Uu.Diva-Portal.Org
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Comprehensive Review of Cambrian Himalayan
http://www.diva-portal.org Postprint This is the accepted version of a paper published in Papers in Palaeontology. This paper has been peer- reviewed but does not include the final publisher proof-corrections or journal pagination. Citation for the original published paper (version of record): Popov, L E., Holmer, L E., Hughes, N C., Ghobadi Pour, M., Myrow, P M. (2015) Himalayan Cambrian brachiopods. Papers in Palaeontology, 1(4): 345-399 http://dx.doi.org/10.1002/spp2.1017 Access to the published version may require subscription. N.B. When citing this work, cite the original published paper. Permanent link to this version: http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-255813 HIMALAYAN CAMBRIAN BRACHIOPODS BY LEONID E. POPOV1, LARS E. HOLMER2, NIGEL C. HUGHES3 MANSOUREH GHOBADI POUR4 AND PAUL M. MYROW5 1Department of Geology, National Museum of Wales, Cathays Park, Cardiff CF10 3NP, United Kingdom, <[email protected]>; 2Institute of Earth Sciences, Palaeobiology, Uppsala University, SE-752 36 Uppsala, Sweden, <[email protected]>; 3Department of Earth Sciences, University of California, Riverside, CA 92521, USA <[email protected]>; 4Department of Geology, Faculty of Sciences, Golestan University, Gorgan, Iran and Department of Geology, National Museum of Wales, Cathays Park, Cardiff CF10 3NP, United Kingdom <[email protected]>; 5 Department of Geology, Colorado College, Colorado Springs, CO 80903, USA <[email protected]> Abstract: A synoptic analysis of previously published material and new finds reveals that Himalayan Cambrian brachiopods can be referred to 18 genera, of which 17 are considered herein. These contain 20 taxa assigned to species, of which five are new: Eohadrotreta haydeni, Aphalotreta khemangarensis, Hadrotreta timchristiorum, Prototreta? sumnaensis and Amictocracens? brocki. -
On the History of the Names Lingula, Anatina, and on the Confusion of the Forms Assigned Them Among the Brachiopoda Christian Emig
On the history of the names Lingula, anatina, and on the confusion of the forms assigned them among the Brachiopoda Christian Emig To cite this version: Christian Emig. On the history of the names Lingula, anatina, and on the confusion of the forms assigned them among the Brachiopoda. Carnets de Geologie, Carnets de Geologie, 2008, CG2008 (A08), pp.1-13. <hal-00346356> HAL Id: hal-00346356 https://hal.archives-ouvertes.fr/hal-00346356 Submitted on 11 Dec 2008 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Carnets de Géologie / Notebooks on Geology - Article 2008/08 (CG2008_A08) On the history of the names Lingula, anatina, and on the confusion of the forms assigned them among the Brachiopoda 1 Christian C. EMIG Abstract: The first descriptions of Lingula were made from then extant specimens by three famous French scientists: BRUGUIÈRE, CUVIER, and LAMARCK. The genus Lingula was created in 1791 (not 1797) by BRUGUIÈRE and in 1801 LAMARCK named the first species L. anatina, which was then studied by CUVIER (1802). In 1812 the first fossil lingulids were discovered in the Mesozoic and Palaeozoic strata of the U.K. -
Smithsonian Miscellaneous Collections
SMITHSONIAN MISCELLANEOUS COLLECTIONS PART OF VOLUME LIII CAMBRIAN GEOLOGY AND PALEONTOLOGY No. 4.-CLASS1F1CAT10N AND TERMINOLOGY OF THE CAMBRIAN BRACHIOPODA With Two Plates BY CHARLES D. WALCOTT No. 1811 CITY OF WASHINGTON published by the smithsonian institution October 13, 1908] CAMBRIAN GEOLOGY AND PALEONTOLOGY No. 4.—CLASSIFICATION AND TERAIINOLOGY OF THE CAMBRIAN BRACHIOPODA^ By CHARLES D. WALCOTT (With Two Plates) CONTENTS Page Introduction i.