Thesis Reference

Total Page:16

File Type:pdf, Size:1020Kb

Thesis Reference Thesis Micropearls: a newly discovered biomineralization process in eukaryotes MARTIGNIER, Agathe Abstract The present work uncovers a potentially ancient but yet undescribed biomineralization process, in which unicellular planktonic eukaryotes produce multiple intracellular inclusions of near-amorphous calcium carbonate (ACC), called micropearls. This process is not linked to a specific habitat and occurs in multiple areas around the world in marine, brackish and freshwater environments. This unsuspected biomineralization capacity was discovered to be common in the Tetraselmis genus (Chlorodendrophyceae, Chlorophyta). In these organisms, the micropearls may be slightly enriched in strontium and their arrangement forms a pattern (alignements linked to the chloroplast shape), which is characteristic for a given species. Another organism forming micropearls highly enriched in barium was detected in Lake Geneva (Switzerland). It is still unidentified, but might belong to the zooplankton. All the micropearls seem to result of a biologically controlled process. They represent a new physiological feature for eukaryotes. Reference MARTIGNIER, Agathe. Micropearls: a newly discovered biomineralization process in eukaryotes. Thèse de doctorat : Univ. Genève, 2019, no. Sc. 5407 DOI : 10.13097/archive-ouverte/unige:129105 URN : urn:nbn:ch:unige-1291057 Available at: http://archive-ouverte.unige.ch/unige:129105 Disclaimer: layout of this document may differ from the published version. 1 / 1 UNIVERSITÉ DE GENÈVE FACULTÉ DES SCIENCES Département des Sciences de la Terre Directeur Prof. Daniel Ariztegui Co-directeur Dr Jean-Michel Jaquet Micropearls: a newly discovered biomineralization process in eukaryotes THÈSE présentée à la Faculté des sciences de l’Université de Genève pour obtenir le grade de Docteur ès Sciences, mention sciences de la Terre par Agathe Martignier de Genève (Suisse) Thèse N° 5407 GENÈVE Atelier de reprographie ReproMail 2019 UNIVERSITÉ DE GENÈVE FACULTÉ DES SCIENCES DOCTORAT ÈS SCIENCES, MENTION SCIENCES DE LA TERRE Thèse de Madame Agathe MARTIGNIER intitulée «Micropearls: a New Biomineralization Process in Eukaryotes» La Faculté des sciences, sur le préavis de Monsieur D. ARIZTEGUI, professeur associé et directeur de thèse (Département des sciences de la Terre), Monsieur J.-M. JAQUET, docteur et codirecteur de thèse (Département des sciences de la Terre), Madame M. FILELLA, docteure (Département F.-A. Farel des sciences de l'environnement et de l'eau), Monsieur F. BARJA, docteur (Département de botanique et biologie végétale), Monsieur A. IMMENHAUSER, professeur (Department of geology, mineralogy and geophysics, Ruhr-Universitat Bochum, Germany), autorise l'impression de la présente thèse, sans exprimer d'opinion sur les propositions qui y sont énoncées. Genève, le 1er novembre 2019 Thèse - 5407 - Le Doyen Publications déjà issues de ce travail: Intracellular amorphous carbonates uncover a new biomineralization process in eukaryotes. Martignier A., Pacton M., Filella M., Jaquet J.-M., Barja F., Pollok K., Langenhorst F., Lavigne S., Guagliardo P., Kilburn M.R., Thomas C., Martini R. and Ariztegui D., Geobiology 15, 240-253 (2017). Marine and freshwater micropearls: Biomineralization producing strontium-rich amorphous calcium carbonate inclusions is widespread in the genus Tetraselmis (Chlorophyta). Martignier A., Filella M., Pollok K., Melkonian M., Bensimon M., Barja F., Langenhorst F., Jaquet J.M. and Ariztegui D., Biogeosciences, 15, 6591-6605 (2018). Thesis director : Prof. Daniel Ariztegui Department of Earth sciences, University of Geneva, Swizterland Thesis co-director : Dr. Jean-Michel Jaquet Department of Earth sciences, University of Geneva, Swizterland Jury members : Dr. Montserrat Filella Department F.A. Forel for Environmental and Aquatic sciences, University of Geneva, Swizterland Dr. François Barja Microbiology unit, University of Geneva, Swizterland Prof. Adrian Immenhauser Institute for Geology, Mineralogy and Geophysics, Ruhr-Universität Bochum, Germany Abstract _____________________________ Calcium carbonates are the most abundant biogenic minerals, but intracellular inclusions of this same composition in unicellular organisms were generally thought to be rare. The present work uncovers a potentially ancient but yet undiscribed biomineralization process, in which unicellular planktonic eukaryotes produce multiple intracellular inclusions of near-amorphous calcium carbonate (ACC), called micropearls. The process is not related to a specific habitat and occurs in marine, brackish and freshwater environments. Micropearls have been identified in the water column of seven different lakes in Switzerland, France, Greece and Bolivia and literature mentions occurrences of the marine species producing them in multiple areas around the world. This phenomenon is therefore widespread geographically. The micropearls can be highly enriched in alkaline-earth elements such as strontium and barium, compared to the surrounding water: Sr/Ca ratio can be up to 87x higher in the micropearls and Ba/Ca ratio up to 800 000 times higher. In that case, these microspheres typically present nanometer-scale internal concentric