FUGIN: CO Observations Toward the Giant Molecular Cloud Complex W43: Dense Gas and Mini-Starbursts at the Tangential Direction of the Scutum Arm 0

Total Page:16

File Type:pdf, Size:1020Kb

FUGIN: CO Observations Toward the Giant Molecular Cloud Complex W43: Dense Gas and Mini-Starbursts at the Tangential Direction of the Scutum Arm 0 Publications of the Astronomical Society of Japan (2017), Vol. 00, No. 0 7 Fig. 3. Integrated intensity maps of (a) 12CO, (b) 13CO, and (c) C18O J 1–0 in region A (l 12 to 22 , b 1 to 1 ). The integrated velocity range is = = ◦ ◦ = − ◦ ◦ 50 km s 1 < V < 200 km s 1.Panel(d)showstheSpitzerGLIMPSEimage(blue,3.6µm; green, 5.4 µm; red, 8.0 µm) in the same region. (Color − − LSR − online) 風神FUGIN FOREST Unbiased Galactic plane Imaging survey with Nobeyama 45-m telescope Optical image: Axel Mellinger 1 2019/03/05 Star formation with ALMA FUGIN: CO observations toward the Giant molecular cloud complex W43: Dense gas and mini-starbursts at the tangential direction of the Scutum Arm 0 Mikito Kohno (Nagoya university D2) K. Tachihara, S. Fujita, A. Ohama, A. Nishimura, M. Hanaoka, Y. Fukui (Nagoya), K. Torii, T. Umemoto, T. Minamidani, M. Matsuo (NRO), N. Kuno, M. Kuriki (Tsukuba), K. Tokuda (NAOJ/Osaka Pref), R. Kiridoshi, T. Onishi (Osaka Pref), Y. Tsuda (Meisei), and FUGIN team 1 NRO45m/FOREST (Red: 12CO J=1–0, Green: 13CO J=1–0, C18O J=1–0) NAOJ ‒1 1 0 12 13 18 Fig. 4. Three-color peak Tmb intensity image of region A: CO (red), CO (green), and C O (blue). (Color online) Spitzer/GLIMPSE+MIPSGAL (Red: 24μm, Green: 8μm, Blue:5.8μm) NASA/JPL-Caltech ‒1 50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 three CO lines, and it is possible to investigate the global intense. The red clouds, which are very bright in 12CO but physical conditions of Galactic GMCs in a way similar to very weak in 13CO and C18O, indicate low optical depth Barnes et al. (2015). In figure 4,denseandwarmregions and high temperature regions. On the other hand, green are shown in white, where all 12CO, 13CO, and C18O are and blue clouds, where 13CO/12CO or C18O/12CO is high, Dense gas and6 high-mass star formationPublications ofin the Astronomicalthe GMC Society of Japan (2018), Vol. 00, No. 0 NGC 6334-6357 (Fukui+18) K km/s 1987IAUS..115....1L 12 Image (Spitzer): (a) HPBW grid 10 pc CO J=2-1 0 180 360 Red: 24 um 1.2 Vlsr: -30.0 - 4.0 km/s Green : 8 um Contour levels : min 25 K km/s, Step 25 K km/s 1.0 Blue : 3.6 um 0.8 0.6 0.4 Galactic Latitude [degree] (b) Contour levels : min 0.2 K degree, Step 0.4 K degree GMC GMC evolution GMC High-mass star 0 -10 Dense gas Vlsr [km/s] Vlsr 100 pc Lada 1987 -20 • What is the origin of the dense gas in the GMC ? Resolution B: 0.45 - 0.97 deg. • How do high-mass stars formed in the GMC ? 2 353 352 351 K degree Galactic Longitude [degree] 0.0 3.4 6.8 Fig. 4. (a) Integrated intensity map of 12CO J 2–1 obtained with NANTEN2. Purple and black crosses indicate infrared sources (PT08)andOB-type = stars (PT08, Fang et al. 2012), respectively. The final beam sizes after convolution and grid spacing are 90′′ and 30′′,respectively.Theintegrated 1 1 1 velocity range is from 30 to 4 km s− .The1σ noise level is 1.8 K km s− for the velocity interval of 34 km s− .Thelowestcontourandcontour −1 ∼ 12 intervals are 25 K km s− . (b) Galactic longitude–velocity diagram of CO J 2–1. The integrated latitude range is from 0.◦45 to 0.◦97. The velocity 1 = resolution is smoothed to 0.5 km s .The1σ noise level is 0.07 K degree for the latitude interval of 0.