^g Schematic diagram of evclution 139 Development in Cambrian time 141 Scheme of classification 141 Structure of the shell 149 Microscopic structure of the Cambrian Brachiopcda 150 Terminology relating to the shell 153 Definitions 154 INTRODUCTION My study of the Cambrian Brachiopoda has advanced so far that it is decided to pubHsh, in advance of the monograph,- a brief out- Hne of the classification, accompanied by (a) a schematic diagram of evolution and scheme of classification; (&) a note, with a diagram, on the development in Cambrian time; (c) a note on the structural characters of the shell, as this profoundly affects the classification; and (d) a. section on the terminology used in the monograph. The monograph, illustrated by 104 quarto plates and numerous text fig- ures, should be ready for distribution in the year 1909. SCHEMATIC DIAGRAM OF EVOLUTION In order to formulate, as far as possible, in a graphic manner a conception of the evolution and lines of descent of the Cambrian Brachiopoda, a schematic diagram (see plate 11) has been prepared for reference. It is necessarily tentative and incomplete, but it will serve to point out my present conceptions of the lines of evolution of the various genera, and it shows clearly the very rapid development of the primitive Atrematous genera in early Cambrian time. -
Paleontological Contributions
THE UNIVERSITY OF KANSAS PALEONTOLOGICAL CONTRIBUTIONS July 24, 1984 Paper 111 EXCEPTIONALLY PRESERVED NONTRILOBITE ARTHROPODS AND ANOMALOCARIS FROM THE MIDDLE CAMBRIAN OF UTAH' D. E. G. BRIGGS and R. A. ROBISON Department of Geology, Goldsmiths' College, University of London, Creek Road, London SE8 3BU, and Department of Geology, University of Kansas, Lawrence, Kansas 66045 Abstract—For the first time arthropods with preserved soft parts and appendages are recorded from Middle Cambrian strata in Utah. Occurrences of four nontrilobite taxa are described, including Branchiocaris pretiosa (Resser) and Emeraldella? sp. from the Marjum Formation, Sidneyia? sp. from the Wheeler Formation, and Leanchoilia? hanceyi, n. sp., from the Spence Shale. A small specimen of the giant predator Anomalocaris nathorsti (Walcott) also is described from the Marjum Formation. These occurrences extend upward the observed stratigraphie ranges of Anomalocaris, Branchiocaris, and questionably Emeraldella and Sidneyia. Emeraldella, Leanchoilia, and Sidneyia hitherto have been recorded from only the Stephen Formation in British Columbia. Further evaluation indicates that Dicerocaris opisthoeces Robison and Rich- ards, 1981, is a junior synonym of Pseudoarctolepis sharpi Brooks and Caster, 1956. DURING RECENT years, intensive collecting has 1983). Although providing little new morpho- produced rare but diverse, soft-bodied or scler- logic data, the Utah specimens are important otized Middle Cambrian fossils from several because of new information they provide about -
Permophiles International Commission on Stratigraphy
Permophiles International Commission on Stratigraphy Newsletter of the Subcommission on Permian Stratigraphy Number 66 Supplement 1 ISSN 1684 – 5927 August 2018 Permophiles Issue #66 Supplement 1 8th INTERNATIONAL BRACHIOPOD CONGRESS Brachiopods in a changing planet: from the past to the future Milano 11-14 September 2018 GENERAL CHAIRS Lucia Angiolini, Università di Milano, Italy Renato Posenato, Università di Ferrara, Italy ORGANIZING COMMITTEE Chair: Gaia Crippa, Università di Milano, Italy Valentina Brandolese, Università di Ferrara, Italy Claudio Garbelli, Nanjing Institute of Geology and Palaeontology, China Daniela Henkel, GEOMAR Helmholtz Centre for Ocean Research Kiel, Germany Marco Romanin, Polish Academy of Science, Warsaw, Poland Facheng Ye, Università di Milano, Italy SCIENTIFIC COMMITTEE Fernando Álvarez Martínez, Universidad de Oviedo, Spain Lucia Angiolini, Università di Milano, Italy Uwe Brand, Brock University, Canada Sandra J. Carlson, University of California, Davis, United States Maggie Cusack, University of Stirling, United Kingdom Anton Eisenhauer, GEOMAR Helmholtz Centre for Ocean Research Kiel, Germany David A.T. Harper, Durham University, United Kingdom Lars Holmer, Uppsala University, Sweden Fernando Garcia Joral, Complutense University of Madrid, Spain Carsten Lüter, Museum für Naturkunde, Berlin, Germany Alberto Pérez-Huerta, University of Alabama, United States Renato Posenato, Università di Ferrara, Italy Shuzhong Shen, Nanjing Institute of Geology and Palaeontology, China 1 Permophiles Issue #66 Supplement -
Chapter 5. Paleozoic Invertebrate Paleontology of Grand Canyon National Park
