Cloud Structure of Galactic Ob Cluster-Forming Regions

Total Page:16

File Type:pdf, Size:1020Kb

Cloud Structure of Galactic Ob Cluster-Forming Regions The Astrophysical Journal, 828:32 (50pp), 2016 September 1 doi:10.3847/0004-637X/828/1/32 © 2016. The American Astronomical Society. All rights reserved. CLOUD STRUCTURE OF GALACTIC OB CLUSTER-FORMING REGIONS FROM COMBINING GROUND- AND SPACE-BASED BOLOMETRIC OBSERVATIONS Yuxin Lin1, Hauyu Baobab Liu2,DiLi1,3, Zhi-Yu Zhang4,2, Adam Ginsburg2, Jaime E. Pineda5, Lei Qian1, Roberto Galván-Madrid6, Anna Faye McLeod2, Erik Rosolowsky7, James E. Dale8,9, Katharina Immer2, Eric Koch7, Steve Longmore10, Daniel Walker10, and Leonardo Testi2 1 National Astronomical Observatories, Chinese Academy of Sciences, China; [email protected] 2 European Southern Observatory (ESO), Karl-Schwarzschild-Str. 2, D-85748 Garching, Germany 3 Key Laboratory of Radio Astronomy, Chinese Academy of Sciences, China 4 Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ, UK 5 Max-Planck-Institut für Extraterrestrische Physik, Gießenbach-str 1, D-85748, Garching bei München, Germany 6 Instituto de Radioastronomía y Astrofísica, UNAM, Apdo. Postal 3-72 (Xangari), 58089 Morelia, Michoacán, México 7 Department of Physics, University of Alberta, 4-181 CCIS, Edmonton, AB T6G 2E1, Canada 8 Universitäts–Sternwarte München, Scheinerstr. 1, D-81679 München, Germany 9 Excellence Cluster “Universe,” Boltzmannstr. 2, D-85748 Garching, Germany 10 Astrophysics Research Institute, Liverpool John Moores University, 146 Brownlow Hill, Liverpool L3 5RF, UK Received 2016 March 31; revised 2016 June 22; accepted 2016 June 23; published 2016 August 25 ABSTRACT We have developed an iterative procedure to systematically combine the millimeter and submillimeter images of OB cluster-forming molecular clouds, which were taken by ground-based (CSO, JCMT, APEX, and IRAM-30 m) 6 and space telescopes (Herschel and Planck ). For the seven luminous (L > 10 Le) Galactic OB cluster-forming molecular clouds selected for our analyses, namely W49A, W43-Main, W43-South, W33, G10.6-0.4, G10.2-0.3, and G10.3-0.1, we have performed single-component, modified blackbody fits to each pixel of the combined (sub) millimeter images, and the Herschel PACS and SPIRE images at shorter wavelengths. The ∼10″ resolution dust column density and temperature maps of these sources revealed dramatically different morphologies, indicating very different modes of OB cluster-formation, or parent molecular cloud structures in different evolutionary stages. The molecular clouds W49A, W33, and G10.6-0.4 show centrally concentrated massive molecular clumps that are connected with approximately radially orientated molecular gas filaments. The W43-Main and W43-South molecular cloud complexes, which are located at the intersection of the Galactic near 3 kpc (or Scutum) arm and the Galactic bar, show a widely scattered distribution of dense molecular clumps/cores over the observed ∼10 pc spatial scale. The relatively evolved sources G10.2-0.3 and G10.3-0.1 appear to be affected by stellar feedback, and show a complicated cloud morphology embedded with abundant dense molecular clumps/cores. We find that with the high angular resolution we achieved, our visual classification of cloud morphology can be linked to the systematically derived statistical quantities (i.e., the enclosed mass profile, the column density probability distribution function (N-PDF), the two-point correlation function of column density, and the probability distribution function of clump/core separations). In particular, the massive molecular gas clumps located at the center of G10.6-0.4 and W49A, which contribute to a considerable fraction of their overall cloud masses, may be special OB cluster-forming environments as a direct consequence of global cloud collapse. These centralized massive molecular gas clumps also uniquely occupy much higher column densities than what is determined by the overall fit of power-law N-PDF. We have made efforts to archive the derived statistical quantities of individual target sources, to permit comparisons with theoretical frameworks, numerical simulations, and other observations