◦54. The lowest contour and contour intervals − ∼ are 0.2 K degree and 0.4 K degree, respectively. the main component and the blueshifted component in the 3.2 NGC 6334 following three regions: l 351.◦0– 351.◦5 (NGC 6334), 12 = Figure 6 shows a CO J 2–1 distribution of the main l 351.◦8–352.◦0 (MC351.9 0.7), and l 352.◦7–353.◦3 = = + = component of the NGC 6334 molecular cloud integrated (NGC 6357). 1 1 between 12 km s− and 2 km s− .Figure7 shows the 12 − Figure 5 shows the CO intensity line ratio of the 12CO distribution for the blueshifted component integrated J 2–1 emission to the J 1–0 emission in the l–b and 1 1 between 20 km s− and 12 km s− .Figure8 shows an = = − − velocity–l diagrams. We convolved the beam size of the overlay of the two components, which indicates a good 12 CO (J 2–1) to 180′′, which is the final beam size of the correspondence between the two velocity components. 12 = CO (J 1–0) data. The clipping levels of figures 5a and 5b 13 = Figure 9a shows the CO J 3–2 distribution of 1 = are 9σ (25 K km s− ) and 3σ (0.3 K degree), respectively. NGC 6334. We identified five 13CO clumps towards the far- The ratio is enhanced to be more than 0.8 in the regions of infrared sub-regions except for II, as listed in table 2.The GM 24, NGC 6334, and NGC 6357 in the main compo- clump boundary is defined at a 75% level of the peak inte- nent. We also note the bridge features toward NGC 6344 grated intensity. We derived the physical parameters using and NGC 6357 show enhancement of the ratio at 8– the 13CO J 3–2 emission (Buckle et al. 2010) under an 1 = 10 km s− . These high ratios suggest that the gas is in a assumption of local thermal equilibrium (LTE). Figure 9b high-excitation state due to heating by the high-mass stars. shows the radio continuum distribution, which traces the Downloaded from https://academic.oup.com/pasj/advance-article-abstract/doi/10.1093/pasj/psy017/4955196 by guest on 31 March 2018 steep intensity gradient in the 12CO emissions, while G012.820-00.238 is surrounded by molecular gas, especially in the 13CO and C18O emissions. W33 Main is sandwiched by these two H II re- 1 gions. The 45 km s− cloud has diffuse CO emission extended over the present region. The compact emissions at W33 Main and W33 A correspond to the wing features of the outflows (see Section 1 1 3.6 for details), and are thus not related to the 45 km s− cloud. Molecular gas in the 58 km s− cloud is separated into the northern and southern components relative to W33 and the central part corresponding to W33 is weak in the CO emission. There are several clumpy structures embedded at the northern rim of the southern component, which are clearly seen in the 12CO emissions, and these clumps show spatial correlations with radio continuum emissions from the H II regions G012.745- 00.153 and G012.692-00.251 as well as W33 B. In the C18O map in Figure 3(i) and Figure 4(d), W33 B is associated with the strong CO peak. There are several other clumpy molecular structures 1 at the interspace between the northern and southern components of the 58 km s− cloud, forming an arc-like molecular structure which looks surrounding W33. The size of arc-like structure is roughly estimated to be 7 pc. On the other hand, clear associations of molecular clumps with W33 A1 and ∼ W43 (Westerhout 43)W33 Main1 are not recognized. We derived the column densities and masses of the three velocity clouds using the 12CO