Chapter 5. Paleozoic Invertebrate Paleontology of Grand Canyon National Park By Linda Sue Lassiter1, Justin S. Tweet2, Frederick A. Sundberg3, John R. Foster4, and P. J. Bergman5 1Northern Arizona University Department of Biological Sciences Flagstaff, Arizona 2National Park Service 9149 79th Street S. Cottage Grove, Minnesota 55016 3Museum of Northern Arizona Research Associate Flagstaff, Arizona 4Utah Field House of Natural History State Park Museum Vernal, Utah 5Northern Arizona University Flagstaff, Arizona Introduction As impressive as the Grand Canyon is to any observer from the rim, the river, or even from space, these cliffs and slopes are much more than an array of colors above the serpentine majesty of the Colorado River. The erosive forces of the Colorado River and feeder streams took millions of years to carve more than 290 million years of Paleozoic Era rocks. These exposures of Paleozoic Era sediments constitute 85% of the almost 5,000 km2 (1,903 mi2) of the Grand Canyon National Park (GRCA) and reveal important chronologic information on marine paleoecologies of the past. This expanse of both spatial and temporal coverage is unrivaled anywhere else on our planet. While many visitors stand on the rim and peer down into the abyss of the carved canyon depths, few realize that they are also staring at the history of life from almost 520 million years ago (Ma) where the Paleozoic rocks cover the great unconformity (Karlstrom et al. 2018) to 270 Ma at the top (Sorauf and Billingsley 1991). The Paleozoic rocks visible from the South Rim Visitors Center, are mostly from marine and some fluvial sediment deposits (Figure 5-1). -
Filo Brachiopoda Classe Lingulata Lingulella SALTER, 1866 Obulus EICHWALD, 1866
4.2. IDENTIFICAÇÃO DE FÓSSEIS DE BRACHIOPODA Filo Brachiopoda Classe Lingulata Lingulida Lingula BRUGUIÈRE, 1797 Fig. 4.1 Lingula sp. Modo de vida. Extraído de CLARKSON (1984: 149). Fig. 4.2 Lingula unguis (Linnaeus). De BONDARENKO & MIKHAILOVA (1984: 393). Concha quitino-fosfatada, pequena (1-3 cm), muito fina, levemente biconvexa, equivalve e praticamente equilateral. Bordos da concha subparalelos ou convexos, conferindo-lhe contorno geral sub-rectangular a elíptico. Umbo terminal, posterior. Concha lisa, apresentando, contudo, finas estrias de crescimento Fig. 4.1 - Lingula concêntricas. Por vezes, pode apresentar finas estriações radiais. Paleoecologia: Organismos endobentónicos cavículas, suspensívoros. Ambientes marinhos bentónicos, pouco Fig. 4.2 - Lingula profundos (mais frequentemente) a profundos, de águas quentes e salinidade normal. Toleram, temporaria- mente, condições de salinidade reduzida. Distribuição estratigráfica: Ordovícico à actualidade. Lingulella SALTER, 1866 Fig. 4.3 Lingulella davisii (M’Coy). Extraído de COX (1964: est. 1). Concha quitino-fosfatada, pequena (1-3 cm), fina, levemente biconvexa, equivalve e praticamente equilateral. Bordos da concha subparalelos ou convexos, conferindo-lhe contorno geral sub-rectangular a oval. Umbo terminal, posterior. Concha apresentando ornamentação fina, constituída por leves costilhas Fig. 4.3 - Lingulella concêntricas. Difere de Lingula, sobretudo, por aspectos da morfologia interna da concha. Paleoecologia: Organismos endobentónicos cavículas, suspensívoros. Ambientes marinhos bentónicos, pouco profundos e de salinidade normal. Distribuição estratigráfica: Câmbrico a Ordovícico médio. Obulus EICHWALD, 1866 Fig. 4.4 Obulus apollonis Eichwald. De BONDARENKO & MIKHAILOVA (1984: 393). Concha quitino-fosfatada, pequena (1-3 cm), espessa, biconvexa, praticamente equilateral. Bordos da concha subparalelos ou convexos, conferindo-lhe contorno geral sub-rectangular a oval. Umbo terminal. Concha apresentando ornamentação fina, constituída por finas costilhas concêntricas e, por vezes, estriações radiais. -
9781862396203 Backmatter.Pdf by Guest on 25 September 2021 576 INDEX
