Photometric Distances to Young Stars in the Inner Galactic Disk II
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Plotting Variable Stars on the H-R Diagram Activity
Pulsating Variable Stars and the Hertzsprung-Russell Diagram The Hertzsprung-Russell (H-R) Diagram: The H-R diagram is an important astronomical tool for understanding how stars evolve over time. Stellar evolution can not be studied by observing individual stars as most changes occur over millions and billions of years. Astrophysicists observe numerous stars at various stages in their evolutionary history to determine their changing properties and probable evolutionary tracks across the H-R diagram. The H-R diagram is a scatter graph of stars. When the absolute magnitude (MV) – intrinsic brightness – of stars is plotted against their surface temperature (stellar classification) the stars are not randomly distributed on the graph but are mostly restricted to a few well-defined regions. The stars within the same regions share a common set of characteristics. As the physical characteristics of a star change over its evolutionary history, its position on the H-R diagram The H-R Diagram changes also – so the H-R diagram can also be thought of as a graphical plot of stellar evolution. From the location of a star on the diagram, its luminosity, spectral type, color, temperature, mass, age, chemical composition and evolutionary history are known. Most stars are classified by surface temperature (spectral type) from hottest to coolest as follows: O B A F G K M. These categories are further subdivided into subclasses from hottest (0) to coolest (9). The hottest B stars are B0 and the coolest are B9, followed by spectral type A0. Each major spectral classification is characterized by its own unique spectra. -
High-Mass Starless Clumps in the Inner Galactic Plane: the Sample and Dust Properties Jinghua Yuan, Yuefang Wu, Simon P
High-mass Starless Clumps in the Inner Galactic Plane: The Sample and Dust Properties Jinghua Yuan, Yuefang Wu, Simon P. Ellingsen, Neal J. Evans, Christian Henkel, Ke Wang, Hong-li Liu, Tie Liu, Jin-zeng Li, Annie Zavagno To cite this version: Jinghua Yuan, Yuefang Wu, Simon P. Ellingsen, Neal J. Evans, Christian Henkel, et al.. High- mass Starless Clumps in the Inner Galactic Plane: The Sample and Dust Properties. Astrophysical Journal Supplement, American Astronomical Society, 2017, 231 (1), 10.3847/1538-4365/aa7204. hal- 01678391 HAL Id: hal-01678391 https://hal.archives-ouvertes.fr/hal-01678391 Submitted on 9 May 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. HMSCs;Draft version March 2, 2018 Preprint typeset using LATEX style emulateapj v. 12/16/11 HIGH-MASS STARLESS CLUMPS IN THE INNER GALACTIC PLANE: THE SAMPLE AND DUST PROPERTIES Jinghua Yuan (袁lN)1y,Yuefang Wu (4月³)2,Simon P. Ellingsen3,Neal J. Evans II4,5,Christian Henkel6,7, Ke Wang (王科)8,Hong-Li Liu (刘*<)1,Tie Liu (刘Á)5,Jin-Zeng Li (N金增)1,Annie Zavagno9 1National Astronomical Observatories, -
Spectroscopy of Variable Stars
Spectroscopy of Variable Stars Steve B. Howell and Travis A. Rector The National Optical Astronomy Observatory 950 N. Cherry Ave. Tucson, AZ 85719 USA Introduction A Note from the Authors The goal of this project is to determine the physical characteristics of variable stars (e.g., temperature, radius and luminosity) by analyzing spectra and photometric observations that span several years. The project was originally developed as a The 2.1-meter telescope and research project for teachers participating in the NOAO TLRBSE program. Coudé Feed spectrograph at Kitt Peak National Observatory in Ari- Please note that it is assumed that the instructor and students are familiar with the zona. The 2.1-meter telescope is concepts of photometry and spectroscopy as it is used in astronomy, as well as inside the white dome. The Coudé stellar classification and stellar evolution. This document is an incomplete source Feed spectrograph is in the right of information on these topics, so further study is encouraged. In particular, the half