Ixodes Scapularis (Acari: Ixodidae) Nymphal Survival and Host-Finding
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Human Parasitisation with Nymphal Dermacentor Auratus Supino, 1897 (Acari: Ixodoiidea: Ixodidae)
Veterinary Practitioner Vol. 20 No. 2 December 2019 HUMAN PARASITISATION WITH NYMPHAL DERMACENTOR AURATUS SUPINO, 1897 (ACARI: IXODOIIDEA: IXODIDAE) Saidul Islam1, Prabhat Chandra Sarmah2 and Kanta Bhattacharjee3 Department of Parasitology, College of Veterinary Science Assam Agricultural University, Khanapara, Guwahati- 781 022, Assam, India Received on: 29.09.2019 ABSTRACT Accepted on: 03.11.2019 Human parasitisation with nymphal tick and its morhphology has been described. First author accidentally acquired with three nymphal tick infestation from wilderness. Nymphs were attached in hand and both the arm pits leading to intense itching, oedematous swelling and pinkish skin discolouration at the site of attachment. On sixth day of infestation there was mild pyrexia, the differential leukocytic count showed polymorphs 68%, lymphocytes 27%, monocytes 2% and eosinophils 3%. Though the conditions were ameliorated after steroid therapy, yet, the site of attachment was indurated for 8 months which gradually resolved. A nymph replete with blood meal was put in a desiccator with sufficient humidity at room temperature of 170C for moulting that transformed into adult female in 43 days measuring 5.0 X 5.5 mm in size. Detail morphological study confirmed the species as Dermacentor auratus Supino, 1897. Significance of human tick parasitisation has been reviewed and warranted for transmission of possible vector borne pathogens. Key words: Dermacentor auratus, nymph, human, India Introduction Result and Discussion Ticks form a major group of ectoparasites of animals, Tick species and morphology birds and reptiles to cause different types of direct injuries The partially fed nymphs were brown coloured measuring and transmit infectious diseases. Human parasitisation 2.0 X 2.5 mm in size with deep cervical groove, nearly circular by tick, although not common as compared to the animals, small scutum broadest in the middle and 3/3 dentition in the has been recorded in different parts of the world (Wassef hypostome. -
Habitat Associations of Ixodes Scapularis (Acari: Ixodidae) in Syracuse, New York
SUNY College of Environmental Science and Forestry Digital Commons @ ESF Honors Theses 5-2016 Habitat Associations of Ixodes Scapularis (Acari: Ixodidae) in Syracuse, New York Brigitte Wierzbicki Follow this and additional works at: https://digitalcommons.esf.edu/honors Part of the Entomology Commons Recommended Citation Wierzbicki, Brigitte, "Habitat Associations of Ixodes Scapularis (Acari: Ixodidae) in Syracuse, New York" (2016). Honors Theses. 106. https://digitalcommons.esf.edu/honors/106 This Thesis is brought to you for free and open access by Digital Commons @ ESF. It has been accepted for inclusion in Honors Theses by an authorized administrator of Digital Commons @ ESF. For more information, please contact [email protected], [email protected]. HABITAT ASSOCIATIONS OF IXODES SCAPULARIS (ACARI: IXODIDAE) IN SYRACUSE, NEW YORK By Brigitte Wierzbicki Candidate for Bachelor of Science Environmental and Forest Biology With Honors May,2016 APPROVED Thesis Project Advisor: Af ak Ck M issa K. Fierke, Ph.D. Second Reader: ~~ Nicholas Piedmonte, M.S. Honors Director: w44~~d. William M. Shields, Ph.D. Date: ~ / b / I & r I II © 2016 Copyright B. R. K. Wierzbicki All rights reserved. 111 ABSTRACT Habitat associations of Jxodes scapularis Say were described at six public use sites within Syracuse, New York. Adult, host-seeking blacklegged ticks were collected using tick flags in October and November, 2015 along two 264 m transects at each site, each within a distinct forest patch. We examined the association of basal area, leaf litter depth, and percent understory cover with tick abundance using negative binomial regression models. Models indicated tick abundance was negatively associated with percent understory cover, but was not associated with particular canopy or understory species. -
(Acari: Ixodidae) Attachment to Tick-Bite Victims