in- Spitzer, blue: 3.6 μm, green: 8.0 μm, red: 24 μm tegrated intensity maps shown in Figures 3(a)-(c), where we defied the individual clouds by drawing • Parallactic distance 1 (a) contours at 5σ noise levels in the integrated intensity of 8 K km s− for the velocity interval of 10 5.51 kpc 20 1 1 2 km s(Zhang− . Byet al. assuming 2015) a X(CO) factor of 2 10 (K km s− )− cm− (Strong et al. 1988), we esti- × 1 1 1 22 mated• GMC the meancomplex column densities of the 35 km s− , 45 km s− , and 58 km s− clouds as 1.7 10 × 2 22 2 21 2 cm− ,–1.Size7 10: 100cm− pcand 6.2 10 cm− , respectively, with the total molecular masses derived × × W43 Main W43 South as 1.1– 10Mass5M : ,7.11.0101065M , and 3.8 104M . The uncertainty of mass estimation using X-factor × (Nguyen⊙ Luong+2011)× ⊙ × ⊙ is about 30 % (Bolatto et al. 2013). Lin et al. (2016) derived the mean column densities as • Three± high-mass star 22 2 2.5 10 cm− using the infrared dust emission data obtained by Herschel, which is consistent with ×forming regions G30.5 our estimate.– W43 Main – G30.5 N 3.2 C–18OW43 molecular South clump properties 50pc We define C18O molecular clumps using the following procedures in order to investigate the physical 1 1 properties of dense molecular gas belonging to the 35 km s− and 58 km s− clouds corresponding to (b) W43 Main (c) G30.5 (d) W43 South the dust clumps. IRAS 18445-0222 G030.213-00.156 (Bally+2010)1. Search for a peak integrated intensity toward the six dust clumps. Galactic mini-star burst region 3 2. Define a clump boundary as the half level of its peak integrated intensity. IRAS 18447-0229 3. If the area enclosed by the boundary have multiple peaks, define the boundary as a contour of the G030.404-00.238 10 IRAS 18456-0223 10pc 10pc 10pc Publications of the Astronomical Society of Japan, (2014), Vol.
Recommended publications
  • Early Stages of Massive Star Formation
    Early Stages of Massive Star Formation Vlas Sokolov Munchen¨ 2018 Early Stages of Massive Star Formation Vlas Sokolov Dissertation an der Fakultat¨ fur Physik der Ludwig–Maximilians–Universitat¨ Munchen¨ vorgelegt von Vlas Sokolov aus Kyjiw, Ukraine Munchen,¨ den 13 Juli 2018 Erstgutachter: Prof. Dr. Paola Caselli Zweitgutachter: Prof. Dr. Markus Kissler-Patig Tag der mundlichen¨ Prufung:¨ 27 August 2018 Contents Zusammenfassung xv Summary xvii 1 Introduction1 1.1 Overview......................................1 1.2 The Interstellar Medium..............................2 1.2.1 Molecular Clouds..............................5 1.3 Low-mass Star Formation..............................9 1.4 High-Mass Star and Cluster Formation....................... 12 1.4.1 Observational perspective......................... 14 1.4.2 Theoretical models............................. 16 1.4.3 IRDCs as the initial conditions of massive star formation......... 18 1.5 Methods....................................... 20 1.5.1 Radio Instrumentation........................... 20 1.5.2 Radiative Processes in the Dark Clouds.................. 22 1.5.3 Blackbody Dust Emission......................... 23 1.5.4 Ammonia inversion transitions....................... 26 1.6 This Thesis..................................... 28 2 Temperature structure and kinematics of the IRDC G035.39–00.33 31 2.1 Abstract....................................... 31 2.2 Introduction..................................... 32 2.3 Observations.................................... 33 2.3.1 GBT observations............................