in the future. Key words: ISM: structure – methods: statistical – stars: formation – submillimeter: ISM – techniques: image processing 1. INTRODUCTION and 160 μm (∼6″ and 12″) bands can help identify heating sources (normally young stars) in the molecular clouds The Herschel far-infrared and submillimeter imaging ( ) observations on the Galactic plane have significantly advanced Churchwell et al. 2009; Stutz et al. 2013 , which help our our knowledge about the morphology, as well as the understanding of their star formation history. Studies of the ( ) temperature and density distributions, of molecular clouds parent molecular cloud properties require observations at sub (André et al. 2010; Molinari et al. 2010), including those of OB millimeter wavelengths, which are typically more sensitive to cluster forming regions (Motte et al. 2010). Recent Planck the thermal emission of the 10–30 K interstellar medium from images at (sub)millimeter and millimeter wavelengths further the optically thin part of the spectrum. The quantitative revealed an extremely cold population of dense molecular analyses, including the spectral energy distribution (SED) cores, namely the Planck Cold Clumps (Planck Collaboration fitting, need to be adjusted to the angular resolution of the 2011, 2015). These observations have provided a large sample longest wavelength observations (e.g., 37″ for Herschel of star-forming molecular clumps/cores in a broad range of observations at 500 μm wavelength). For cold molecular evolutionary stages. In addition, the better angular resolution of clumps, which typically have spatial scales of ∼0.5 pc, the the Spitzer near-infrared (∼2″ at 3.6–8 μm) and Herschel 70 population will be resolved for molecular clouds within 1 The Astrophysical Journal, 828:32 (50pp), 2016 September 1 Lin et al. d∼3 kpc, such as the Rosette and Carina molecular clouds large-scale heating due to, e.g., illumination from the (e.g., Schneider et al. 2012; Rebolledo et al. 2016). However, embedded OB-stars or shocks caused by supernovae or the majority of the distant population, e.g., ∼17″ at d ~ 6 kpc cloud–cloud collisions. We also investigate the column density (Bergin & Tafalla 2007) represents the initial state of star distribution function, density profiles, and the spatial correla- formation in giant molecular clouds (GMCs) and is therefore tion of dense structures. These quantities are fundamental to easily missed in the derived smeared and poor angular our understanding of massive star cluster formation, since the resolution temperature and column density maps. The contrast structures of molecular clouds can reflect their initial condition of the localized heating sources can also be significantly and their potential subsequent evolution due to gravitational suppressed due to this spatial smearing. contraction (Vázquez-Semadeni et al. 1995, 2007, 2009; Lada Ground-based millimeter and submillimeter bolometric & Lada 2003; Li et al. 2016). Therefore, they may be linked to observations can probe long wavelength emission of cold the origin of different modes of star formation, and may clumps at high angular resolution compared to space telescopes additionally reveal signatures of interaction between newly (Schuller et al. 2009; Aguirre et al. 2011; Ginsburg et al. 2013; formed stars with their natal clouds. We update the identifica- Merello et al. 2015). However, ground-based observations are tion of dense cores/clumps in these regions, and derive the often subject to extended and strong atmospheric emission at mass, averaged temperature, and bolometric luminosity of these wavelengths, which is not always distinguishable from cores and clumps. Finally, we investigate the spatial distribu- / / the extended emission of the molecular clouds. The atmo- tion segregation of the cold and hot cores clumps, which may spheric foreground subtraction procedures may lead to give clues on the fragmentation processes of these molecular significant missing flux from the molecular cloud, which will clouds. bias the observed fluxes of bright sources, and may leave the Our observations and data analysis procedures are outlined adjacent fainter sources partially