Determining the Duration of Ixodes scapularis (Acari: Ixodidae) Attachment to Tick-Bite Victims MIN-TSUNG YEH, JASON M. BAK, RENJIE HU, MATTHEW C. NICHOLSON, COLLEEN KELLY, AND THOMAS N. MATHER Center for Vector-Borne Disease, 240 Woodward Hall, University of Rhode Island, Kingston, RI 02881-0804 J. Med. Entomol. 32(6): 853-858 (1995) ABSTRACT The duration of tick attachment is one factor associated with risk for human infection caused by several tick-borne pathogens. We measured tick engorgement indices at known time intervals after tick attachment and used these indices to determine the length of time that ticks were attached to tick-bite victims in selected Rhode Island and Pennsylvania communities where the agents of Lyme disease and human babesiosis occur. The total body length and width as well as the length and width of the scutum were measured on nymphal and adult female Ixodes scapularis Say removed from laboratory animals at 0, 12, 24, 36, 48, 60, and 72 h after their attachment. Three engorgement indices were calculated at each time interval. In addition, engorgement indices measurements were recorded for 504 ticks sub- mitted to a commercial laboratory for pathogen detection testing between 1990 and 1992. No detectable change was observed in the average engorgement indices for either nymphal or adult ticks between 0 and 24 h of attachment using any of the engorgement indices. After 24 h of tick attachment, all engorgement indices continuously increased; average indices for nymphs attached 36, 48, and 60 h were significantly different from those attached S24 h and from each other. -
Tick Borne Diseases Nebraska 2018 HAN FINAL DRAFT APRIL 19 2018
TO: Primary care providers, infectious disease, laboratories, infection control, and public health FROM Thomas J. Safranek, M.D. Jeff Hamik State Epidemiologist Vector-borne Disease Epidemiologist 402-471-2937 PHONE 402-471-1374 PHONE 402-471-3601 FAX 402-471-3601 FAX Thomas Williams, M.D. Chief Medical Officer Director, Division of Public Health Department of Health and Human Services RE: TICK-BORNE DISEASES IN NEBRASKA DATE: April 20, 2018 The arrival of spring marks the beginning of another tick season. In the interest of public health and prevention, our office seeks to inform Nebraska health care providers about the known tick- borne diseases in our state. Key messages for Nebraska clinicians: Spotted fever rickettsia including Rocky Mountain spotted fever (RMSF) Our office receives reports of from 6 to 31 patients with spotted fever rickettsia every year. Health care providers risk overlooking this diagnosis because of its rarity. RMSF NEEDS TO BE A DIAGNOSTIC CONSIDERATION IN ANY PERSON WITH A FEVER AND A HISTORY OF EXPOSURE TO ENVIRONMENTS WHERE TICKS MIGHT BE PRESENT. The skin rash is not always present when the patient first presents to a physician. This disease is frequently overlooked or misdiagnosed, with numerous reports of serious and sometimes fatal consequences. Nebraska experienced a fatal case of RMSF in 2015 where the diagnosis was missed and treatment was delayed until the disease was well advanced. Laboratory diagnosis is made by detecting a rise in antibody titer to Rickettsia rickettsii between acute and convalescent sera. Treatment requires tetracycline-class of antibiotics or chloramphenicol. Tetracycline-class treatment is recommended for persons of all ages, including children. -
Anaplasmosis: an Emerging Tick-Borne Disease of Importance in Canada
IDCases 14 (2018) xxx–xxx Contents lists available at ScienceDirect IDCases journal homepage: www.elsevier.com/locate/idcr Case report Anaplasmosis: An emerging tick-borne disease of importance in Canada a, b,c d,e e,f Kelsey Uminski *, Kamran Kadkhoda , Brett L. Houston , Alison Lopez , g,h i c c Lauren J. MacKenzie , Robbin Lindsay , Andrew Walkty , John Embil , d,e Ryan Zarychanski a Rady Faculty of Health Sciences, Max Rady College of Medicine, Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada b Cadham Provincial Laboratory, Government of Manitoba, Winnipeg, MB, Canada c Rady Faculty of Health Sciences, Max Rady College of Medicine, Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada d Rady Faculty of Health Sciences, Max Rady College of Medicine, Department of Internal Medicine, Section of Medical Oncology and Hematology, University of Manitoba, Winnipeg, MB, Canada e CancerCare Manitoba, Department of Medical Oncology and Hematology, Winnipeg, MB, Canada f Rady Faculty of Health Sciences, Max Rady College of Medicine, Department of Pediatrics and Child Health, Section of Infectious Diseases, Winnipeg, MB, Canada g Rady Faculty of Health Sciences, Max Rady College of Medicine, Department of Internal Medicine, Section of Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada h Rady Faculty of Health Sciences, Max Rady College of Medicine, Department of Community Health Sciences, University of Manitoba, Winnipeg, MB, Canada i Public Health Agency of Canada, National Microbiology Laboratory, Zoonotic Diseases and Special Pathogens, Winnipeg, MB, Canada A R T I C L E I N F O A B S T R A C T Article history: Human Granulocytic Anaplasmosis (HGA) is an infection caused by the intracellular bacterium Received 11 September 2018 Anaplasma phagocytophilum. -
