Quantification and Standardized Description of Color Vision Deficiency Caused by Anomalous Trichromats-Part I: Simulation and Measurement

Total Page:16

File Type:pdf, Size:1020Kb

Quantification and Standardized Description of Color Vision Deficiency Caused by Anomalous Trichromats-Part I: Simulation and Measurement UC Irvine UC Irvine Previously Published Works Title Quantification and Standardized Description of Color Vision Deficiency Caused by Anomalous Trichromats-Part I: Simulation and Measurement Permalink https://escholarship.org/uc/item/91g0z1x8 Journal EURASIP Journal on Image and Video Processing, 2008 ISSN 1687-5176 1687-5281 Authors Yang, Seungji Ro, Yong Man Wong, Edward K et al. Publication Date 2008 DOI 10.1155/2008/487618 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Hindawi Publishing Corporation EURASIP Journal on Image and Video Processing Volume 2008, Article ID 487618, 9 pages doi:10.1155/2008/487618 Research Article Quantification and Standardized Description of Color Vision Deficiency Caused by Anomalous Trichromats—Part I: Simulation and Measurement Seungji Yang,1 Yong Man Ro,1 Edward K. Wong,2 and Jin-Hak Lee3 1 Image and Video Systems Lab, Information and Communications University, Munji 119, Yuseong, Daejeon 305-732, South Korea 2 Department of Ophthalmology, University of California at Irvine, Irvine, CA 92697-4375, USA 3 Department of Ophthalmology, Seoul National University Hospital, 28 Yongon-Dong, Chongno-Gu, Seoul 110-744, South Korea Correspondence should be addressed to Yong Man Ro, [email protected] Received 8 October 2007; Revised 14 December 2007; Accepted 22 December 2007 Recommended by Alain Tremeau The MPEG-21 Multimedia Framework allows visually impaired users to have an improved access to visual content by enabling content adaptation techniques such as color compensation. However, one important issue is the method to create and interpret the standardized CVD descriptions when making the use of generic color vision tests. In Part I of our study to tackle the issue, we present a novel computerized hue test (CHT) to examine and quantify CVD, which allows reproducing and manipulating test colors for the purposes of computer simulation and analysis of CVD. Both objective evaluation via color difference measurement and subjective evaluation via clinical experiment showed that the CHT works well as a color vision test: it is highly correlated with the Farnsworth-Munsell 100 Hue (FM100H) test and allows for a more elaborate and correct color reproduction than the FM100H test. Copyright © 2008 Seungji Yang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 1. INTRODUCTION there is no satisfactory cure for CVD and this condition is lifelong. However, there has been a little consideration about Today, the use of color display in the multimedia-enabled any assistance to people with CVD in color perception. devices is very common. Portable multimedia devices even Recently, universal multimedia access (UMA) has be- allow real-time displays of high-quality color information. come an emerging trend in the world of multimedia commu- As such, with the proliferation of color displays, it becomes nication. A UMA system adapts rich multimedia content to more important for ordinary people to perceive colors cor- various constraints imposed by users, devices, and networks, rectly. Color displays create no problems for normal people, providing the best possible multimedia experience to a par- although color perception might be slightly different among ticular user, anytime and anywhere. Meanwhile, the recently different people with a different normal color vision. Mean- developed MPEG-21 multimedia framework facilitates the while, color displays do cause problems for people with color realization of UMA systems in an interoperable manner [2]. vision deficiency (CVD). For these people, the use of rich col- Among other tools that enable seamless access to multime- ors may lead to confusion. It may even result in misinterpret- dia, the MPEG-21 multimedia framework provides a norma- ing information that colors are carrying because people with tive description of CVD. In this way, visually impaired users CVD may suffer from inability to discriminate among differ- can have improved access to visual content through content ent colors. The problem even gets worse in cases where color adaptation, more specifically by means of color compensa- is the only visual clue to recognize something important. tion. In this context, the color compensation process can be Up to 8% of the world’s male population exhibits a type guided and optimized by the CVD description standardized of CVD. More than 80% of them has one form of anoma- by the MPEG-21 [2, 3]. lous trichromacy, which demonstrates a milder and variable However, to suitably accommodate color compensa- severity than those with dichromacy [1]. It is known that tion using the CVD description provided by the MPEG-21 2 EURASIP Journal on Image and Video Processing multimedia framework, two important issues should be re- be discolored or changed due to contamination over