    [Show full text]
  • The Galaxy in Context: Structural, Kinematic & Integrated Properties
    The Galaxy in Context: Structural, Kinematic & Integrated Properties Joss Bland-Hawthorn1, Ortwin Gerhard2 1Sydney Institute for Astronomy, School of Physics A28, University of Sydney, NSW 2006, Australia; email: [email protected] 2Max Planck Institute for extraterrestrial Physics, PO Box 1312, Giessenbachstr., 85741 Garching, Germany; email: [email protected] Annu. Rev. Astron. Astrophys. 2016. Keywords 54:529{596 Galaxy: Structural Components, Stellar Kinematics, Stellar This article's doi: 10.1146/annurev-astro-081915-023441 Populations, Dynamics, Evolution; Local Group; Cosmology Copyright c 2016 by Annual Reviews. Abstract All rights reserved Our Galaxy, the Milky Way, is a benchmark for understanding disk galaxies. It is the only galaxy whose formation history can be stud- ied using the full distribution of stars from faint dwarfs to supergiants. The oldest components provide us with unique insight into how galaxies form and evolve over billions of years. The Galaxy is a luminous (L?) barred spiral with a central box/peanut bulge, a dominant disk, and a diffuse stellar halo. Based on global properties, it falls in the sparsely populated \green valley" region of the galaxy colour-magnitude dia- arXiv:1602.07702v2 [astro-ph.GA] 5 Jan 2017 gram. Here we review the key integrated, structural and kinematic pa- rameters of the Galaxy, and point to uncertainties as well as directions for future progress. Galactic studies will continue to play a fundamen- tal role far into the future because there are measurements that can only be made in the near field and much of contemporary astrophysics depends on such observations. 529 Redshift (z) 20 10 5 2 1 0 1012 1011 ) ¯ 1010 M ( 9 r i 10 v 8 M 10 107 100 101 102 ) c p 1 k 10 ( r i v r 100 10-1 0.3 1 3 10 Time (Gyr) Figure 1 Left: The estimated growth of the Galaxy's virial mass (Mvir) and radius (rvir) from z = 20 to the present day, z = 0.
    [Show full text]
  • The Supernova Remnant W49B As Seen with H.E.S.S
    PUBLISHED VERSION H.E.S.S. Collaboration: H. Abdalla … R. Blackwell … P. DeWilt … J. Hawkes … J. Lau … N. Maxted … G. Rowell … F. Voisin … et al. The supernova remnant W49B as seen with H.E.S.S. and Fermi-LAT Astronomy and Astrophysics, 2018; 612:A5-1-A5-10 © ESO 2018 Originally published: http://dx.doi.org/10.1051/0004-6361/201527843 PERMISSIONS https://www.aanda.org/index.php?option=com_content&view=article&id=863&Itemid=2 95 Green Open Access The Publisher and A&A encourage arXiv archiving or self-archiving of the final PDF file of the article exactly as published in the journal and without any period of embargo. 19 September 208-18 http://hdl.handle.net/2440/112084 A&A 612, A5 (2018) Astronomy DOI: 10.1051/0004-6361/201527843 & c ESO 2018 Astrophysics H.E.S.S. phase-I observations of the plane of the Milky Way Special issue The supernova remnant W49B as seen with H.E.S.S. and Fermi-LAT? H.E.S.S. Collaboration: H. Abdalla1, A. Abramowski2, F. Aharonian3,4,5, F. Ait Benkhali3, A. G. Akhperjanian5; 6,y, T. Andersson10, E. O. Angüner7, M. Arrieta15, P. Aubert24, M. Backes8, A. Balzer9, M. Barnard1, Y. Becherini10, J. Becker Tjus11, D. Berge12, S. Bernhard13, K. Bernlöhr3, R. Blackwell14, M. Böttcher1, C. Boisson15, J. Bolmont16, P. Bordas3, J. Bregeon17, F. Brun26,??, P. Brun18, M. Bryan9, T. Bulik19, M. Capasso29, J. Carr20, S. Casanova21,3, M. Cerruti16, N. Chakraborty3, R. Chalme-Calvet16, R.C. G. Chaves17,22, A. Chen23, J. Chevalier24, M. Chrétien16, S.
