Influence of Habitat on the Reproductive Ecology of the Amazonian Palm, Mauritia Flexuosa, in Roraima, Brazil Roxaneh S
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
GROWING Mauritia Flexuosa in PALM BEACH COUNTY
GROWING Mauritia flexuosa IN PALM BEACH COUNTY Submitted by Charlie Beck Mauritia flexuosa is a very large palm with deeply segmented palmate leaves and rounded petioles. In habitat, this dioecious palm grows 15 foot wide leaves on petioles 30 feet long. The stems can reach 80 feet tall. Its natural range is wet areas in Northern South America east of the Andes and also reaching into Trinidad. It usually grows in permanently swampy areas. This palm provides food and nesting sites for Macaws (See photo on back cover). Fish, turtles, tortoises, agoutis, peccares, deer, pacas, and iguanas also eat its fruit. I recently attended a meeting of the South Florida Palm Society and it was mentioned that Mauritia did not grow in South Florida. I knew the speaker was not aware of the fine specimens growing at Richard Moyroud’s Mesozoic Landscapes Nursery in Palm Beach County. The nursery is located near Hypoluxo Road west of Rt. 441 – not considered a warm location. I saw these palms planted at his nursery several years ago when I went out there to purchase some native plants. I heard reports that Richard’s Mauritia palms survived our record cold winter, so I called Richard to get a status report. He invited me to come out to the nursery to see for myself. He has specimens growing in the nursery and in a private 3 acre swamp garden located behind the Mauritia flexuosa planted in Richard nursery which is off limits to his customers. This was a rare Moyroud’s garden opportunity to have Richard lead me on a tour of his swamp garden. -
Astrocaryum Chambira)
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/279205063 Chambira o cumare (Astrocaryum chambira) Chapter · January 2013 CITATIONS READS 0 1,427 1 author: Néstor García Pontificia Universidad Javeriana 42 PUBLICATIONS 236 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Investigación e innovación tecnológica y apropiación social de conocimiento científico de orquídeas nativas de Cundinamarca View project Demografía, manejo y conservación de Attalea nucifera (Arecaceae) en la cuenca del río Magdalena View project All content following this page was uploaded by Néstor García on 28 July 2015. The user has requested enhancement of the downloaded file. Cosechar sin destruir Aprovechamiento sostenible de palmas colombianas Rodrigo Bernal y Gloria Galeano Editores Bogotá, D. C., Colombia, octubre de 2013 Catalogación en la publicación Universidad Nacional de Colombia Cosechar sin destruir : aprovechamiento sostenible de palmas colombianas / editores Rodrigo Bernal y Gloria Galeano. -- Bogotá : Universidad Nacional de Colombia. Facultad de Ciencias. Instituto de Ciencias Naturales : PALMS : Colciencias, 2013 244 páginas : ilustraciones Incluye referencias bibliográficas ISBN : 978-958-761-611-8 1. Palmas – Colombia 2. Ecología de cultivos – Colombia 3. Industria de la palma - Tecnología poscosecha 4. Palmas - Distribución geográfica – Colombia 5. Silvicultura sostenible – Colombia 6. Etnobotánica – Colombia I. Bernal González, -
Chec List What Survived from the PLANAFLORO Project
Check List 10(1): 33–45, 2014 © 2014 Check List and Authors Chec List ISSN 1809-127X (available at www.checklist.org.br) Journal of species lists and distribution What survived from the PLANAFLORO Project: PECIES S Angiosperms of Rondônia State, Brazil OF 1* 2 ISTS L Samuel1 UniCarleialversity of Konstanz, and Narcísio Department C.of Biology, Bigio M842, PLZ 78457, Konstanz, Germany. [email protected] 2 Universidade Federal de Rondônia, Campus José Ribeiro Filho, BR 364, Km 9.5, CEP 76801-059. Porto Velho, RO, Brasil. * Corresponding author. E-mail: Abstract: The Rondônia Natural Resources Management Project (PLANAFLORO) was a strategic program developed in partnership between the Brazilian Government and The World Bank in 1992, with the purpose of stimulating