Community Structure of Mites (Acari: Acariformes and Parasitiformes) in Nests of the Semi-Collared Flycatcher (Ficedula Semitorquata) R
International Research Journal of Natural Sciences Vol.3, No.3, pp.48-53, December 2015 ___Published by European Centre for Research Training and Development UK (www.eajournals.org) COMMUNITY STRUCTURE OF MITES (ACARI: ACARIFORMES AND PARASITIFORMES) IN NESTS OF THE SEMI-COLLARED FLYCATCHER (FICEDULA SEMITORQUATA) R. Davidova, V. Vasilev, N. Ali, J. Bakalova Konstantin Preslavsky University of Shumen, 115, Universitetska Str., Shumen, 9700, Bulgaria. ABSTRACT: The aims of the present paper are to establish the specific structure of communities of prostigmatic and mesostigmatic mites in nests of the semi-collared flycatcher (Ficedula semitorquata) and to compare the fauna with the mites in nests of two other European flycatchers. For analysis of community structure of mites were used the indices: prevalence, relative density, mean intensity and dominance. Mite communities are strongly dominated by the species Dermanyssus gallinae and Ornithonyssus sylviarum, which were found with the highest frequency and dominance. The mite communities are characterized by a large number of subrecedent species. KEYWORDS: Acariformes, Parasitiformes, Nest of Bird, Community Structure INTRODUCTION The nests of different species of birds are an example of a fairly unstable and isolated habitat, with its own dependent on it specific fauna which involves different groups of invertebrate animals. One of the components of this fauna which demonstrates particular abundance is the arthropods, and more specifically, the mites. The studies of Parasitiformes show that mesostigmatic mites living in birds' nests vary both in terms of their species affiliation and the structure of their communities [4, 8]. Highly important with respect to veterinary science and medicine are a number of species, such as Ornithonyssus bursa, Ornithonyssus sylviarum, Dermanyssus gallinae harboured by birds, Ornithonyssus bacoti, harboured by rodents, etc. -
Mesostigmata No
16 (1) · 2016 Christian, A. & K. Franke Mesostigmata No. 27 ............................................................................................................................................................................. 1 – 41 Acarological literature .................................................................................................................................................... 1 Publications 2016 ........................................................................................................................................................................................... 1 Publications 2015 ........................................................................................................................................................................................... 9 Publications, additions 2014 ....................................................................................................................................................................... 17 Publications, additions 2013 ....................................................................................................................................................................... 18 Publications, additions 2012 ....................................................................................................................................................................... 20 Publications, additions 2011 ...................................................................................................................................................................... -
Anaplasmosis