    [Show full text]
  • Pga 183525.Pdf
    Condensed Technical Program USNC/URSI 15-19 May 1978 MONDAY, 15 MAY Room 0900-1200 B-1 Electromagnetics 0105 B-2 SEM 0109 E-1 Lightning, Spherics and Noise (Joint with F and H) 1105 1330-1700 B-3 Thin Wires 0105 B-4 Inverse Scattering and Profile Reconstruction 0109 E-2 CCIR Panel Discussion (Joint with F) 1105 F-1 Oceanography 1109 1700 Commission E Business Meeting 1105 1715 Commission B Business Meeting 0105 TUESDAY, 16 MAY 0830-1200 B-5 Scattering 0109 C-1 Impairments to Earth-Satellite Transmission 1101 F-2 Remote Sensing of the Atmosphere from Space 1109 1330-1700 B-6 Transmission Lines 0109 C-2 System Aspects of Antennas and Dual Polarization 1101 Transmission F-3 Scattering by Random Media and Rough Surfaces (Joint with 1109 AP-S and B) G-1 HF Radio Wave Absorption and Heating Effects 0123 1700 Commission C Business Meeting 1101 Commission F Business Meeting 0123 Commission H Business Meeting 0123 (continued on inside back cover) United States National Connnittee INTERNATIONAL UNION.OF RADIO SCIENCE PROGRAM AND ABSTRACTS 1978 Spring Meeting May 15-19 Held Jointly with ANTENNAS AND PROPAGATION SOCIETY INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS Washington, D.C. ]!Q:!!: Programs and Abstracts of the USNC/URSI Meetings are available from: USNC/URSI National Academy of Sciences 2101 Constitution Avenue, N.W. Washington, D.C. 20418 at $2 for meetings prior to 1970, $3 for 1971-75 meetings, and $5 for 1976-78 meetings. The full papers are not published in any collected format; requests for them should be addressed to the authors who may have them published on their own initiative.
    [Show full text]
  • VI. Dense Gas and Mini-Starbursts in the W43 Giant Molecular Cloud Complex
    Publ. Astron. Soc. Japan (2014) 00(0), 1–42 1 doi: 10.1093/pasj/xxx000 FOREST Unbiased Galactic plane Imaging survey with the Nobeyama 45 m telescope (FUGIN). VI. Dense gas and mini-starbursts in the W43 giant molecular cloud complex Mikito KOHNO1∗ ∗ , Kengo TACHIHARA1∗, Kazufumi TORII2∗, Shinji FUJITA1,3∗, Atsushi NISHIMURA1,3, Nario KUNO4,5,12, Tomofumi UMEMOTO2,6, Tetsuhiro MINAMIDANI2,6,7, Mitsuhiro MATSUO2, Ryosuke KIRIDOSHI3, Kazuki TOKUDA3,7, Misaki HANAOKA1, Yuya TSUDA8, Mika KURIKI4, Akio OHAMA1, Hidetoshi SANO1,7,9, Tetsuo HASEGAWA7, Yoshiaki SOFUE10, Asao HABE11, Toshikazu ONISHI3 and Yasuo FUKUI1,9 1Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan 2Nobeyama Radio Observatory, National Astronomical Observatory of Japan (NAOJ), National Institutes of Natural Sciences (NINS), 462-2, Nobeyama, Minamimaki, Minamisaku, Nagano 384-1305, Japan 3Department of Physical Science, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan 4Department of Physics, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Ten-nodai, Tsukuba, Ibaraki 305-8577, Japan 5Tomonaga Center for the History of the Universe, University of Tsukuba, Ten-nodai 1-1-1, Tsukuba, Ibaraki 305-8571, Japan 6Department of Astronomical Science, School of Physical Science, SOKENDAI (The Graduate University for Advanced Studies), 2-21-1, Osawa, Mitaka, Tokyo 181-8588, Japan 7National Astronomical Observatory of Japan (NAOJ),
    [Show full text]
  • Structure and Kinematics of the Clouds Surrounding the Galactic Mini-Starburst W43 MM1 T