time. solved. The first issue consists of matching CVD characteris- Due to these problems, although the FM100H test is known tics to the MPEG-21 CVD description, while the second issue to be the most accurate clinical test, it has been less com- consists of the design of a content adaptation scheme that is monly used than many other tests. harmonized with the MPEG-21 CVD description. In this pa- Several studies have been done to simplify the analysis per, in order to tackle these two issues, we present a compre- of the results of the FM100H test [6, 11, 13]. In this study, hensive study that examines CVD through a computerized we present an alternative approach by considering a comput- color vision test (referred to as CHT), utilizes color compen- erized color vision test. Color vision testing using the com- sation techniques through anomalous cone modeling, and puter has a number of important advantages. In using the quantifies color vision defects using a new computerized hue computer and monitor after calibration, any color can be eas- test (CHT) with color compensation. ilyreproducedaswellaschangedforspecificpurposes.The The major contribution of Part I of our study is the devel- test and resulting data can be easily managed, analyzed, and opment of a reproducible, computer-based color vision test, shared. Modifications and improvements of the test method called the CHT. The fundamental idea behind the CHT stems are also possible if necessary. from generic color arrangement tests such as the Farnsworth- Munsell 100-Hue (referred to as FM100H) test. One ma- 3. COMPUTERIZED HUE TEST FOR COLOR ff jor di erence is the fact that the CHT is a reproducible and VISION DEFICIENCY computer-based test, which allows easy manipulation of test colors for the purposes of simulation and analysis of anoma- 3.1. Color vision deficiency lies in color vision. In Part I of our study, we have also com- pared the efficiency of the CHT to the FM100H test. A com- A significant number of studies have been conducted to puter simulation is used to study the variation of color de- understand human color perception and cone fundamen- fects according to the spectral cone shift. Finally, in Part II tals [14–20]. Normal color vision has three cones whose of our study, we will discuss a color compensation scheme peak sensitivities lie in the long-wavelength (L), middle- for anomalous trichromats. This color compensation scheme wavelength (M), and short-wavelength (S) bands of the vis- operates according to the deficiency degree standardized by ible spectrum [1, 19]. Meanwhile, CVD arises from two the MPEG-21 multimedia framework. causes: (1) complete lack of a cone pigment or (2) alteration of one of the three cone pigments. The former is known as 2. RELATED WORK: CONVENTIONAL COLOR dichromacy, and the latter is known as anomalous trichro- VISION TESTS macy. There is an extreme case, called achromatopsia, where no cone is present in the eyes. Anomalous trichromacy is In order to examine anomalies in color vision, many clinical known to have various causes [1].Themostfrequentone color vision tests were developed several decades ago. In gen- is the shifting of cone spectral sensitivity from the normal eral, two major test methodologies have been developed: one position [1, 15, 17, 21]. Anomalous trichromats have three is related to the colors reflected from a colored object, while classes of cone pigments, but the peak sensitivity wavelengths the other is related to the colors emitted from a solid light of two of these classes lie closer together. Depending on source. The tests using reflected light are subdivided into two the type of shifted cone, anomalous trichromacy is divided types: one type is the pseudoisochromatic plate tests such as into protanomalous (having a shifted L cone), deuteranoma- the Ishihara test [4, 5] and the Hardy-Rand-Rittler (HRR) lous (having a shifted M cone), and tritanomalous (having a test [6], while the other type is the color arrangement testing shifted S cone) trichromacy. The protanomalous and deuter- such as the Farnsworth Panel D-15 test and the FM100H test anomalous trichromats are X-chromosome-linked, genetic, [7–9]. The test using emitted colors includes several types of anomalous trichromats, while the tritanomalous trichromats anomaloscopes developed by Jyrki [10]. aremostlyacquired.Duetoabnormalconecharacteristics, Among all of the tests, the FM100H test is known to be people with CVD may have great difficulty with color dis- one of the most accurate tests showing high sensitivity to find crimination. color defects at an early stage and to determine the degrees of severity. The FM100H test has the subject place 85 differ- 3.2. Implementation of the computerized hue test ent color caps in a specific order. The color caps are divided into four groups, each of which comprises 22, 21, 21, and 21 The CHT is a kind of color arrangement test. It is designed color caps, respectively. The type of CVD and its severity de- to display several color caps with different colors on a black gree are determined by the location of the caps after testing.