zonation, expressing oscillatory variations of their chemical composition (Sr/Ca or Ba/Ca ratio). The process seems biologically controlled and the composition of the micropearls is characteristic for a given species: in the same culture medium, some will metabolize only Ca, some Ca and Sr, and others Ca, Sr and Ba. This unsuspected biomineralization capacity was discovered to be common in the Tetraselmis genus (Chlorodendrophyceae, Chlorophyta) and potentially in the whole class Chlorodendrophyceae, as micropearls were also observed in a species of the genus Scherffelia (S. dubia). The micropearls of Chlorodendrophyceae are mostly composed of pure calcium carbonate or enriched in strontium. The micropearls are not randomly scattered throughout the cell and their arrangement often forms a pattern (e.g. longitudinal alignments), which is characteristic for a given species. This arrangement pattern is linked to the chloroplast shape, as the mineral inclusions align themselves along the incisions between chloroplast lobes. Moreover, ITS and rbcL phylogenies suggest that this pattern may constitute a valid criterion 1 to distinguish different phylogenetic groups in the genus Tetraselmis: the species belonging to a given phylogenetic clade all seem to present similar micropearl arrangement patterns. In Lake Geneva (Switzerland), a different organism was discovered to produce near- amorphous micropearls with composition ranging from calcium carbonate highly enriched in barium to barium carbonate (up to > 90 Ba/Ca mol%). Although it is still unidentified, our results show that this organism is not a close relative of the Chlorodendrophyceae and even suggest that it might belong to the zooplankton or the mixotroph eukaryotes. Micropearls represent a new physiological feature for eukaryotes. It may seem puzzling that this had gone unnoticed, especially as they are widespread in the class Chlorodendrophyceae, which includes many well-studied organisms. In fact, early microscopists had spotted alignments of “refractive granules” in some Tetraselmis species, but without identifying their mineral nature. Later, micropearls have not been detected despite multiple electronic imagery observations of the organisms producing them, because they are easily dissolved by most sample preparation techniques used to fix the organic matter. The discovery and study of micropearls, in the present research, was due to an uncommon sample preparation technique originally meant for the observation of diatom frustules in the natural environment. It seems possible that calcium carbonate inclusions might have been dissolved by traditional sample preparation for electronic imagery in other samples too: other well-studied organisms may therefore also have unsuspected biomineralization capacities to produce micropearls or similar ACC inclusions. 2 Résumé _____________________________ Les carbonates de calcium sont les minéraux biogéniques les plus abondants. Cependant, jusqu’à récemment, les inclusions intracellulaires de cette composition étaient considérées comme rares dans les organismes unicellulaires. Le travail présenté dans ce manuscrit met au jour un processus de biominéralisation, potentiellement très ancien, qui n’avait pas encore été décrit: des organismes unicellulaires appartenant aux eucaryotes forment de multiples inclusions minérales intracellulaires, appelées microperles, qui sont constituées de carbonate de calcium amorphe (ACC) ou quasi amorphe. Ce processus ne semble pas être lié à un habitat spécifique et peut avoir lieu dans des environnements aussi bien marin que saumâtre ou encore d’eau douce. Jusqu’à présent, les microperles ont été détectées dans sept lacs différents en Suisse, France, Grèce et Bolivie. De plus, la littérature décrit que les organismes marins qui produisent des microperles ont été observés en de nombreux points du globe. Ce phénomène est donc largement répandu du point de vue géographique. Les microperles peuvent être fortement enrichies en éléments alcalino-terreux tels que le strontium et le baryum : le rapport Sr/Ca peut être 87 fois plus élevé dans les microperles que dans l’eau environnante et le rapport Ba/Ca jusqu’à 800 000 fois plus. Dans ce cas, les microsphères présentent typiquement des zonations internes concentriques de l’échelle du nanomètre qui expriment des variations de composition
Recommended publications
  • Beiträge Zur Insekteufauna Der DDR: Lepidoptera — Crambidae
    j Beitr. Ent. • Bd. 23 • 1973 • H. 1 -4 • S. 4 -5 5 - Berlin Institut für Pflaiizenscliutzforschung (BZA) der Akademie der Landwirtschaftswissenschaften der D D R zu Berlin Zweigstelle Eberswalde Abteilung Taxonomie der Insekten (ehem. DEI) Ebersw alde Gü n t h e r Pe te r se n , Gerrit F r ie se & Gü n th er R in n h o eer Beiträge zur Insekteufauna der DDR: Lepidoptera — Crambidae Mit 42 Figuren und 51 Farbabbildungen1 Inhalt E in le itu n g ......................................................................................................................... 5 Artenbestand ................................................................................................................... 5 Zoogeograpbische A n alyse ......................................................................... ............ 7 Ökologie ............................................................................................................................. s8 Bestimnumgstabelle ................................................................................................. 11 Systeuiatiseh-fannistiscbes Verzeichnis der Gattungen und Arten 2 0 Verzeichnis (Checklist) der Crambxden der D D R .................................. 50 L it e r a t u r .......................................................................................................................... 53 In d ex ................................................................................................................................... 5 4 Einleitung Im Gegensatz zu den meisten anderen