    A&A 595, A66 (2016) Astronomy DOI: 10.1051/0004-6361/201628653 & c ESO 2016 Astrophysics Structure and kinematics of the clouds surrounding the Galactic mini-starburst W43 MM1 T. Jacq1, J. Braine1, F. Herpin1, F. van der Tak2; 4, and F. Wyrowski3 1 Laboratoire d’Astrophysique de Bordeaux, Univ. Bordeaux, CNRS, B18N, Allée Geoffroy Saint-Hilaire, 33615 Pessac, France e-mail: [email protected] 2 SRON Netherlands Institute for Space Research, PO Box 800, 9700AV Groningen, The Netherlands 3 Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany 4 Kapteyn Astronomical Institute, University of Groningen, 9712 CP Groningen, The Netherlands Received 6 April 2016 / Accepted 28 July 2016 ABSTRACT Massive stars have a major influence on their environment, yet their formation is difficult to study as they form quickly in highly obscured regions and are rare, hence more distant than lower mass stars. Westerhout 43 (W43) is a highly luminous galactic massive star-forming region at a distance of 5.5 kpc and the MM1 part hosts a particularly massive dense core (1000 M within 0.05 pc). We present new Herschel HIFI maps of the W43 MM1 region covering the main low-energy water lines at 557, 987, and 1113 GHz; 18 13 18 their H2 O counterparts; and other lines such as CO (10–9) and C O (9–8), which trace warm gas. These water lines are, with the exception of line wings, observed in absorption. Herschel SPIRE and JCMT 450 µm data have been used to make a model of the continuum emission at the HIFI wavelengths.
    [Show full text]
  • RADIO EMISSION from 16 POSSIBLE SUPERNOVA REMNANTS by D. K. MILNE* and E. R. HILL* 1. INTRODUCTION There Are Some 40 Radio Sourc
    RADIO EMISSION FROM 16 POSSIBLE SUPERNOVA REMNANTS By D. K. MILNE* and E. R. HILL* [Manuscript received August 29, 1968] Summary Sixteen radio sources, thought to be supernova remnants, have been observed at several frequencies between 408 and 2700 MHz. These data, together with previously published observations, have been used to derive spectra for these sources. The validity of the supernova remnant classification of certain of these sources is questioned. 1. INTRODUCTION There are some 40 radio sources classified in the literature as remnants of galactic supernovae. T:Q.e identification of these objects has generally followed the rules: (1) The radio spectrum is nonthermal. (2) The angular size is large enough to exclude identification as an external galaxy. (3) The object should be a population I member (i.e. within 250 pc of the galactic plane). (4) If the source is visible optically, then it should not be an HII region, and preferably should show some of the characteristic filamentary structure usually associated with supernova remnants. (5) A radio brightness distribution indicating a shell structure. To date the radio data available for these objects have been scant, particularly for certain of the southern sources. Within the range of the Parkes 210 ft radio telescope (declination +27° to -90°) there are 24 radio sources classified as galactic supernova remnants. Some of these have been examined using the Parkes facilities (e.g. Gardner and Milne 1965; Hill 1967 ; Whiteoak and Gardner 1967; Milne 1968a) whilst for the other remnants often the only data available are from the low-resolution galactic surveys (e.g.