Recommended publications
  • TETRACHROMATIC COLOR VISION Kimberly A. Jameson Prepared For
    TETRACHROMATIC COLOR VISION Kimberly A. Jameson prepared for The Oxford Companion to Consciousness. Wilken, P., Bayne, T. & Cleeremans, A. (Ed.s). Oxford University Press: Oxford. To appear in 2007. The term“tetrachromacy” describes the physiological possession of four different classes of simultaneously functioning retinal photopigments (also called “weak tetrachromacy”). From an empirical standpoint, tetrachromatic color vision (or “strong tetrachromacy”) additionally requires demonstrating that mixtures of four independent appropriately chosen primary lights will simulate all distinc- tions in appearance possible in visible color space. Independence of the primary lights implies that no mixtures of any subset of these lights (or their intensity variants) will produce an identical match to any combination of mixtures of the remaining lights. By comparison, trichromacy empirically requires only three primaries to simulate all visible colors. Established theory states that normal color vision humans are trichromats (as, primarily, are Old World monkeys and apes). The first element of trichro- macy is the output from three simultaneously functioning retinal cone classes: Short-, Medium-, and Long- Wavelenth Sensitive (SWS, MWS, & LWS) cones. Three cone classes alone do not establish a trichromat color code, however. A postreceptoral code for three categories of signal is also needed. A standard vision science assumption is that the postreceptoral recoding of cone outputs initiates the neural trivariant (or trichromatic) property of human color percep- tion, and the need for only three primary lights to match any test light. ANIMAL TETRACHROMACY: Tetrachromacy is an early vertebrate characteristic, existing in fish and reptiles, and is evolutionarily more ancient than primate trichromacy. Essentially all diu- ral birds have four retinal cone types (two SWS classes, plus a MWS and a LWS class) which neurally produce four dimensional color experience, or tetrachro- matic color vision.
    [Show full text]
  • Theoretical Part Eye Examinations 1
    Name and Surrname number Study group Theoretical part Eye examinations 1. Astigmatism Astigmatism is an optical defect in which vision is blurred due to the inability of the optics of the eye to focus a point object into a sharp focused image on the retina. Astigmatism can sometimes be asymptomatic, while higher degrees of astigmatism may cause symptoms such as blurry vision, squinting, eye strain, fatigue, or headaches. Types Regular astigmatism: Principal meridians are perpendicular. Simple astigmatism – the first focal line is on the retina, while the second is located behind the retina, or, the first focal line is in front of the retina, while the second is on the retina. Compound astigmatism – both focal lines are located behind or before the retina. Mixed astigmatism – focal lines are on both sides of the retina (straddling the retina). Irregular astigmatism: Principal meridians are not perpendicular. This type cannot be corrected by a lens. Tests Objective Refractometer, autorefractometer Placido keratoscope – A placido keratoscope consists of a handle and a circular part with a hole in the middle. The hole with a magnifying glass is viewed from a distance of 10–15 cm to the patients cornea. In the 200 mm wide circular portion there are concentric alternating black and white circles. They reflect the patient’s cornea. In the event of astigmatism, a deformation appears at the corresponding location. Sciascope Ophthalmometry Subjective Fuchs figure – This is a tool for evaluating astigmatism where examinee stands up against a pattern of circular shape (circular or striped rectangles) and fixes his/her gaze on the center of the pattern with one open eye.