of the building. It also uses “Stellar Spectroscopy” document will be useful for learning how to analyze the the white tower on the right. spectrum of a star. Prerequisites To be able to do this research project, students should have a basic understanding of the following concepts: • Spectroscopy and photometry in astronomy • Stellar evolution • Stellar classification • Inverse-square law and Stefan’s law The control room for the Coudé Description of the Data Feed spectrograph. The spec- trograph is operated by the two The spectra used in this project were obtained with the Coudé Feed telescopes computers on the left. -
29 Jan 2020 11Department of Physics, Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-Ku, Sapporo, Hokkaido 060-0810, Japan
Publ. Astron. Soc. Japan (2014) 00(0), 1–42 1 doi: 10.1093/pasj/xxx000 FOREST Unbiased Galactic plane Imaging survey with the Nobeyama 45 m telescope (FUGIN). VI. Dense gas and mini-starbursts in the W43 giant molecular cloud complex Mikito KOHNO1∗, Kengo TACHIHARA1∗, Kazufumi TORII2∗, Shinji FUJITA1∗, Atsushi NISHIMURA1,3, Nario KUNO4,5, Tomofumi UMEMOTO2,6, Tetsuhiro MINAMIDANI2,6,7, Mitsuhiro MATSUO2, Ryosuke KIRIDOSHI3, Kazuki TOKUDA3,7, Misaki HANAOKA1, Yuya TSUDA8, Mika KURIKI4, Akio OHAMA1, Hidetoshi SANO1,9, Tetsuo HASEGAWA7, Yoshiaki SOFUE10, Asao HABE11, Toshikazu ONISHI3 and Yasuo FUKUI1,9 1Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan 2Nobeyama Radio Observatory, National Astronomical Observatory of Japan (NAOJ), National Institutes of Natural Sciences (NINS), 462-2, Nobeyama, Minamimaki, Minamisaku, Nagano 384-1305, Japan 3Department of Physical Science, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan 4Department of Physics, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Ten-nodai, Tsukuba, Ibaraki 305-8577, Japan 5Tomonaga Center for the History of the Universe, University of Tsukuba, Ten-nodai 1-1-1, Tsukuba, Ibaraki 305-8571, Japan 6Department of Astronomical Science, School of Physical Science, SOKENDAI (The Graduate University for Advanced Studies), 2-21-1, Osawa, Mitaka, Tokyo 181-8588, Japan 7National Astronomical Observatory of Japan (NAOJ), National -
Determining Pulsation Period for an RR Lyrae Star
Leah Fabrizio Dr. Mitchell 06/10/2010 Determining Pulsation Period for an RR Lyrae Star As children we used to sing in wonderment of the twinkling stars above and many of us asked, “Why do stars twinkle?” All stars twinkle because their emitted light travels through the Earth’s atmosphere of turbulent gas and clouds that move and shift causing the traversing light to fluctuate. This means that the actual light output of the star is not changing. However there are a number of stars called Variable Stars that actually produce light of varying brightness before it hits the Earth’s atmosphere. There are two categories of variable stars: the intrinsic, where light fluctuation is due from the star physically changing and producing different luminosities, and extrinsic, where the amount of starlight varies due to another star eclipsing or blocking the star’s light from reaching earth (AAVSO 2010). Within the category of intrinsic variable stars are the pulsating variables that have a periodic change in brightness due to the actual size and light production of the star changing; within this group are the RR Lyrae stars (“variable star” 2010). For my research project, I will observe an RR Lyrae and find the period of its luminosity pulsation. The first RR Lyrae star was named after its namesake star (Strobel 2004). It was first found while astronomers were studying the longer period variable stars Cepheids and stood out because of its short period. In comparison to Cepheids, RR Lyraes are smaller and therefore fainter with a shorter period as well as being much older. -
Nd AAS Meeting Abstracts