or fully immersed in regions in Section 2. Our results are provided in Section 3. Comparison of negative brightness, known as negative “bowls.” The details among the observed star-forming regions is given in Section 4. of how the extended structures will be missed in the ground- Our conclusion and ending remarks are in Section 5. based bolometric imaging will also depend on the sky condition during the observations, which cannot be easily predicted with accuracy. Therefore, it is not trivial to correctly 2. OBSERVATIONS fit the SED solely with the ground-based bolometric images for the longer wavelengths, and such difficulties may prevent the We provide a brief description of our target sources in Section 2.1. Details of our Caltech Submillimeter Observatory identification and quantitative studies of some faint structures. (CSO) Submillimetre High Angular Resolution Camera II Sadavoy et al. (2013) have proposed that artificially filtering (SHARC2) 350 μm observations and data reductions are given out the extended structures from both the ground-based (sub) in Section 2.2. Section 2.3 outlines the archival data we millimeter bolometric images and from the shorter wavelength included for the SED analysis. Our procedures for producing images taken by the space telescopes can alleviate the bias
Recommended publications
  • High-Mass Starless Clumps in the Inner Galactic Plane: the Sample and Dust Properties Jinghua Yuan, Yuefang Wu, Simon P
    High-mass Starless Clumps in the Inner Galactic Plane: The Sample and Dust Properties Jinghua Yuan, Yuefang Wu, Simon P. Ellingsen, Neal J. Evans, Christian Henkel, Ke Wang, Hong-li Liu, Tie Liu, Jin-zeng Li, Annie Zavagno To cite this version: Jinghua Yuan, Yuefang Wu, Simon P. Ellingsen, Neal J. Evans, Christian Henkel, et al.. High- mass Starless Clumps in the Inner Galactic Plane: The Sample and Dust Properties. Astrophysical Journal Supplement, American Astronomical Society, 2017, 231 (1), 10.3847/1538-4365/aa7204. hal- 01678391 HAL Id: hal-01678391 https://hal.archives-ouvertes.fr/hal-01678391 Submitted on 9 May 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. HMSCs;Draft version March 2, 2018 Preprint typeset using LATEX style emulateapj v. 12/16/11 HIGH-MASS STARLESS CLUMPS IN THE INNER GALACTIC PLANE: THE SAMPLE AND DUST PROPERTIES Jinghua Yuan (袁lN)1y,Yuefang Wu (4月³)2,Simon P. Ellingsen3,Neal J. Evans II4,5,Christian Henkel6,7, Ke Wang (王科)8,Hong-Li Liu (刘*<)1,Tie Liu (刘Á)5,Jin-Zeng Li (N金增)1,Annie Zavagno9 1National Astronomical Observatories,
    [Show full text]
  • Early Stages of Massive Star Formation
    Early Stages of Massive Star Formation Vlas Sokolov Munchen¨ 2018 Early Stages of Massive Star Formation Vlas Sokolov Dissertation an der Fakultat¨ fur Physik der Ludwig–Maximilians–Universitat¨ Munchen¨ vorgelegt von Vlas Sokolov aus Kyjiw, Ukraine Munchen,¨ den 13 Juli 2018 Erstgutachter: Prof. Dr. Paola Caselli Zweitgutachter: Prof. Dr. Markus Kissler-Patig Tag der mundlichen¨ Prufung:¨ 27 August 2018 Contents Zusammenfassung xv Summary xvii 1 Introduction1 1.1 Overview......................................1 1.2 The Interstellar Medium..............................2 1.2.1 Molecular Clouds..............................5 1.3 Low-mass Star Formation..............................9 1.4 High-Mass Star and Cluster Formation....................... 12 1.4.1 Observational perspective......................... 14 1.4.2 Theoretical models............................. 16 1.4.3 IRDCs as the initial conditions of massive star formation......... 18 1.5 Methods....................................... 20 1.5.1 Radio Instrumentation........................... 20 1.5.2 Radiative Processes in the Dark Clouds.................. 22 1.5.3 Blackbody Dust Emission......................... 23 1.5.4 Ammonia inversion transitions....................... 26 1.6 This Thesis..................................... 28 2 Temperature structure and kinematics of the IRDC G035.39–00.33 31 2.1 Abstract....................................... 31 2.2 Introduction..................................... 32 2.3 Observations.................................... 33 2.3.1 GBT observations............................