    [Show full text]
  • Structure and Kinematics of the Clouds Surrounding the Galactic Mini-Starburst W43 MM1 Jacq, T.; Braine, J.; Herpin, F.; Van Der Tak, F.; Wyrowski, F
    University of Groningen Structure and kinematics of the clouds surrounding the Galactic mini-starburst W43 MM1 Jacq, T.; Braine, J.; Herpin, F.; van der Tak, F.; Wyrowski, F. Published in: Astronomy and astrophysics DOI: 10.1051/0004-6361/201628653 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2016 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Jacq, T., Braine, J., Herpin, F., van der Tak, F., & Wyrowski, F. (2016). Structure and kinematics of the clouds surrounding the Galactic mini-starburst W43 MM1. Astronomy and astrophysics, 595(November 2016 ), [A66]. https://doi.org/10.1051/0004-6361/201628653 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal.
    [Show full text]
  • The Bones of the Milky Way.Pdf (6.732Mb)
    The Bones of the Milky Way The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Goodman, Alyssa A., João Alves, Christopher N. Beaumont, Robert A. Benjamin, Michelle A. Borkin, Andreas Burkert, Thomas M. Dame et al. "The bones of the Milky Way." The Astrophysical Journal 797, no. 1 (2014): 53. Published Version doi:10.1088/0004-637X/797/1/53 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:12655583 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#OAP The Bones of the Milky Way Alyssa A. Goodman Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 Jo~aoAlves University of Vienna, 1180 Vienna, Austria Christopher N. Beaumont Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 Robert A. Benjamin University of Wisconsin-Whitewater, Whitewater, WI 53190 Michelle A. Borkin Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 Andreas Burkert University of Munich, Munich, Germany Thomas M. Dame Smithsonian Astrophysical Observatory, Cambridge, MA 02138 James Jackson Boston University, Boston, MA 02215 Jens Kauffmann California Institute of Technology, Pasadena, CA 91125 Thomas Robitaille Max Planck Institute for Astronomy, Heidelberg, Germany Received ; accepted To appear in The Astrophysical Journal (ApJ) –2– ABSTRACT The very long and thin infared dark cloud “Nessie” is even longer than had been previously claimed, and an analysis of its Galactic location suggests that it lies directly in the Milky Way’s mid-plane, tracing out a highly elongated bone- like feature within the prominent Scutum-Centaurus spiral arm.
    [Show full text]
  • The O-And B-Type Stellar Population in W3: Beyond the High-Density Layer
    Accepted to ApJ: 30 August 2015 A Preprint typeset using LTEX style emulateapj v. 08/22/09 THE O- AND B-TYPE STELLAR POPULATION IN W3: BEYOND THE HIGH-DENSITY LAYER Megan M. Kiminki1, Jinyoung Serena Kim1, Micaela B. Bagley1,2, William H. Sherry3,4, and George H. Rieke1 Accepted to ApJ: 30 August 2015 ABSTRACT We present the first results from our survey of the star-forming complex W3, combining V RI pho- tometry with multiobject spectroscopy to identify and characterize the high-mass stellar population across the region. With 79 new spectral classifications, we bring the total number of spectroscopically- confirmed O- and B-type stars in W3 to 105. We find that the high-mass slope of the mass function in W3 is consistent with a Salpeter IMF, and that the extinction toward the region is best characterized by an RV of approximately 3.6. B-type stars are found to be more widely dispersed across the W3 giant molecular cloud (GMC) than previously realized: they are not confined to the high-density layer (HDL) created by the expansion of the neighboring W4 H II region into the GMC. This broader B-type population suggests that star formation in W3 began spontaneously up to 8–10 Myr ago, although at a lower level than the more recent star formation episodes in the HDL. In addition, we describe a method of optimizing sky subtraction for fiber spectra in regions of strong and spatially-variable nebular emission. Subject headings: dust, extinction — open clusters and associations: individual (Westerhout 3) — stars: early-type — stars: formation — stars: luminosity function, mass function 1.