    [Show full text]
  • Comparing Color Vision Testing Using the Farnsworth-Munsell 100-Hue, Ishihara Compatible, and Digital TCV Software Rachel A
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CommonKnowledge Pacific nivU ersity CommonKnowledge College of Optometry Theses, Dissertations and Capstone Projects 4-23-2015 Comparing Color Vision Testing Using the Farnsworth-Munsell 100-Hue, Ishihara Compatible, and Digital TCV Software Rachel A. Murphy Pacific nU iversity, [email protected] Recommended Citation Murphy, Rachel A., "Comparing Color Vision Testing Using the Farnsworth-Munsell 100-Hue, Ishihara Compatible, and Digital TCV Software" (2015). College of Optometry. Paper 9. http://commons.pacificu.edu/opt/9 This Thesis is brought to you for free and open access by the Theses, Dissertations and Capstone Projects at CommonKnowledge. It has been accepted for inclusion in College of Optometry by an authorized administrator of CommonKnowledge. For more information, please contact [email protected]. Comparing Color Vision Testing Using the Farnsworth-Munsell 100-Hue, Ishihara Compatible, and Digital TCV Software Abstract It is crucial that eye care professionals be able to provide quick, accurate, and complete testing of color vision, both to enhance the lives of patients and to satisfy the requirements laid out by industry standards. With the growing popularity of the use of digital equipment in offices, there is a natural progression to digital color vision screening tests, which have the advantage of being fast, inexpensive, and readily portable with automated scoring for greater consistency. Few studies have sought to validate specific digital tests. The aim of this study is to compare two traditionally accepted manual tests for detecting congenital color vision deficiency (CCVD) with analogous digital versions.
    [Show full text]
  • Comprehensive Pediatric Eye and Vision Examination
    American Optometric Association – Peer/Public Review Document 1 2 3 EVIDENCE-BASED CLINICAL PRACTICE GUIDELINE 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Comprehensive 18 Pediatric Eye 19 and Vision 20 Examination 21 22 For Peer/Public Review May 16, 2016 23 American Optometric Association – Peer/Public Review Document 24 OPTOMETRY: THE PRIMARY EYE CARE PROFESSION 25 26 The American Optometric Association represents the thousands of doctors of optometry 27 throughout the United States who in a majority of communities are the only eye doctors. 28 Doctors of optometry provide primary eye care to tens of millions of Americans annually. 29 30 Doctors of optometry (O.D.s/optometrists) are the independent primary health care professionals for 31 the eye. Optometrists examine, diagnose, treat, and manage diseases, injuries, and disorders of the 32 visual system, the eye, and associated structures, as well as identify related systemic conditions 33 affecting the eye. Doctors of optometry prescribe medications, low vision rehabilitation, vision 34 therapy, spectacle lenses, contact lenses, and perform certain surgical procedures. 35 36 The mission of the profession of optometry is to fulfill the vision and eye care needs of the 37 public through clinical care, research, and education, all of which enhance quality of life. 38 39 40 Disclosure Statement 41 42 This Clinical Practice Guideline was funded by the American Optometric Association (AOA), 43 without financial support from any commercial sources. The Evidence-Based Optometry 44 Guideline Development Group and other guideline participants provided full written disclosure 45 of conflicts of interest prior to each meeting and prior to voting on the strength of evidence or 46 clinical recommendations contained within this guideline.
    [Show full text]
  • Color Vision Test for Dichromatic and Trichromatic Macaque Monkeys
    Journal of Vision (2013) 13(13):1, 1–15 http://www.journalofvision.org/content/13/13/1 1 Color vision test for dichromatic and trichromatic macaque monkeys National Institute for Physiological Sciences, Okazaki, Aichi, Japan Electronics-Inspired Interdisciplinary Research Institute, Toyohashi University of Technology, Toyohashi, Aichi, # Kowa Koida* Japan $ National Institute for Physiological Sciences, Okazaki, Aichi, Japan University for Advanced Studies (SOKENDAI), Okazaki, # Isao Yokoi* Aichi, Japan $ National Institute for Physiological Sciences, Okazaki, Aichi, Japan University for Advanced Studies (SOKENDAI), Okazaki, # Gouki Okazawa Aichi, Japan $ Faculty of Rehabilitation, Chubu Gakuin University, Seki, # Akichika Mikami Gifu, Japan $ Department of Biology, Bogor Agricultural