the sustainable development and protection of the Amazon in the state of Rondônia. More than a decade after the PLANAFORO program concluded, the aim of the present work is to recover and share the information from the long-abandoned plant collections made during the project’s ecological-economic zoning phase. Most of the material analyzed was sterile, but the fertile voucher specimens recovered are listed here. The material examined represents 378 species in 234 genera and 76 families of angiosperms. Some 8 genera, 68 species, 3 subspecies and 1 variety are new records for Rondônia State. It is our intention that this information will stimulate future studies and contribute to a better understanding and more effective conservation of the plant diversity in the southwestern Amazon of Brazil. Introduction The PLANAFLORO Project funded botanical expeditions In early 1990, Brazilian Amazon was facing remarkably in different areas of the state to inventory arboreal plants high rates of forest conversion (Laurance et al. -
Download This PDF File
Management of Lepidocaryum tenue and Socratea exorrhiza, two Amazonian palms used for thatching Manejo de Lepidocaryum tenue y Socratea exorrhiza, dos palmas usadas para techado en la Amazonia Jaime A. Navarro López, Rodrigo Bernal, Gloria Galeano Databases and Inventories selected 40 subplots of 0.01 ha for Lepidocaryum and 12 ha for Socratea. Abstract Background: The palms Lepidocaryum tenue and Correspondence Socratea exorrhiza provide the raw material for one of the most prized thatches of the Colombian Jaime A. Navarro López1*, Rodrigo Bernal2, Gloria Amazon. Roofs thatched with Lepidocaryum leaves Galeano3+ braided along split Socratea stems are highly appreciated and demanded by local inhabitants, due 1Universidad ECCI. Bogotá, Colombia to their availability and freshness; as a result, both 2Reserva Natural Guadualito, Montenegro, Quindío, palms are an important source of cash income. Colombia Demand for Lepidocaryum roofs has increased, 3Instituto de Ciencias Naturales, Universidad especially around the city of Leticia, due to Nacional de Colombia, Bogotá, Colombia population growth and tourism. Population size +Deceased structure of both palms is similar to that reported in other places of the Amazon basin. *Corresponding Authors: [email protected], [email protected] Methods: Data were collected in five indigenous communities north of Leticia, Amazonas department Ethnobotany Research & Applications (Colombia). In two communities we used participant 19:49 (2020) observation to collect information about extraction practices and management processes. At all five Results: Around 4000 harvestable individuals of places, we also conducted semi-structured surveys Lepidocaryum and about six harvestable stems of among 10 harvesters and 54 households, to learn Socratea were found per ha. Thatching a 48 m2 about the harvest, management, and marketing of house requires ca. -
Las Palmeras En El Marco De La Investigacion Para El
REVISTA PERUANA DE BIOLOGÍA Rev. peru: biol. ISSN 1561-0837 Volumen 15 Noviembre, 2008 Suplemento 1 Las palmeras en el marco de la investigación para el desarrollo en América del Sur Contenido Editorial 3 Las comunidades y sus revistas científicas 1he scienrific cornmuniries and their journals Leonardo Romero Presentación 5 Laspalmeras en el marco de la investigación para el desarrollo en América del Sur 1he palrns within the framework ofresearch for development in South America Francis Kahny CésarArana Trabajos originales 7 Laspalmeras de América del Sur: diversidad, distribución e historia evolutiva 1he palms ofSouth America: diversiry, disrriburíon and evolutionary history Jean-Christopbe Pintaud, Gloria Galeano, Henrik Balslev, Rodrigo Bemal, Fmn Borchseníus, Evandro Ferreira, Jean-Jacques de Gran~e, Kember Mejía, BettyMillán, Mónica Moraes, Larry Noblick, FredW; Staufl'er y Francis Kahn . 31 1he genus Astrocaryum (Arecaceae) El género Astrocaryum (Arecaceae) . Francis Kahn 49 1he genus Hexopetion Burret (Arecaceae) El género Hexopetion Burret (Arecaceae) Jean-Cbristopbe Pintand, Betty MiJJány Francls Kahn 55 An overview ofthe raxonomy ofAttalea (Arecaceae) Una visión general de la taxonomía de Attalea (Arecaceae) Jean-Christopbe Pintaud 65 Novelties in the genus Ceroxylon (Arecaceae) from Peru, with description ofa new species Novedades en el género Ceroxylon (Arecaceae) del Perú, con la descripción de una nueva especie Gloria Galeano, MariaJosé Sanín, Kember Mejía, Jean-Cbristopbe Pintaud and Betty MiJJán '73 Estatus taxonómico -