nd AAS Meeting Abstracts 101 – Kavli Foundation Lectureship: The Outreach Kepler Mission: Exoplanets and Astrophysics Search for Habitable Worlds 200 – SPD Harvey Prize Lecture: Modeling 301 – Bridging Laboratory and Astrophysics: 102 – Bridging Laboratory and Astrophysics: Solar Eruptions: Where Do We Stand? Planetary Atoms 201 – Astronomy Education & Public 302 – Extrasolar Planets & Tools 103 – Cosmology and Associated Topics Outreach 303 – Outer Limits of the Milky Way III: 104 – University of Arizona Astronomy Club 202 – Bridging Laboratory and Astrophysics: Mapping Galactic Structure in Stars and Dust 105 – WIYN Observatory - Building on the Dust and Ices 304 – Stars, Cool Dwarfs, and Brown Dwarfs Past, Looking to the Future: Groundbreaking 203 – Outer Limits of the Milky Way I: 305 – Recent Advances in Our Understanding Science and Education Overview and Theories of Galactic Structure of Star Formation 106 – SPD Hale Prize Lecture: Twisting and 204 – WIYN Observatory - Building on the 308 – Bridging Laboratory and Astrophysics: Writhing with George Ellery Hale Past, Looking to the Future: Partnerships Nuclear 108 – Astronomy Education: Where Are We 205 – The Atacama Large 309 – Galaxies and AGN II Now and Where Are We Going? Millimeter/submillimeter Array: A New 310 – Young Stellar Objects, Star Formation 109 – Bridging Laboratory and Astrophysics: Window on the Universe and Star Clusters Molecules 208 – Galaxies and AGN I 311 – Curiosity on Mars: The Latest Results 110 – Interstellar Medium, Dust, Etc. 209 – Supernovae and Neutron -
Cepheid Variable Stars Cepheid Variable Stars As Distance Indicators
Cepheid Variable Stars Cepheid variable stars as distance indicators. Certain stars that have used up their main supply of hydrogen fuel are unstable and pulsate. RR Lyrae variables have periods of about a day. Their brightness doubles from dimest to brightest. Typical light curve for a Cepheid variable star. Cepheid variables have longer periods, from one day up to about 50 days. Their brightness also doubles from dimest to brightest. From the shape of the ``light curve'' of a Cepheid variable star, one can tell that it is a Cepheid variable. The period is simple to measure, as is the apparent brightness at maximum brightness. Cepheids as distance indicators Cepheids are important beyond their intrinsic interest as pulsating stars. Astronomomers have found that their is a relation between the period of a Cepheid and its luminosity. http://zebu.uoregon.edu/~soper/MilkyWay/cepheid.html (1 of 3) [5/25/1999 10:34:08 AM] Cepheid Variable Stars This enables astronomers to determine distances: ● Find the period. ● This gives the luminosity. ● Measure the apparent brightness. ● Determine the distance from the luminosity and brightness. The same applies to RR Lyrae variable stars. Once you know that a star is an RR Lyrae variable (eg. from the shape of its light curve), then you know its luminosity. Where did this period-luminosity relation come from? ● American astronomer Henrietta Leavitt looked at many Cepheid variables in the Small Magellanic Cloud (a satellite galaxy to ours.) ● She found the period luminosity relation (reported in 1912). ● One needs a distance measurement from some other method for at least one Cepheid. -
A Comprehensive Study of Cepheid Variables in the Andromeda Galaxy Period Distribution, Blending, and Distance Determination
A&A 473, 847–855 (2007) Astronomy DOI: 10.1051/0004-6361:20077960 & c ESO 2007 Astrophysics A comprehensive study of Cepheid variables in the Andromeda galaxy Period distribution, blending, and distance determination F. Vilardell1,C.Jordi1,3, and I. Ribas2,3 1 Departament d’Astronomia i Meteorologia, Universitat de Barcelona, c/ Martí i Franquès, 1, 08028 Barcelona, Spain e-mail: [francesc.vilardell;carme.jordi]@am.ub.es 2 Institut de Ciències de l’Espai-CSIC, Campus UAB, Facultat de Ciències, Torre C5-parell-2a, 08193 Bellaterra, Spain e-mail: [email protected] 3 Institut d’Estudis Espacials de Catalunya (IEEC), Edif. Nexus, c/ Gran Capità, 2-4, 08034 Barcelona, Spain Received 28 May 2007 / Accepted 18 July 2007 ABSTRACT Extragalactic Cepheids are the basic rungs of the cosmic distance scale. They are excellent standard candles, although their lumi- nosities and corresponding