Anaplasmosis Definition: Anaplasmosis is an infection caused by the bacterium Anaplasma phagocytophilum. It is most commonly transmitted by the bite of an infected deer tick (Ixodes scapularis). Signs and symptoms: Symptoms of anaplasmosis can range from mild to very severe and may include: fever, headache, muscle pain, malaise, chills, nausea, abdominal pain, cough, and confusion. Severe symptoms may include: difficulty breathing, hemorrhage, renal failure, or neurological problems. It can be fatal if not treated correctly. People who are immunocompromised or elderly are at higher risk for severe disease. Transmission: Anaplasmosis is primarily transmitted to a person through the bite of an infected deer tick; this tick is endemic throughout Maine. Rarely, it can also be transmitted by receiving blood transfusions from an infected donor. Diagnosis: Anaplasmosis is diagnosed by clinical symptoms and laboratory tests. A blood test is necessary for confirmation. Co-infections with other tick-borne diseases may occur and should be considered. Role of the School Nurse: Prevention • Provide education on prevention efforts including: wearing protective clothing, using an EPA- approved repellent, using caution in tick infested areas, and performing daily tick checks. • Encourage the use of EPA approved repellents when outside (following local policy guidelines), and always performing a tick check when returning indoors. o School nurses can apply repellent with parental permission • If a tick is found, the school nurse should remove the tick using tweezers or a tick spoon. o Tick identification cards are available at: http://www.maine.gov/dhhs/mecdc/infectious- disease/epi/vector-borne/posters/index.shtml. o Testing of the tick is not recommended. -
Simultaneous Identification of Host, Ectoparasite and Pathogen DNA Via
Page 1 of 42 Molecular Ecology Resources 1 Simultaneous identification of host, ectoparasite and 2 pathogen DNA via in-solution capture 3 4 Michael G. Campana* ,1 , Melissa T. R. Hawkins* ,1,2 , Lauren H. Henson 1, Kristin 5 Stewardson 1, Hillary S. Young 3, Leah R. Card 4, Justin Lock 1, Bernard 6 Agwanda 5, Jory Brinkerhoff 6, Holly D. Gaff 7, Kristofer M. Helgen 2, Jesús E. 1, 2 4 1,§ 7 Maldonado , William J. McShea , Robert C. Fleischer 8 *Co-first Authors; §Corresponding author: [email protected] 9 1Center for Conservation and Evolutionary Genetics, Smithsonian Conservation Biology Institute, 10 3001 Connecticut Avenue NW, Washington, DC 20008, USA 11 2Division of Mammals, National Museum of Natural History, MRC 108, Smithsonian Institution, P.O. 12 Box 37012, Washington, DC 20013-7012, USA 13 3Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa 14 Barbara, CA 93106, USA 15 4Smithsonian Conservation Biology Institute, National Zoological Park, 1500 Remount Rd., Front 16 Royal, VA 22630, USA 17 5National Museums of Kenya, Box 40658-00100, Nairobi, Kenya 18 6Department of Biology, University of Richmond, B322 Gottwald Center for the Sciences, 28 19 Westhampton Way, University of Richmond, VA 23173, USA 20 7Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA 21 22 Keywords: Ectoparasite, blood meal, pathogen, in-solution capture, DNA, high-throughput 23 sequencing 24 Running Title: Host, ectoparasite and pathogen capture 1 Molecular Ecology Resources Page 2 of 42 25 Abstract 26 Ectoparasites frequently vector pathogens from often unknown pathogen reservoirs to 27 both human and animal populations. -
The Mysterious Orphans of Mycoplasmataceae
The mysterious orphans of Mycoplasmataceae Tatiana V. Tatarinova1,2*, Inna Lysnyansky3, Yuri V. Nikolsky4,5,6, and Alexander Bolshoy7* 1 Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, 90027, California, USA 2 Spatial Science Institute, University of Southern California, Los Angeles, 90089, California, USA 3 Mycoplasma Unit, Division of Avian and Aquatic Diseases, Kimron Veterinary Institute, POB 12, Beit Dagan, 50250, Israel 4 School of Systems Biology, George Mason University, 10900 University Blvd, MSN 5B3, Manassas, VA 20110, USA 5 Biomedical Cluster, Skolkovo Foundation, 4 Lugovaya str., Skolkovo Innovation Centre, Mozhajskij region, Moscow, 143026, Russian Federation 6 Vavilov Institute of General Genetics, Moscow, Russian Federation 7 Department of Evolutionary and Environmental Biology and Institute of Evolution, University of Haifa, Israel 1,2 [email protected] 3 [email protected] 4-6 [email protected] 7 [email protected] 1 Abstract Background: The length of a protein sequence is largely determined by its function, i.e. each functional group is associated with an optimal size. However, comparative genomics revealed that proteins’ length may be affected by additional factors. In 2002 it was shown that in bacterium Escherichia coli and the archaeon Archaeoglobus fulgidus, protein sequences with no homologs are, on average, shorter than those with homologs [1]. Most experts now agree that the length distributions are distinctly different between protein sequences with and without homologs in bacterial and archaeal genomes. In this study, we examine this postulate by a comprehensive analysis of all annotated prokaryotic genomes and focusing on certain exceptions. -