    [Show full text]
  • The Galaxy in Context: Structural, Kinematic & Integrated Properties
    The Galaxy in Context: Structural, Kinematic & Integrated Properties Joss Bland-Hawthorn1, Ortwin Gerhard2 1Sydney Institute for Astronomy, School of Physics A28, University of Sydney, NSW 2006, Australia; email: [email protected] 2Max Planck Institute for extraterrestrial Physics, PO Box 1312, Giessenbachstr., 85741 Garching, Germany; email: [email protected] Annu. Rev. Astron. Astrophys. 2016. Keywords 54:529{596 Galaxy: Structural Components, Stellar Kinematics, Stellar This article's doi: 10.1146/annurev-astro-081915-023441 Populations, Dynamics, Evolution; Local Group; Cosmology Copyright c 2016 by Annual Reviews. Abstract All rights reserved Our Galaxy, the Milky Way, is a benchmark for understanding disk galaxies. It is the only galaxy whose formation history can be stud- ied using the full distribution of stars from faint dwarfs to supergiants. The oldest components provide us with unique insight into how galaxies form and evolve over billions of years. The Galaxy is a luminous (L?) barred spiral with a central box/peanut bulge, a dominant disk, and a diffuse stellar halo. Based on global properties, it falls in the sparsely populated \green valley" region of the galaxy colour-magnitude dia- arXiv:1602.07702v2 [astro-ph.GA] 5 Jan 2017 gram. Here we review the key integrated, structural and kinematic pa- rameters of the Galaxy, and point to uncertainties as well as directions for future progress. Galactic studies will continue to play a fundamen- tal role far into the future because there are measurements that can only be made in the near field and much of contemporary astrophysics depends on such observations. 529 Redshift (z) 20 10 5 2 1 0 1012 1011 ) ¯ 1010 M ( 9 r i 10 v 8 M 10 107 100 101 102 ) c p 1 k 10 ( r i v r 100 10-1 0.3 1 3 10 Time (Gyr) Figure 1 Left: The estimated growth of the Galaxy's virial mass (Mvir) and radius (rvir) from z = 20 to the present day, z = 0.
    [Show full text]
  • The Supernova Remnant W49B As Seen with H.E.S.S
    PUBLISHED VERSION H.E.S.S. Collaboration: H. Abdalla … R. Blackwell … P. DeWilt … J. Hawkes … J. Lau … N. Maxted … G. Rowell … F. Voisin … et al. The supernova remnant W49B as seen with H.E.S.S. and Fermi-LAT Astronomy and Astrophysics, 2018; 612:A5-1-A5-10 © ESO 2018 Originally published: http://dx.doi.org/10.1051/0004-6361/201527843 PERMISSIONS https://www.aanda.org/index.php?option=com_content&view=article&id=863&Itemid=2 95 Green Open Access The Publisher and A&A encourage arXiv archiving or self-archiving of the final PDF file of the article exactly as published in the journal and without any period of embargo. 19 September 208-18 http://hdl.handle.net/2440/112084 A&A 612, A5 (2018) Astronomy DOI: 10.1051/0004-6361/201527843 & c ESO 2018 Astrophysics H.E.S.S. phase-I observations of the plane of the Milky Way Special issue The supernova remnant W49B as seen with H.E.S.S. and Fermi-LAT? H.E.S.S. Collaboration: H. Abdalla1, A. Abramowski2, F. Aharonian3,4,5, F. Ait Benkhali3, A. G. Akhperjanian5; 6,y, T. Andersson10, E. O. Angüner7, M. Arrieta15, P. Aubert24, M. Backes8, A. Balzer9, M. Barnard1, Y. Becherini10, J. Becker Tjus11, D. Berge12, S. Bernhard13, K. Bernlöhr3, R. Blackwell14, M. Böttcher1, C. Boisson15, J. Bolmont16, P. Bordas3, J. Bregeon17, F. Brun26,??, P. Brun18, M. Bryan9, T. Bulik19, M. Capasso29, J. Carr20, S. Casanova21,3, M. Cerruti16, N. Chakraborty3, R. Chalme-Calvet16, R.C. G. Chaves17,22, A. Chen23, J. Chevalier24, M. Chrétien16, S.