University, # Kanthi Arum Widayati Bogor, Indonesia $ Primate Research Institute, Kyoto University, Inuyama, # Shigehiro Miyachi Aichi, Japan $ National Institute for Physiological Sciences, Okazaki, Aichi, Japan University for Advanced Studies (SOKENDAI), Okazaki, # Hidehiko Komatsu Aichi, Japan $ Dichromacy is a color vision defect in which one of the identified dichromatic macaques (Macaca fascicularis) three cone photoreceptors is absent. Individuals with with that of normal trichromatic macaques. In the color dichromacy are called dichromats (or sometimes ‘‘color- discrimination test, dichromats could not discriminate blind’’), and their color discrimination performance has colors along the protanopic confusion line, though contributed significantly
    [Show full text]
  • Acquired Colour Vision Defects in Glaucoma—Their Detection and Clinical Significance
    1396 Br J Ophthalmol 1999;83:1396–1402 Br J Ophthalmol: first published as 10.1136/bjo.83.12.1396 on 1 December 1999. Downloaded from PERSPECTIVE Acquired colour vision defects in glaucoma—their detection and clinical significance Mireia Pacheco-Cutillas, Arash Sahraie, David F Edgar Colour vision defects associated with ocular disease have The aims of this paper are: been reported since the 17th century. Köllner1 in 1912 + to provide a review of the modern literature on acquired wrote an acute description of the progressive nature of col- colour vision in POAG our vision loss secondary to ocular disease, dividing defects + to diVerentiate the characteristics of congenital and into “blue-yellow” and “progressive red-green blindness”.2 acquired defects, in order to understand the type of This classification has become known as Köllner’s rule, colour vision defect associated with glaucomatous although it is often imprecisely stated as “patients with damage retinal disease develop blue-yellow discrimination loss, + to compare classic clinical and modern methodologies whereas optic nerve disease causes red-green discrimina- (including modern computerised techniques) for tion loss”. Exceptions to Köllner’s rule34 include some assessing visual function mediated through chromatic optic nerve diseases, notably glaucoma, which are prima- mechanisms rily associated with blue-yellow defects, and also some reti- + to assess the eVects of acquired colour vision defects on nal disorders such as central cone degeneration which may quality of life in patients with POAG. result in red-green defects. Indeed, in some cases, there might be a non-specific chromatic loss. Comparing congenital and acquired colour vision Colour vision defects in glaucoma have been described defects since 18835 and although many early investigations Congenital colour vision deficiencies result from inherited indicated that red-green defects accompanied glaucoma- cone photopigment abnormalities.
    [Show full text]
  • Human Trichromacy Revisited PNAS PLUS
    Human trichromacy revisited PNAS PLUS Hiroshi Horiguchia,b,1, Jonathan Winawera, Robert F. Doughertyc, and Brian A. Wandella,c aPsychology Department, Stanford University, Stanford, CA 94305; bDepartment of Ophthalmology, School of Medicine, Jikei University, Tokyo 105-8461, Japan; and cStanford Center for Cognitive and Neurobiological Imaging, Stanford, CA 94305 AUTHOR SUMMARY The history of trichromatic color As predicted by the classic tri- theory spans nearly 300 y, be- msARC Fovea Periphery chromatic model, subjects fail to ’ Opticks (%) ginning with Newton s 10 see cone-silent stimuli presented (1). Thomas Young’s Royal So- Visible in the fovea. In contrast, subjects Not ciety Lecture (2) explained how 0 Not do see cone-silent stimuli pre- Visible Visible Visible Visible color perception is initiated by S1 sented to the peripheral visual S2 fi the absorption of light in three Cone-silent −10 eld. In extensive computational S3 fi types of human light receptors, −10 0 10 −10 0 10 (%) modeling, we could nd no plau- the cones. The theory of tri- S-cone S-cone sible pigment density adjustment chromacy is the foundation of (including the lens or photopig- modern color technologies (3). Fig. P1. Built and found. (A) An apparatus using six primary lights was ment densities) that explains the built for the experiment. Mean luminance through the eyepiece was measurements in the periphery For more than a century, the 2 absorption of light in the retina 2,060 cd/m .(B) Graphs represent detection thresholds for stimuli that based on a model that includes was thought to occur only in the have some S-cone contrast and cone-silent contrast, but no L- or M- only three cone photopigments.