Ixodes Scapularis) Affected Species: Humans PATHOBIOLOGY and VETERINARY SCIENCE • CONNECTICUT VETERINARY MEDICAL DIAGNOSTIC LABORATORY
Tick Borne Diseases In New England Bullseye rash- common symptom of Lyme disease and STARI Skin lesions- common symptom of Tularemia Tularemia Rocky Mountain Spotted Fever Agent: Rickettsia rickettsii Agent: Francisella tularensis Brown Dog Tick Symptoms: fever, “spotted” rash, headache, nausea, Symptoms: fever, skin lesions in people, vomiting, abdominal pain, muscle pain, lack of appetite, face and eyes redden and become (Rhipicephalus sanguineus) red eyes inflamed, chills, headache, exhaustion Affected Species: humans, dogs Affected Species: humans, rabbits, rodents, cats, dogs, sheep, many Dog Tick mammalian species (Dermacentor variabilis) Ehrlichiosis Agent: Ehrlichia chaffeensis and Ehrlichia ewingii Symptoms: fever, headache, chills, muscle pain, nausea, vomiting, diarrhea, confusion, red eyes Affected Species: humans, dogs, cats Babesiosis Anaplasmosis Agent: Babesia microti Agent: Anaplasma phagocytophilum Symptoms: (many show none), fever, chills, sweats, Lone star tick Symptoms: fever, severe headache, muscle aches, headache, body aches, loss of appetite, nausea chills and shaking, nausea, vomiting, abdominal pain Affected Species: humans (Amblyomma americanum) Affected Species: humans, dogs, horses, cows Borrelia miyamotoi Disease Agent: Borrelia miyamotoi Southern Tick-Associated Lyme Disease Symptoms: fever, chills, headache, body and joint Agent: Borrelia burgdorferi pain, fatigue Rash Illness (STARI) Symptoms: “bullseye” rash Affected Species: humans Agent: Borrelia lonestari (humans only), fever, aching joints, Symptoms: “bullseye” rash, fatigue, muscle pains, headache, fatigue, neurological headache involvement Affected Species: humans Affected Species: humans, Powassan Virus horses, dogs, many others Agent: Powassan Virus Symptoms: (many show none), fever, headache, vomiting, weakness, confusion, loss of coordination, Deer Tick speech difficulties, seizures (Ixodes scapularis) Affected Species: humans PATHOBIOLOGY AND VETERINARY SCIENCE • CONNECTICUT VETERINARY MEDICAL DIAGNOSTIC LABORATORY. -
Seven New Larval Mites (Acari, Prostigmata, Erythraeidae) from Iran
Miscel.lania Zoologica 19.2 (1996) 117 Seven new larval mites (Acari, Prostigmata, Erythraeidae) from Iran R. Haitlinger & A. Saboori Haitlinger, R. & Saboori, A,, 1996. Seven new larval mites (Acari, Prostigmata, Erythraeidae) from Iran. Misc. Zool., 19.2: 117-1 31. Seven new larva1 mites (Acari, Prostlgmata, Erythraeidae) from 1ran.- Seven new larval mites are described: Hauptmannia ostovani n. sp. obtained from undetermined Aphididae (Homoptera), a species with thick and sharptipped accessory claw on palptibia and without pectinala on palptarsus; H. iranican. sp. from plants, without pectinala on palptarsus and bearing numerous setae on dorsal and ventral surfaces (NDV over 170); H. khanjaniin. sp. from plants, with pectinala on palptarsus and has shorter L, W and ISD than the other species of this group; Leptus fathipeurin. sp. from plants with two palpgenualae; Erythraeus(E.)akbarianin.sp. from unidentified Aphididae; it has very short ASE; E. (E.) sabrinae n. sp. from undetermined Aphididae; this species is similar to E. adrasatus, E. kresnensisand E. akbariani, differing mainly in number of dorsal and ventral setae and E.@aracarus) tehranicusn. sp. from plants; one of the three species of this subgenus, differs mainly from the other two by shorter tarsi and tibiae l. Key words: Acari, Erythraeidae, Iran, New species. (Rebut: 20 Vil/ 95; Acceptaci6 condiconal: 72 1V 96; Acc. definitiva: 70 lX 96) Ryszard Haitlinger, Dept. o fzoology, AgriculturalAcademy, 50-205 Wroclaw, Cybulskiego20, Polska (Poland).- Alireza Saboori, Dept. of Entomology, Tarbiat Modarres Univ., Teheran, lran Oran). lntroduction Saudi Arabia (HAITLINGER,1994a) and L. guus Haitlinger described from Turkmenia (HAIT- Only a few erythraeid mites are known from LINGER, 1990~).Larval species of the genus lran and neighbouring countries.