    [Show full text]
  • Pga 183525.Pdf
    Condensed Technical Program USNC/URSI 15-19 May 1978 MONDAY, 15 MAY Room 0900-1200 B-1 Electromagnetics 0105 B-2 SEM 0109 E-1 Lightning, Spherics and Noise (Joint with F and H) 1105 1330-1700 B-3 Thin Wires 0105 B-4 Inverse Scattering and Profile Reconstruction 0109 E-2 CCIR Panel Discussion (Joint with F) 1105 F-1 Oceanography 1109 1700 Commission E Business Meeting 1105 1715 Commission B Business Meeting 0105 TUESDAY, 16 MAY 0830-1200 B-5 Scattering 0109 C-1 Impairments to Earth-Satellite Transmission 1101 F-2 Remote Sensing of the Atmosphere from Space 1109 1330-1700 B-6 Transmission Lines 0109 C-2 System Aspects of Antennas and Dual Polarization 1101 Transmission F-3 Scattering by Random Media and Rough Surfaces (Joint with 1109 AP-S and B) G-1 HF Radio Wave Absorption and Heating Effects 0123 1700 Commission C Business Meeting 1101 Commission F Business Meeting 0123 Commission H Business Meeting 0123 (continued on inside back cover) United States National Connnittee INTERNATIONAL UNION.OF RADIO SCIENCE PROGRAM AND ABSTRACTS 1978 Spring Meeting May 15-19 Held Jointly with ANTENNAS AND PROPAGATION SOCIETY INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS Washington, D.C. ]!Q:!!: Programs and Abstracts of the USNC/URSI Meetings are available from: USNC/URSI National Academy of Sciences 2101 Constitution Avenue, N.W. Washington, D.C. 20418 at $2 for meetings prior to 1970, $3 for 1971-75 meetings, and $5 for 1976-78 meetings. The full papers are not published in any collected format; requests for them should be addressed to the authors who may have them published on their own initiative.
    [Show full text]
  • A New Spiral Arm of the Galaxy: the Far 3-Kpc Arm T
    APJLETTERS, ACCEPTED 7/9/08 Preprint typeset using LATEX style emulateapj v. 08/13/06 A NEW SPIRAL ARM OF THE GALAXY: THE FAR 3-KPC ARM T. M. DAME AND P. THADDEUS Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge MA 02138 [email protected], [email protected] ApJ Letters, accepted 7/9/08 ABSTRACT We report the detection in CO of the far-side counterpart of the well-known expanding 3-Kpc Arm in the central region of the Galaxy. In a CO longitude-velocity map at b = 0◦ the Far 3-Kpc Arm can be followed over at least 20◦ of Galactic longitude as a faint lane at positive velocities running parallel to the Near Arm. The Far Arm crosses l = 0◦ at +56 km s-1, quite symmetric with the -53 km s-1expansion velocity of the Near Arm. In addition to their symmetry in longitude and velocity, we find that the two arms have linewidths (∼ 21 km s-1), 6 -1 linear scale heights (∼ 103 pc FWHM), and H2 masses per unit length (∼ 4:3 x 10 M kpc ) that agree to 26% or better. Guided by the CO, we have also identified the Far Arm in high-resolution 21 cm data and find, subject to the poorly known CO-to-H2 ratio in these objects, that both arms are predominately molecular by a factor of 3–4. The detection of these symmetric expanding arms provides strong support for the existence of a bar at the center of our Galaxy and should allow better determination of the bar’s physical properties.
    [Show full text]
  • VI. Dense Gas and Mini-Starbursts in the W43 Giant Molecular Cloud Complex
    Publ. Astron. Soc. Japan (2014) 00(0), 1–42 1 doi: 10.1093/pasj/xxx000 FOREST Unbiased Galactic plane Imaging survey with the Nobeyama 45 m telescope (FUGIN). VI. Dense gas and mini-starbursts in the W43 giant molecular cloud complex Mikito KOHNO1∗ ∗ , Kengo TACHIHARA1∗, Kazufumi TORII2∗, Shinji FUJITA1,3∗, Atsushi NISHIMURA1,3, Nario KUNO4,5,12, Tomofumi UMEMOTO2,6, Tetsuhiro MINAMIDANI2,6,7, Mitsuhiro MATSUO2, Ryosuke KIRIDOSHI3, Kazuki TOKUDA3,7, Misaki HANAOKA1, Yuya TSUDA8, Mika KURIKI4, Akio OHAMA1, Hidetoshi SANO1,7,9, Tetsuo HASEGAWA7, Yoshiaki SOFUE10, Asao HABE11, Toshikazu ONISHI3 and Yasuo FUKUI1,9 1Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan 2Nobeyama Radio Observatory, National Astronomical Observatory of Japan (NAOJ), National Institutes of Natural Sciences (NINS), 