inoculation with B. pumilus together with P. alcaligenes caused a greater increase in plant growth, number of pods, nodulation, and root colonization by rhizobacteria, and also reduced Fusarium wilting to a greater degree than did individual inoculation. Use of Rhizobium sp. resulted in a greater increase in plant growth, number of pods, and nodulation, and reduced wilting more than B. pumilus did. Combined application of B. pumilus and P. alcaligenes with Rhizobium sp. resulted in the greatest increase in plant growth, number of pods, nodulation, and root colonization by rhizobacteria, and also reduced wilting in Fusarium-inoculated plants. Key words: Bacillus, biocontrol, Fusarium, Pseudomonas, Rhizobium, wilting Mercimeklerdeki Fusarium solma hastalığının Bacillus pumilus, Pseudomonas alcaligenes ve Rhizobium sp. ile biyokontrolü Özet: Mercimek büyümesinde Fusarium oxysporum f. sp. Lentis’ in neden olduğu solma (wilt) hastalığı üzerine Bacillus pumilus, Pseudomonas alcaligenes ve Rhizobium sp. türlerinin etkisi çalışılmıştır. F. oxysporum inokulasyonu önemli ölçüde solmaya neden olur, bitki büyümesini, pod sayısını azaltır ve nodülasyona neden olur. B. pumilus ile birlikte P. -
Enzyme Profiles and Antimicrobial Activities of Bacteria Isolated from the Kadiini Cave, Alanya, Turkey
Nihal Doğruöz-Güngör, Begüm Çandıroğlu, and Gülşen Altuğ. Enzyme profiles and antimicrobial activities of bacteria isolated from the Kadiini Cave, Alanya, Turkey. Journal of Cave and Karst Studies, v. 82, no. 2, p. 106-115. DOI:10.4311/2019MB0107 ENZYME PROFILES AND ANTIMICROBIAL ACTIVITIES OF BACTERIA ISOLATED FROM THE KADIINI CAVE, ALANYA, TURKEY Nihal Doğruöz-Güngör1,C, Begüm Çandıroğlu2, and Gülşen Altuğ3 Abstract Cave ecosystems are exposed to specific environmental conditions and offer unique opportunities for bacteriological studies. In this study, the Kadıini Cave located in the southeastern district of Antalya, Turkey, was investigated to doc- ument the levels of heterotrophic bacteria, bacterial metabolic avtivity, and cultivable bacterial diversity to determine bacterial enzyme profiles and antimicrobial activities. Aerobic heterotrophic bacteria were quantified using spread plates. Bacterial metabolic activity was investigated using DAPI staining, and the metabolical responses of the isolates against substrates were tested using VITEK 2 Compact 30 automated micro identification system. The phylogenic di- versity of fourty-five bacterial isolates was examined by 16S rRNA gene sequencing analyses. Bacterial communities were dominated by members of Firmicutes (86 %), Proteobacteria (12 %) and Actinobacteria (2 %). The most abundant genera were Bacillus, Staphylococcus and Pseudomonas. The majority of the cave isolates displayed positive proteo- lytic enzyme activities. Frequency of the antibacterial activity of the isolates was 15.5 % against standard strains of Bacillus subtilis, Staphylococcus epidermidis, S.aureus, and methicillin-resistant S.aureus. The findings obtained from this study contributed data on bacteriological composition, frequency of antibacterial activity, and enzymatic abilities regarding possible biotechnological uses of the bacteria isolated from cave ecosytems. -
Staphylococcus Aureus Responds to Allicin by Global S-Thioallylation – Role of the Brx/BSH/Ypda Pathway and the Disulfide Reductase Mera to Overcome T Allicin Stress
Free Radical Biology and Medicine 139 (2019) 55–69 Contents lists available at ScienceDirect Free Radical Biology and Medicine journal homepage: www.elsevier.com/locate/freeradbiomed Original article Staphylococcus aureus responds to allicin by global S-thioallylation – Role of the Brx/BSH/YpdA pathway and the disulfide reductase MerA to overcome T allicin stress Vu Van Loia, Nguyen Thi Thu Huyena,1, Tobias Buschea,b, Quach Ngoc Tunga, Martin Clemens Horst Gruhlkec, Jörn Kalinowskib, Jörg Bernhardta,d, Alan John Slusarenkoc, ∗ Haike Antelmanna, a Freie Universität Berlin, Institute for Biology-Microbiology, D-14195, Berlin, Germany b Center for Biotechnology, Bielefeld University, D-33594, Bielefeld, Germany c Department of Plant Physiology, RWTH Aachen University, D-52056, Aachen, Germany d Institute for Microbiology, University of Greifswald, D-17489, Greifswald, Germany ARTICLE INFO ABSTRACT Keywords: The prevalence of methicillin-resitant Staphylococcus aureus (MRSA) in hospitals and the community poses an Staphylococcus aureus increasing health burden, which requires the discovery of alternative antimicrobials. Allicin (diallyl thiosulfi- Allicin nate) from garlic exhibits broad-spectrum antimicrobial activity against many multidrug resistant bacteria. The Bacillithiol thiol-reactive mode of action of allicin involves its S-thioallylations of low molecular weight (LMW) thiols and S-thioallylation protein thiols. To investigate the mode of action and stress response caused by allicin in S. aureus, we analyzed MerA the transcriptome signature, the targets for S-thioallylation in the proteome and the changes in the bacillithiol BrxAB fi YpdA (BSH) redox potential (EBSH) under allicin stress. Allicin caused a strong thiol-speci c oxidative and sulfur stress response and protein damage as revealed by the induction of the PerR, HypR, QsrR, MhqR, CstR, CtsR, HrcA and CymR regulons in the RNA-seq transcriptome.