    [Show full text]
  • Colour Vision Deficiency
    Eye (2010) 24, 747–755 & 2010 Macmillan Publishers Limited All rights reserved 0950-222X/10 $32.00 www.nature.com/eye Colour vision MP Simunovic REVIEW deficiency Abstract effective "treatment" of colour vision deficiency: whilst it has been suggested that tinted lenses Colour vision deficiency is one of the could offer a means of enabling those with commonest disorders of vision and can be colour vision deficiency to make spectral divided into congenital and acquired forms. discriminations that would normally elude Congenital colour vision deficiency affects as them, clinical trials of such lenses have been many as 8% of males and 0.5% of femalesFthe largely disappointing. Recent developments in difference in prevalence reflects the fact that molecular genetics have enabled us to not only the commonest forms of congenital colour understand more completely the genetic basis of vision deficiency are inherited in an X-linked colour vision deficiency, they have opened the recessive manner. Until relatively recently, our possibility of gene therapy. The application of understanding of the pathophysiological basis gene therapy to animal models of colour vision of colour vision deficiency largely rested on deficiency has shown dramatic results; behavioural data; however, modern molecular furthermore, it has provided interesting insights genetic techniques have helped to elucidate its into the plasticity of the visual system with mechanisms. respect to extracting information about the The current management of congenital spectral composition of the visual scene. colour vision deficiency lies chiefly in appropriate counselling (including career counselling). Although visual aids may Materials and methods be of benefit to those with colour vision deficiency when performing certain tasks, the This article was prepared by performing a evidence suggests that they do not enable primary search of Pubmed for articles on wearers to obtain normal colour ‘colo(u)r vision deficiency’ and ‘colo(u)r discrimination.
    [Show full text]
  • Congenital Or Acquired Color Vision Defect – If Acquired What Caused It?
    Congenital or Acquired Color Vision Defect – If Acquired What Caused it? Terrace L. Waggoner O.D. 3730 Tiger Point Blvd. Gulf Breeze, FL 32563 [email protected] Course Handout AOA 2017 Conference: I. Different types of congenital colorblindness. A. Approximately 8% of the population has a congenital color vision deficiency. B. Dichromate 1. Protanopia is a severe type of color vision deficiency caused by the complete absence of red retinal photoreceptors (L cone absent). 2. Deuteranopia is a type of color vision deficiency where the green photoreceptors are absent (M cone absent). 3. Tritanopia is a very rare color vision disturbance in which there are only two cone pigments present and a total absence of blue retinal receptors (S cone absent). It is related to chromosome 7. C. Anomalous Trichromate 1. Protanomaly is a mild color vision defect in which an altered spectral sensitivity of red retinal receptors (closer to green receptor response) results in poor red–green hue discrimination. 2. Deuteranomaly, caused by a similar shift in the green retinal receptors, is by far the most common type of color vision deficiency, mildly affecting red–green hue discrimination in 5% males. 3. Tritanomaly is a rare, hereditary color vision deficiency affecting blue–green and yellow–red/pink hue discrimination. D. Rates of color blindness 1. Dichromacy Males 2.4% Females .03% a. Protanopia (red deficient: L cone absent) Males 1.3% Females 0.02% b. Deuteranopia (green deficient: M cone absent) Males 1.2% Females 0.01 c. Tritanopia (blue deficient: S cone absent) Males 0.001% Females 0.03% 2.
    [Show full text]
  • PEDIATRIC EYE and VISION EXAMINATION Reference Guide for Clinicians
    OPTOMETRIC CLINICAL PRACTICE GUIDELINE OPTOMETRY: THE PRIMARY EYE CARE PROFESSION Doctors of optometry are independent primary health care providers who examine, diagnose, treat, and manage diseases and disorders of the visual system, the eye, and associated structures as well as diagnose related systemic conditions. Optometrists provide more than two-thirds of the primary eye care services in the United States. They are more widely distributed geographically than other eye care providers and are readily accessible for the delivery of eye and vision care services. There are approximately 32,000 full-time equivalent doctors of optometry currently in practice in Pediatric Eye the United States. Optometrists practice in more than 7,000 communities across the United States, serving as the sole primary eye care provider in more than 4,300 communities. And Vision The mission of the profession of optometry is to fulfill the vision and eye care needs of the public through clinical care, research, and education, all Examination of which enhance the quality of life. OPTOMETRIC CLINICAL PRACTICE GUIDELINE PEDIATRIC EYE AND VISION EXAMINATION Reference Guide for Clinicians First Edition Originally Prepared by (and Second Edition Reviewed by) the American Optometric Association Consensus Panel on Pediatric Eye and Vision Examination: Mitchell M. Scheiman, O.D., M.S., Principal Author Catherine S. Amos, O.D. Elise B. Ciner, O.D. Wendy Marsh-Tootle, O.D. Bruce D. Moore, O.D. Michael W. Rouse, O.D., M.S. Reviewed by the AOA Clinical Guidelines Coordinating Committee: John C. Townsend, O.D., Chair (2nd Edition) John F. Amos, O.D., M.S.