Seed Geometry in the Arecaceae
horticulturae Review Seed Geometry in the Arecaceae Diego Gutiérrez del Pozo 1, José Javier Martín-Gómez 2 , Ángel Tocino 3 and Emilio Cervantes 2,* 1 Departamento de Conservación y Manejo de Vida Silvestre (CYMVIS), Universidad Estatal Amazónica (UEA), Carretera Tena a Puyo Km. 44, Napo EC-150950, Ecuador; [email protected] 2 IRNASA-CSIC, Cordel de Merinas 40, E-37008 Salamanca, Spain; [email protected] 3 Departamento de Matemáticas, Facultad de Ciencias, Universidad de Salamanca, Plaza de la Merced 1–4, 37008 Salamanca, Spain; [email protected] * Correspondence: [email protected]; Tel.: +34-923219606 Received: 31 August 2020; Accepted: 2 October 2020; Published: 7 October 2020 Abstract: Fruit and seed shape are important characteristics in taxonomy providing information on ecological, nutritional, and developmental aspects, but their application requires quantification. We propose a method for seed shape quantification based on the comparison of the bi-dimensional images of the seeds with geometric figures. J index is the percent of similarity of a seed image with a figure taken as a model. Models in shape quantification include geometrical figures (circle, ellipse, oval ::: ) and their derivatives, as well as other figures obtained as geometric representations of algebraic equations. The analysis is based on three sources: Published work, images available on the Internet, and seeds collected or stored in our collections. Some of the models here described are applied for the first time in seed morphology, like the superellipses, a group of bidimensional figures that represent well seed shape in species of the Calamoideae and Phoenix canariensis Hort. ex Chabaud. -
Three New Records of Pristimantis (Amphibia: Anura: Craugastoridae) for Brazil and a Comment of the Advertisement Call of Pristimantis Orcus
Check List 9(6): 1548–1551, 2013 © 2013 Check List and Authors Chec List ISSN 1809-127X (available at www.checklist.org.br) Journal of species lists and distribution N Three new records of Pristimantis (Amphibia: Anura: Craugastoridae) for Brazil and a comment of the ISTRIBUTIO advertisement call of Pristimantis orcus D Jhon J. López-Rojas 1*, Werther Pereira Ramalho 1, Monik da Silveira Susçuarana 1 and Moisés RAPHIC G Barbosa de Souza 2 EO G N O 1 Universidade Federal do Acre, Programa de Pós-Graduação em Ecologia e Manejo de Recursos Naturais. BR346, Km04. CEP 69915-900. Rio Branco, AC, Brazil. 2 Universidade Federal do Acre, Centro de Ciências Biológicas e da Natureza, Laboratório de Herpetologia (HerPet). BR346, Km04. CEP 69915-900. OTES Rio Branco, AC, Brazil. N * Corresponding author. E-mail: [email protected] Abstract: We report Pristimantis achuar, Pristimantis delius, and Pristimantis orcus as three new records from Brazil, extending their known geographic distributions from Ecuador, Colombia, and Perú. Additionally we comment on the vocalizations of Pristimantis orcus. There are 6200 species of anuran amphibians described The three species of Pristimantis were found during world-wide (Frost 2013). In Brazil, 946 species have been the Field Ecology–2012 course at the Federal University recorded, with 32 from the Pristimantis genus (Segalla et al. of Acre in a white sand area with Campinarana Vegetation 2012). The family Craugastoridae has a broad distribution, (Daly and Silveira 2008) and dense forest with abundant ranging from Southern Arizona to central Texas (USA) and Lepidocaryum tenue (caranaí) (Daly and Silveira 2008), in Mexico south through tropical and subtropical habitats Cruzeiro do Sul, Acre Brazil. -