distance estimates can be affected by the particular properties of the host galaxy. Therefore, the accurate analysis of the Cepheid population in other galaxies, and notably in the Andromeda galaxy (M 31), is crucial to obtaining reliable distance determinations. We obtained accurate photometry (in B and V passbands) of 416 Cepheids in M 31 over a five year campaign within a survey aimed at the detection of eclipsing binaries. The resulting Cepheid sample is the most complete in M 31 and has almost the same period distribution as the David Dunlap Observatory sample in the Milky Way. The large number of epochs (∼250 per filter) has permitted the characterisation of the pulsation modes of 356 Cepheids, with 281 of them pulsating in the fundamental mode and 75 in the first overtone. -
Appendix: Spectroscopy of Variable Stars
Appendix: Spectroscopy of Variable Stars As amateur astronomers gain ever-increasing access to professional tools, the science of spectroscopy of variable stars is now within reach of the experienced variable star observer. In this section we shall examine the basic tools used to perform spectroscopy and how to use the data collected in ways that augment our understanding of variable stars. Naturally, this section cannot cover every aspect of this vast subject, and we will concentrate just on the basics of this field so that the observer can come to grips with it. It will be noticed by experienced observers that variable stars often alter their spectral characteristics as they vary in light output. Cepheid variable stars can change from G types to F types during their periods of oscillation, and young variables can change from A to B types or vice versa. Spec troscopy enables observers to monitor these changes if their instrumentation is sensitive enough. However, this is not an easy field of study. It requires patience and dedication and access to resources that most amateurs do not possess. Nevertheless, it is an emerging field, and should the reader wish to get involved with this type of observation know that there are some excellent guides to variable star spectroscopy via the BAA and the AAVSO. Some of the workshops run by Robin Leadbeater of the BAA Variable Star section and others such as Christian Buil are a very good introduction to the field. © Springer Nature Switzerland AG 2018 M. Griffiths, Observer’s Guide to Variable Stars, The Patrick Moore 291 Practical Astronomy Series, https://doi.org/10.1007/978-3-030-00904-5 292 Appendix: Spectroscopy of Variable Stars Spectra, Spectroscopes and Image Acquisition What are spectra, and how are they observed? The spectra we see from stars is the result of the complete output in visible light of the star (in simple terms). -
Variable Star
Variable star A variable star is a star whose brightness as seen from Earth (its apparent magnitude) fluctuates. This variation may be caused by a change in emitted light or by something partly blocking the light, so variable stars are classified as either: Intrinsic variables, whose luminosity actually changes; for example, because the star periodically swells and shrinks. Extrinsic variables, whose apparent changes in brightness are due to changes in the amount of their light that can reach Earth; for example, because the star has an orbiting companion that sometimes Trifid Nebula contains Cepheid variable stars eclipses it. Many, possibly most, stars have at least some variation in luminosity: the energy output of our Sun, for example, varies by about 0.1% over an 11-year solar cycle.[1] Contents Discovery Detecting variability Variable star observations Interpretation of observations Nomenclature Classification Intrinsic variable stars Pulsating variable stars Eruptive variable stars Cataclysmic or explosive variable stars Extrinsic variable stars Rotating variable stars Eclipsing binaries Planetary transits See also References External links Discovery An ancient Egyptian calendar of lucky and unlucky days composed some 3,200 years ago may be the oldest preserved historical document of the discovery of a variable star, the eclipsing binary Algol.[2][3][4] Of the modern astronomers, the first variable star was identified in 1638 when Johannes Holwarda noticed that Omicron Ceti (later named Mira) pulsated in a cycle taking 11 months; the star had previously been described as a nova by David Fabricius in 1596. This discovery, combined with supernovae observed in 1572 and 1604, proved that the starry sky was not eternally invariable as Aristotle and other ancient philosophers had taught. -