462-2, Nobeyama, Minamimaki, Minamisaku, Nagano 384-1305, Japan 3Department of Physical Science, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan 4Department of Physics, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Ten-nodai, Tsukuba, Ibaraki 305-8577, Japan 5Tomonaga Center for the History of the Universe, University of Tsukuba, Ten-nodai 1-1-1, Tsukuba, Ibaraki 305-8571, Japan 6Department of Astronomical Science, School of Physical Science, SOKENDAI (The Graduate University for Advanced Studies), 2-21-1, Osawa, Mitaka, Tokyo 181-8588, Japan 7National Astronomical Observatory of Japan (NAOJ),
    [Show full text]
  • Structure and Kinematics of the Clouds Surrounding the Galactic Mini-Starburst W43 MM1 T
    A&A 595, A66 (2016) Astronomy DOI: 10.1051/0004-6361/201628653 & c ESO 2016 Astrophysics Structure and kinematics of the clouds surrounding the Galactic mini-starburst W43 MM1 T. Jacq1, J. Braine1, F. Herpin1, F. van der Tak2; 4, and F. Wyrowski3 1 Laboratoire d’Astrophysique de Bordeaux, Univ. Bordeaux, CNRS, B18N, Allée Geoffroy Saint-Hilaire, 33615 Pessac, France e-mail: [email protected] 2 SRON Netherlands Institute for Space Research, PO Box 800, 9700AV Groningen, The Netherlands 3 Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany 4 Kapteyn Astronomical Institute, University of Groningen, 9712 CP Groningen, The Netherlands Received 6 April 2016 / Accepted 28 July 2016 ABSTRACT Massive stars have a major influence on their environment, yet their formation is difficult to study as they form quickly in highly obscured regions and are rare, hence more distant than lower mass stars. Westerhout 43 (W43) is a highly luminous galactic massive star-forming region at a distance of 5.5 kpc and the MM1 part hosts a particularly massive dense core (1000 M within 0.05 pc). We present new Herschel HIFI maps of the W43 MM1 region covering the main low-energy water lines at 557, 987, and 1113 GHz; 18 13 18 their H2 O counterparts; and other lines such as CO (10–9) and C O (9–8), which trace warm gas. These water lines are, with the exception of line wings, observed in absorption. Herschel SPIRE and JCMT 450 µm data have been used to make a model of the continuum emission at the HIFI wavelengths.
    [Show full text]
  • RADIO EMISSION from 16 POSSIBLE SUPERNOVA REMNANTS by D. K. MILNE* and E. R. HILL* 1. INTRODUCTION There Are Some 40 Radio Sourc
    RADIO EMISSION FROM 16 POSSIBLE SUPERNOVA REMNANTS By D. K. MILNE* and E. R. HILL* [Manuscript received August 29, 1968] Summary Sixteen radio sources, thought to be supernova remnants, have been observed at several frequencies between 408 and 2700 MHz. These data, together with previously published observations, have been used to derive spectra for these sources. The validity of the supernova remnant classification of certain of these sources is questioned. 1. INTRODUCTION There are some 40 radio sources classified in the literature as remnants of galactic supernovae. T:Q.e identification of these objects has generally followed the rules: (1) The radio spectrum is nonthermal. (2) The angular size is large enough to exclude identification as an external galaxy. (3) The object should be a population I member (i.e. within 250 pc of the galactic plane). (4) If the source is visible optically, then it should not be an HII region, and preferably should show some of the characteristic filamentary structure usually associated with supernova remnants. (5) A radio brightness distribution indicating a shell structure. To date the radio data available for these objects have been scant, particularly for certain of the southern sources. Within the range of the Parkes 210 ft radio telescope (declination +27° to -90°) there are 24 radio sources classified as galactic supernova remnants. Some of these have been examined using the Parkes facilities (e.g. Gardner and Milne 1965; Hill 1967 ; Whiteoak and Gardner 1967; Milne 1968a) whilst for the other remnants often the only data available are from the low-resolution galactic surveys (e.g.