FLORA of the GUIANAS New York, November 2017
FLORA OF THE GUIANAS NEWSLETTER N° 20 SPECIAL WORKSHOP ISSUE New York, November 2017 FLORA OF THE GUIANAS NEWSLETTER N° 20 SPECIAL WORKSHOP ISSUE Flora of the Guianas (FOG) Meeting and Seminars and Scientific symposium “Advances in Neotropical Plant Systematics and Floristics,” New York, 1–3 November 2017 The Flora of the Guianas is a co-operative programme of: Museu Paraense Emílio Goeldi, Belém; Botanischer Garten und Botanisches Museum Berlin-Dahlem, Berlin; Institut de Recherche pour le Développement, IRD, Centre de Cayenne, Cayenne; Department of Biology, University of Guyana, Georgetown; Herbarium, Royal Botanic Gardens, Kew; New York Botanical Garden, New York; Nationaal Herbarium Suriname, Paramaribo; Muséum National d’Histoire Naturelle, Paris; Nationaal Herbarium Nederland, Utrecht University branch, Utrecht, and Department of Botany, Smithsonian Institution, Washington, D.C. For further information see the website: http://portal.cybertaxonomy.org/flora-guianas/ Published on April 2019 Flora of the Guianas Newsletter No. 20. Compiled and edited by B. Torke New York Botanical Garden, New York, USA 2 CONTENTS 1. SUMMARY ...................................................................................................................... 5 2. MEETING PROGRAM .................................................................................................... 5 3. SYMPOSIUM PROGRAM AND ABSTRACTS ............................................................... 7 4. MINUTES OF THE ADVISORY BOARD MEETING .................................................... -
Ecology of Economically Important Palms in Peruvian Amazonia
Ecology of Economically Important Palms in I Peruvian Amazonia 4,; II FRANCISKAHN 4: 4: d h Table of Contents Abstract ................................................................................. 42 .......... I. II. .................................................... 43 .................. .............................................................................. 44 III. Ecology of Promising Palms in the Lower Ucayali River Basin ................................ 44- Promising Palms in Upland Forests 45 Promising Palms in Seasonal Swamp ................................................ 45 Promising Palms on Podzols .............................................................. 47 IV. Palms and Forest Management 47 V. Acknowledgments ........................................................................ 48 VI. Literature Cited .......................................................................... 48 Abstract Most palm species are used by Amazonian natives and provide a variety of products, such as edible fruits, oil, palm heart, building materials, and basketry. However, only a few species have significant economic potential. These palms occur essentiallyin seasonal swamp forests on waterlogged soils covering vast areas in Peruvian Amazonia, or on sandy soils. Three especially promising species- Jessenia bataua, Mauritia flexuosa and Euterpe pre- catoria-constitute dense populations on these soils, which are generally considered as unfit for agriculture. The management of promising palm populations will contribute to increasing -
This Article Appeared in a Journal Published by Elsevier. the Attached
This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Journal of Ethnopharmacology 138 (2011) 492–502 Contents lists available at SciVerse ScienceDirect Journal of Ethnopharmacology jo urnal homepage: www.elsevier.com/locate/jethpharm Witoto ash salts from the Amazon a, b Juan Alvaro Echeverri ∗, Oscar ‘Enokakuiodo’ Román-Jitdutjaano˜ a Universidad Nacional de Colombia, Amazonia Campus, Kilómetro 2 Vía Tarapacá, Leticia, Amazonas, Colombia b Indigenous Reserve Andoque de Aduche, Araracuara, Amazonas, Colombia a r t i c l e i n f o a b s t r a c t Article history: Ethnopharmacological relevance: This article presents the results of an anthropological and