    [Show full text]
  • Intermixing the OPN1LW and OPN1MW Genes Disrupts the Exonic Splicing Code Causing an Array of Vision Disorders
    G C A T T A C G G C A T genes Review Intermixing the OPN1LW and OPN1MW Genes Disrupts the Exonic Splicing Code Causing an Array of Vision Disorders Maureen Neitz * and Jay Neitz Department of Ophthalmology and Vision Science Center, University of Washington, Seattle, WA 98109, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-206-543-7998 Abstract: Light absorption by photopigment molecules expressed in the photoreceptors in the retina is the first step in seeing. Two types of photoreceptors in the human retina are responsible for image formation: rods, and cones. Except at very low light levels when rods are active, all vision is based on cones. Cones mediate high acuity vision and color vision. Furthermore, they are critically important in the visual feedback mechanism that regulates refractive development of the eye during childhood. The human retina contains a mosaic of three cone types, short-wavelength (S), long-wavelength (L), and middle-wavelength (M) sensitive; however, the vast majority (~94%) are L and M cones. The OPN1LW and OPN1MW genes, located on the X-chromosome at Xq28, encode the protein component of the light-sensitive photopigments expressed in the L and M cones. Diverse haplotypes of exon 3 of the OPN1LW and OPN1MW genes arose thru unequal recombination mechanisms that have intermixed the genes. A subset of the haplotypes causes exon 3- skipping during pre-messenger RNA splicing and are associated with vision disorders. Here, we review the mechanism by which splicing defects in these genes cause vision disorders. Citation: Neitz, M.; Neitz, J.
    [Show full text]
  • Light and Color
    CS148: Introduction to Computer Graphics and Imaging Light and Color Painting by Cheryl Yaney Topics Physics of light Electromagnetic spectrum Fundamental operations: add, filter, measure Perception of color Trichromatic theory Luminance Color spaces Art Color terms Color wheels and intuitive color spaces CS148 Lecture 10 Pat Hanrahan, Winter 2009 Page 1 Physics of Light Light Image from Clive Maxfield CS148 Lecture 10 Pat Hanrahan, Winter 2009 Page 2 Electromagnetic Spectrum Image from Clive Maxfield CS148 Lecture 10 Pat Hanrahan, Winter 2009 Sources Visible (300-800 nm) spectra power distribution CS148 Lecture 10 Pat Hanrahan, Winter 2009 Page 3 Sources Visible (300 – 800 nm) spectra power distribution CS148 Lecture 10 Pat Hanrahan, Winter 2009 Adding Light Energy CS148 Lecture 10 Pat Hanrahan, Winter 2009 Page 4 Reflecting Light CS148 Lecture 10 Pat Hanrahan, Winter 2009 Light Operations Add spectra Multiply spectra CS148 Lecture 10 Pat Hanrahan, Winter 2009 Page 5 Measuring Light Photon detector CS148 Lecture 10 Pat Hanrahan, Winter 2009 Perception of Color Page 6 Color Matching Adjust brightness of three primaries to “match” color C – color to be matched Lasers: R = 700 nm, G = 546 nm, B = 435 nm C R G B C = R + G + B Result: all colors can be matched with three colors Therefore: humans have trichromatic color vision CS148 Lecture 10 Pat Hanrahan, Winter 2009 RGB Color CS148 Lecture 10 Pat Hanrahan, Winter 2009 Page 7 Human Retina: Three Types of Cones From http://webvision.med.utah.edu/imageswv/fovmoswv.jpeg CS148 Lecture
    [Show full text]