    [Show full text]
  • The Observed Spiral Structure of the Milky Way⋆⋆⋆
    A&A 569, A125 (2014) Astronomy DOI: 10.1051/0004-6361/201424039 & c ESO 2014 Astrophysics The observed spiral structure of the Milky Way, L. G. Hou and J. L. Han National Astronomical Observatories, Chinese Academy of Sciences, Jia-20, DaTun Road, ChaoYang District, 100012 Beijing, PR China e-mail: [lghou;hjl]@nao.cas.cn Received 21 April 2014 / Accepted 7 July 2014 ABSTRACT Context. The spiral structure of the Milky Way is not yet well determined. The keys to understanding this structure are to in- crease the number of reliable spiral tracers and to determine their distances as accurately as possible. HII regions, giant molecular clouds (GMCs), and 6.7 GHz methanol masers are closely related to high mass star formation, and hence they are excellent spiral tracers. The distances for many of them have been determined in the literature with trigonometric, photometric, and/or kinematic methods. Aims. We update the catalogs of Galactic HII regions, GMCs, and 6.7 GHz methanol masers, and then outline the spiral structure of the Milky Way. Methods. We collected data for more than 2500 known HII regions, 1300 GMCs, and 900 6.7 GHz methanol masers. If the photo- metric or trigonometric distance was not yet available, we determined the kinematic distance using a Galaxy rotation curve with the −1 −1 current IAU standard, R0 = 8.5 kpc and Θ0 = 220 km s , and the most recent updated values of R0 = 8.3 kpc and Θ0 = 239 km s , after velocities of tracers are modified with the adopted solar motions. With the weight factors based on the excitation parameters of HII regions or the masses of GMCs, we get the distributions of these spiral tracers.
    [Show full text]
  • The SEDIGISM Survey: First Data Release and Overview of the Galactic Structure
    ORE Open Research Exeter TITLE The SEDIGISM survey: First Data Release and overview of the Galactic structure AUTHORS Schuller, F; Urquhart, JS; Csengeri, T; et al. JOURNAL Monthly Notices of the Royal Astronomical Society DEPOSITED IN ORE 01 June 2021 This version available at http://hdl.handle.net/10871/125888 COPYRIGHT AND REUSE Open Research Exeter makes this work available in accordance with publisher policies. A NOTE ON VERSIONS The version presented here may differ from the published version. If citing, you are advised to consult the published version for pagination, volume/issue and date of publication MNRAS 500, 3064–3082 (2021) doi:10.1093/mnras/staa2369 Advance Access publication 2020 September 11 The SEDIGISM survey: First Data Release and overview of the Galactic structure F. Schuller ,1,2,3‹ J. S. Urquhart ,4‹ T. Csengeri,1,5 D. Colombo,1 A. Duarte-Cabral ,6 M. Mattern,1 A. Ginsburg,7 A. R. Pettitt ,8 F. Wyrowski,1 L. Anderson,9 F. Azagra,2 P. Barnes,10 M. Beltran,11 H. Beuther,12 S. Billington ,4 L. Bronfman,13 R. Cesaroni,11 C. Dobbs,14 D. Eden ,15 M.-Y. Lee,16 S.-N.X.Medina,1 K. M. Menten,1 T. Moore,15 F. M. Montenegro-Montes,2 S. Ragan ,6 A. Rigby ,6 M. Riener,12 D. Russeil,17 E. Schisano ,18 A. Sanchez-Monge,19 A. Traficante ,18 A. Zavagno,17 2 5 13 20 2 21 12 C. Agurto, S. Bontemps, R. Finger, A. Giannetti, E. Gonzalez, A. K. Hernandez, T. Henning, Downloaded from https://academic.oup.com/mnras/article/500/3/3064/5904091 by guest on 28 May 2021 J.
    [Show full text]
  • Structure and Kinematics of the Clouds Surrounding the Galactic Mini-Starburst W43 MM1 Jacq, T.; Braine, J.; Herpin, F.; Van Der Tak, F.; Wyrowski, F
    University of Groningen Structure and kinematics of the clouds surrounding the Galactic mini-starburst W43 MM1 Jacq, T.; Braine, J.; Herpin, F.; van der Tak, F.; Wyrowski, F. Published in: Astronomy and astrophysics DOI: 10.1051/0004-6361/201628653 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2016 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Jacq, T., Braine, J., Herpin, F., van der Tak, F., & Wyrowski, F. (2016). Structure and kinematics of the clouds surrounding the Galactic mini-starburst W43 MM1. Astronomy and astrophysics, 595(November 2016 ), [A66]. https://doi.org/10.1051/0004-6361/201628653 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal.
    [Show full text]