ethnobotanical Received 8 August 2011 study of the vegetable salts used by the Witoto Indians of the Amazon. It thoroughly documents the Received in revised form species used, the processing of the salts, their chemical composition and their anthropological, nutritional 14 September 2011 and medicinal relevance. Accepted 25 September 2011 Materials and methods: Salts from 57 plant species known to the Witoto were processed using the same Available online 1 October 2011 materials and techniques employed by the Indians: burning plant material, lixiviating the ashes with water, and boiling down the brine to desiccate the salt. -
Systematics and Evolution of the Rattan Genus Korthalsia Bl
SYSTEMATICS AND EVOLUTION OF THE RATTAN GENUS KORTHALSIA BL. (ARECACEAE) WITH SPECIAL REFERENCE TO DOMATIA A thesis submitted by Salwa Shahimi For the Degree of Doctor of Philosophy School of Biological Sciences University of Reading February 2018 i Declaration I can confirm that is my own work and the use of all material from other sources have been properly and fully acknowledged. Salwa Shahimi Reading, February 2018 ii ABSTRACT Korthalsia is a genus of palms endemic to Malesian region and known for the several species that have close associations with ants. In this study, 101 new sequences were generated to add 18 Korthalsia species from Malaysia, Singapore, Myanmar and Vietnam to an existing but unpublished data set for calamoid palms. Three nuclear (prk, rpb2, and ITS) and three chloroplast (rps16, trnD-trnT and ndhF) markers were sampled and Bayesian Inference and Maximum Likelihood methods of tree reconstruction used. The new phylogeny of the calamoids was largely congruent with the published studies, though the taxon sampling was more thorough. Each of the three tribes of the Calamoideae appeared to be monophyletic. The Eugeissoneae was consistently resolved as sister to Calameae and Lepidocaryeae, and better resolved, better supported topologies below the tribal level were identified. Korthalsia is monophyletic, and novel hypotheses of species level relationships in Korthalsia were put forward. These hypotheses of species level relationships in Korthalsia served as a framework for the better understanding of the evolution of ocrea. The morphological and developmental study of ocrea in genus Korthalsia included detailed study using Light and Scanning Electron Microscopy for seven samples of 28 species of Korthalsia, in order to provide understanding of ocrea morphological traits. -
POPULATION DYNAMICS of the AMAZONIAN PALM Mauritia Flexuosa: MODEL DEVELOPMENT and SIMULATION ANALYSIS
POPULATION DYNAMICS OF THE AMAZONIAN PALM Mauritia flexuosa: MODEL DEVELOPMENT AND SIMULATION ANALYSIS By JENNIFER A. HOLM A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2007 1 © 2007 Jennifer A. Holm 2 To my family who encouraged me at a young age, to keep striving for academic knowledge, and to my friends 3 ACKNOWLEDGMENTS I gratefully thank my supervisory committee, Dr. Kainer and Dr. Bruna, and most importantly my committee chair, Dr. Wendell P. Cropper Jr. for their time and effort. I acknowledge the School of Natural Resources and Conservation, the School of Forest Resources and Conservation, and the Tropical Conservation and Development Program, the United States Forest Service, and the Fulbright Scholar Program for funding and guidance. Data collection in Ecuador was conducted with the help from Dr. Christopher Miller, Drs. Eduardo Asanza and Ana Cristina Sosa, Joaquin Salazar, and all the Siona people of Cuyabeno Faunal Reserve. Data collected in Peru was conducted with the help from Weninger Pinedo Flores, Exiles Guerra, Gerardo Bértiz, Dr. Jim Penn, and with the generosity of Paul and Dolly Beaver of the Tahuayo Lodge. Lastly, I would like to thank my parents for their support through my education experience, Heather, Chris, friends, and fellow graduate students. 4 TABLE OF CONTENTS page ACKNOWLEDGMENTS ...............................................................................................................4