Index Page numbers in italic denote figures. Page numbers in bold denote tables. Abathomphalus 242, 244 Andes, uplift 393, 428–429 Abies 485, 487, 508, 510 annelids, Cambrian, Chengjiang biota 87 Acacia 484, 485 anomalocaridids, Cambrian 86, 90, 92, 94 Acarinina 326, 331, 335 anoxia, ocean 163 Acer 489, 505, 508, 510 Cretaceous 217 acidification, ocean, PETM 331–332 Ordovician 105 acritarchs Permian–Triassic boundary 191, 192, 195–196, 198 Cambrian 94 Superanoxic Event 195, 198 Early Permian, Oman 174 Early Palaeozoic Icehouse 123–124, 126, 128, aeolianite, as palaeoclimate indicator 19 131–135, 136, 137 Aeronian Antarctic Bottom Water 372, 566–567, 568, 569 climate 8,24 Antarctic Circumpolar Current 30, 105, 320, early, glaciation 126, 130, 131, 132 371–372 Aesculus 485 inception 393–395, 397, 401, 403, 415 Africa, Early Permian, palaeontology 174 Antarctic Intermediate Water 430, 432 air temperature, surface, Neoproterozoic 70, 71, 72 Antarctic Peninsula Ice-sheet 519–521 Al Khlata Formation 174–175, 176 Antarctica Alamaminella weddellensis 356 Early Permian, palaeontology 178–180 Alangium 508 glaciation 28, 105–106, 352–377 albedo hysteresis 375 Neoproterozoic 66, 69, 70, 71, 73, 77 modelling 453–454 Northern Hemisphere glaciation 570 see also Antarctic Peninsula Ice-sheet; East Albian Antarctic Ice-Sheet; West Antarctic climate 9, 26, 27 Ice-Sheet palaeogeography 273 Apectodinium 333–335 Alchornea 485, 508 Aptian algae, haptophyte, alkenone production 14, 540, 541, climate 9,26 545–547 palaeogeography 272 Alisporites indarraensis 177 -
Paleoecology of the Greater Phyllopod Bed Community, Burgess Shale ⁎ Jean-Bernard Caron , Donald A
Available online at www.sciencedirect.com Palaeogeography, Palaeoclimatology, Palaeoecology 258 (2008) 222–256 www.elsevier.com/locate/palaeo Paleoecology of the Greater Phyllopod Bed community, Burgess Shale ⁎ Jean-Bernard Caron , Donald A. Jackson Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada M5S 3G5 Accepted 3 May 2007 Abstract To better understand temporal variations in species diversity and composition, ecological attributes, and environmental influences for the Middle Cambrian Burgess Shale community, we studied 50,900 fossil specimens belonging to 158 genera (mostly monospecific and non-biomineralized) representing 17 major taxonomic groups and 17 ecological categories. Fossils were collected in situ from within 26 massive siliciclastic mudstone beds of the Greater Phyllopod Bed (Walcott Quarry — Fossil Ridge). Previous taphonomic studies have demonstrated that each bed represents a single obrution event capturing a predominantly benthic community represented by census- and time-averaged assemblages, preserved within habitat. The Greater Phyllopod Bed (GPB) corresponds to an estimated depositional interval of 10 to 100 KA and thus potentially preserves community patterns in ecological and short-term evolutionary time. The community is dominated by epibenthic vagile deposit feeders and sessile suspension feeders, represented primarily by arthropods and sponges. Most species are characterized by low abundance and short stratigraphic range and usually do not recur through the section. It is likely that these are stenotopic forms (i.e., tolerant of a narrow range of habitats, or having a narrow geographical distribution). The few recurrent species tend to be numerically abundant and may represent eurytopic organisms (i.e., tolerant of a wide range of habitats, or having a wide geographical distribution). -
Tools for Linguloid Taxonomy: the Genus Obolus (Brachiopoda) As an Example
Carnets de Géologie / Notebooks on Geology - Article 2002/01 (CG2002_A01_CCE) Tools for linguloid taxonomy: the genus Obolus (Brachiopoda) as an example Christian C. EMIG1 Abstract: This study points out some basic problems of linguloid systematics and proposes solutions for them. A taxonomic examination of the unique species of the genus Obolus found in the Upper Cambrian of Estonia and Russia, O. apollinis (= O. ruchini, O. transversus, O. rebrovi and Ungula convexa) is used as an example of a methodology employing all of the characters valid for distinguishing species of both extant and fossil Lingulidae. These characters are: - umbonal region; - body musculature; - septa or ridges; - main mantle canals - as established and figured by EMIG (1982, 1983) and BIERNAT and EMIG (1993). All of them have been determined to be taxonomically stable and have been studied and compared to take into account intraspecific variability; they should be used to describe or to redescribe any taxon of the superfamily Linguloidea. Characters of the shell and valves, such as shape, size, and dimensional ratios have no taxonomic value. Key Words: Taxonomy; Obolus; Brachiopoda; Cambrian - Ordovician; Estonia Citation: EMIG C. (2002).