    [Show full text]
  • Star Formation and Molecular Clouds Towards the Galactic Anti-Center
    Handbook of Star Forming Regions Vol. I Astronomical Society of the Pacific, c 2008 Bo Reipurth, ed. Star Formation and Molecular Clouds towards the Galactic Anti-Center Bo Reipurth Institute for Astronomy, University of Hawaii 640 N. Aohoku Place, Hilo, HI 96720, USA Chi-Hung Yan Institute of Astronomy and Astrophysics, Academia Sinica P.O. Box 23-141, Taipei 10617, Taiwan National Taiwan Normal University 88 Sec. 4, Tingzhou Road, Taipei, 11766, Taiwan Abstract. The Galactic Anticenter region hosts a a number of massive molecular cloud complexes, some of which are currently actively forming stars. Two major OB associations, Gem OB1 and Aur OB1, are found in this direction, each with numerous massive stars and a supernova remnant. The dominant region of star formation is cen- tered around the Sh 2-235 complex and the nearby regions AFGL 5142, 5144, and 5157 towards Aur OB1. Studies of these regions have long been affected by relatively poor distance determinations, although there is general consensus that most regions are lo- cated at distances between 1.5 and 2 kpc. A number of well-known, relatively isolated Herbig Ae/Be stars are found in this general direction, including RR Tau, HD 250550, and LkHα 208. 1. Overview The region towards the Galactic Anticenter is rich in molecular clouds and star forma- tion activity, although most is located at a considerable distance. In this chapter, we summarize key features of the principal regions of star formation out to approximately 2 kpc. A number of very interesting regions exist at larger distances, but those are be- yond the scope of this review.
    [Show full text]
  • Submitted to the Combined Faculties for the Natural Sciences and For
    Dissertation submitted to the Combined Faculties for the Natural Sciences and for Mathematics of the Ruperto-Carola University of Heidelberg, Germany for the degree of Doctor of Natural Sciences presented by Diplom-Physikerin Jessica Agarwal Born in Kiel, Germany Oral examination: 26 July 2007 The Emission of Large Dust Particles from Comet 67P/Churyumov-Gerasimenko Constrained by Observation and Modelling of its Dust Trail Referees: Prof. Dr. Eberhard Grun¨ Simon F. Green, PhD Zusammenfassung. Gegenstand der Arbeit ist die Untersuchung von Staubteilchen des Kometen 67P/Chur- yumov-Gerasimenko, die großer¨ als 60µm sind. Zu diesem Zweck werden astronomische Bilder des Staub-Trails dieses Kometen ausgewertet. Solche Teilchen stellen den großten¨ Teil der Staubmasse dar, die von Kometen in den interplanetaren Raum eingetragen wer- den. Im Gegensatz zu kleineren Teilchen verbleiben sie auf Trajektorien, die der des Ko- meten sehr ahnlich¨ sind. Dem Beobachter erscheinen sie als eine schmale Struktur entlang des projizierten Kometenorbits, die als Staub-Trail bezeichnet wird. Die erste im Rahmen dieser Arbeit untersuchte Beobachtung wurde im April 2004 in sichtbarem Licht mit dem Wide Field Imager am ESO/MPG-2.2m-Teleskop auf La Silla (Chile) durchgefuhrt.¨ Der Abstand des Kometen von der Sonne betrug zu diesem Zeitpunkt 4.7 A.E. Zwei weitere Beobachtungen wurden im August 2005 und im April 2006 im mittleren Infrarot (24 µm) ausgefuhrt¨ mit der MIPS-Kamera auf dem Spitzer-Weltraumteleskop. In beiden Fallen¨ war der Komet 5.7 A.E. von der Sonne entfernt. In der dazwischenliegenden Zeit, im No- vember 2005, hatte er das Aphel passiert. Zur Interpretation der Daten werden simulierte Trailbilder erzeugt.
    [Show full text]