Pennsylvania Science Olympiad Southeast Regional Tournament 2013 Astronomy C Division Exam March 4, 2013
PENNSYLVANIA SCIENCE OLYMPIAD SOUTHEAST REGIONAL TOURNAMENT 2013 ASTRONOMY C DIVISION EXAM MARCH 4, 2013 SCHOOL:________________________________________ TEAM NUMBER:_________________ INSTRUCTIONS: 1. Turn in all exam materials at the end of this event. Missing exam materials will result in immediate disqualification of the team in question. There is an exam packet as well as a blank answer sheet. 2. You may separate the exam pages. You may write in the exam. 3. Only the answers provided on the answer page will be considered. Do not write outside the designated spaces for each answer. 4. Include school name and school code number at the bottom of the answer sheet. Indicate the names of the participants legibly at the bottom of the answer sheet. Be prepared to display your wristband to the supervisor when asked. 5. Each question is worth one point. Tiebreaker questions are indicated with a (T#) in which the number indicates the order of consultation in the event of a tie. Tiebreaker questions count toward the overall raw score, and are only used as tiebreakers when there is a tie. In such cases, (T1) will be examined first, then (T2), and so on until the tie is broken. There are 12 tiebreakers. 6. When the time is up, the time is up. Continuing to write after the time is up risks immediate disqualification. 7. In the BONUS box on the answer sheet, name the gentleman depicted on the cover for a bonus point. 8. As per the 2013 Division C Rules Manual, each team is permitted to bring “either two laptop computers OR two 3-ring binders of any size, or one binder and one laptop” and programmable calculators. -
Hi Absorption Toward Hii Regions at Small Galactic
The Astrophysical Journal, 774:117 (18pp), 2013 September 10 doi:10.1088/0004-637X/774/2/117 C 2013. The American Astronomical Society. All rights reserved. Printed in the U.S.A. H i ABSORPTION TOWARD H ii REGIONS AT SMALL GALACTIC LONGITUDES C. Jones1, J. M. Dickey1,J.R.Dawson1,2, N. M. McClure-Griffiths2, L. D. Anderson3, and T. M. Bania4 1 School of Mathematics and Physics, Private Bag 37, University of Tasmania, Hobart 7001, Australia 2 CSIRO Astronomy and Space Science, ATNF, P.O. Box 76, Epping, NSW 1710, Australia 3 Department of Physics, West Virginia University, Morgantown, WV 26506, USA 4 Institute for Astrophysical Research, Department of Astronomy, Boston University, 725 Commonwealth Avenue, Boston, MA 02215, USA Received 2013 May 7; accepted 2013 July 16; published 2013 August 22 ABSTRACT We make a comprehensive study of H i absorption toward H ii regions located within |l| < 10◦. Structures in the extreme inner Galaxy are traced using the longitude–velocity space distribution of this absorption. We find significant H i absorption associated with the Near and Far 3 kpc Arms, the Connecting Arm, Bania’s Clump 1, and the H i Tilted Disk. We also constrain the line-of-sight distances to H ii regions, by using H i absorption spectra together with the H ii region velocities measured by radio recombination lines. Key words: Galaxy: structure – H ii regions Online-only material: color figures, figure set 1. INTRODUCTION components that dominate. However, cool gas is readily ob- served in absorption against background continuum sources, The extreme inner Galaxy (EIG) has long been the subject of where it may be disentangled from warmer material along the intense astrophysical study as it provides excellent opportunities line of sight.