- Tools for linguloid taxonomy: the genus Obolus (Brachiopoda) as an example.- Carnets de Géologie / Notebooks on Geology, Maintenon, Article 2002/01 (CG2002_A01_CCE) Résumé : Des outils pour la taxinomie des Lingulidoida : le genre Obolus (Brachiopoda) pris comme exemple.- Cette étude met en exergue des problèmes fondamentaux de la systématique des Linguloïdes et propose des solutions méthodologiques basées sur les caractères utilisés pour identifier les espèces de Lingulides actuelles et fossiles. L'unique espèce du genre Obolus, O. -
Synchronized Molting in Arthropods from the Burgess Shale Joachim T Haug1*, Jean-Bernard Caron2,3 and Carolin Haug1
Haug et al. BMC Biology 2013, 11:64 http://www.biomedcentral.com/1741-7007/11/64 RESEARCH ARTICLE Open Access Demecology in the Cambrian: synchronized molting in arthropods from the Burgess Shale Joachim T Haug1*, Jean-Bernard Caron2,3 and Carolin Haug1 Abstract Background: The Burgess Shale is well known for its preservation of a diverse soft-bodied biota dating from the Cambrian period (Series 3, Stage 5). While previous paleoecological studies have focused on particular species (autecology) or entire paleocommunities (synecology), studies on the ecology of populations (demecology) of Burgess Shale organisms have remained mainly anecdotal. Results: Here, we present evidence for mass molting events in two unrelated arthropods from the Burgess Shale Walcott Quarry, Canadaspis perfecta and a megacheiran referred to as Alalcomenaeus sp. Conclusions: These findings suggest that the triggers for such supposed synchronized molting appeared early on during the Cambrian radiation, and synchronized molting in the Cambrian may have had similar functions in the past as it does today. In addition, the finding of numerous juvenile Alalcomenaeus sp. molts associated with the putative alga Dictyophycus suggests a possible nursery habitat. In this nursery habitat a population of this animal might have found a more protected environment in which to spend critical developmental phases, as do many modern species today. Keywords: Burgess Shale, Cambrian bioradiation, ‘Cambrian explosion’, Demecology, Molting, Nursery habitats Background can serve as a basis for synecological consideration, e.g., The incompleteness of the fossil record makes recons- predator-prey interactions [4], and the study of larger com- tructing animal ecosystems of the past, a particularly munity and ecological patterns (for example, [5]). -
THE PRINTING WOOD BLOCK COLLECTION of the GEOLOGICAL SURVEY of IRELAND by M.A
THE GEOLOGICAL CURATOR VOLUME 7, NO. 4 CONTENTS PAPERS TRIASSIC FOOTPRINTS: THE FIRST ENGLISH FINDS by G.R. Tresise and J.D. Radley...............................................................................................................................135 THE BURGESS SHALE FOSSILS AT THE NATURAL HISTORY MUSEUM, LONDON by D. García-Bellido Capdevila .............................................................................................................................141 THE PRINTING WOOD BLOCK COLLECTION OF THE GEOLOGICAL SURVEY OF IRELAND by M.A. Parkes, P. Coffey and P. Connaughton.......................................................................................................149 LOST AND FOUND............................................................................................................................................157 GEOLOGICAL CURATORS’ GROUP - November 2000 -133- Henleys Medical has long been recognised as a leading Henleys’ products most pertinent to readers of The name in the healthcare industry and now boasts over 50 Geological Curator include: a complete range of reaseable years service and expertise in an increasingly competitive bags in varying sizes and gauges, with or without writing market. panels or overprinted to your own specification; boxes for presentation and/or display of contents, manufactured in After many years supplying only the health service, clear polystyrene and available in nine sizes with internal Henleys’ healthy stock levels and competitive pricing partitions available