    [Show full text]
  • Why Mushrooms Have Evolved to Be So Promiscuous: Insights from Evolutionary and Ecological Patterns
    fungal biology reviews 29 (2015) 167e178 journal homepage: www.elsevier.com/locate/fbr Review Why mushrooms have evolved to be so promiscuous: Insights from evolutionary and ecological patterns Timothy Y. JAMES* Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA article info abstract Article history: Agaricomycetes, the mushrooms, are considered to have a promiscuous mating system, Received 27 May 2015 because most populations have a large number of mating types. This diversity of mating Received in revised form types ensures a high outcrossing efficiency, the probability of encountering a compatible 17 October 2015 mate when mating at random, because nearly every homokaryotic genotype is compatible Accepted 23 October 2015 with every other. Here I summarize the data from mating type surveys and genetic analysis of mating type loci and ask what evolutionary and ecological factors have promoted pro- Keywords: miscuity. Outcrossing efficiency is equally high in both bipolar and tetrapolar species Genomic conflict with a median value of 0.967 in Agaricomycetes. The sessile nature of the homokaryotic Homeodomain mycelium coupled with frequent long distance dispersal could account for selection favor- Outbreeding potential ing a high outcrossing efficiency as opportunities for choosing mates may be minimal. Pheromone receptor Consistent with a role of mating type in mediating cytoplasmic-nuclear genomic conflict, Agaricomycetes have evolved away from a haploid yeast phase towards hyphal fusions that display reciprocal nuclear migration after mating rather than cytoplasmic fusion. Importantly, the evolution of this mating behavior is precisely timed with the onset of diversification of mating type alleles at the pheromone/receptor mating type loci that are known to control reciprocal nuclear migration during mating.
    [Show full text]
  • MADAGASCAR: the Wonders of the “8Th Continent” a Tropical Birding Custom Trip
    MADAGASCAR: The Wonders of the “8th Continent” A Tropical Birding Custom Trip October 20—November 6, 2016 Guide: Ken Behrens All photos taken during this trip by Ken Behrens Annotated bird list by Jerry Connolly TOUR SUMMARY Madagascar has long been a core destination for Tropical Birding, and with the opening of a satellite office in the country several years ago, we further solidified our expertise in the “Eighth Continent.” This custom trip followed an itinerary similar to that of our main set-departure tour. Although this trip had a definite bird bias, it was really a general natural history tour. We took our time in observing and photographing whatever we could find, from lemurs to chameleons to bizarre invertebrates. Madagascar is rich in wonderful birds, and we enjoyed these to the fullest. But its mammals, reptiles, amphibians, and insects are just as wondrous and accessible, and a trip that ignored them would be sorely missing out. We also took time to enjoy the cultural riches of Madagascar, the small villages full of smiling children, the zebu carts which seem straight out of the Middle Ages, and the ingeniously engineered rice paddies. If you want to come to Madagascar and see it all… come with Tropical Birding! Madagascar is well known to pose some logistical challenges, especially in the form of the national airline Air Madagascar, but we enjoyed perfectly smooth sailing on this tour. We stayed in the most comfortable hotels available at each stop on the itinerary, including some that have just recently opened, and savored some remarkably good food, which many people rank as the best Madagascar Custom Tour October 20-November 6, 2016 they have ever had on any birding tour.
    [Show full text]
  • CARACANTHIDAE 2A. Body Covered with Numerous Black Spots ...Caracanthusmaculatus 2B. Body With
    click for previous page Scorpaeniformes: Caracanthidae 2353 CARACANTHIDAE Orbicular velvetfishes (coral crouchers) by S.G Poss iagnostic characters: Small fishes (typically under 4 cm standard length); body rounded, com- Dpressed, although not greatly so. Head moderate to large, 37 to 49% of standard length. Eyes small to moderate, 8 to 12% of standard length. Snout 8 to 13% of standard length. Mouth moderate to large, upper jaw 12 to 21% of standard length. Numerous small conical teeth present on upper and lower jaws, none on vomer or palatines. Lacrimal movable, with 2 spines, posteriormost largest directed ven- trally. All species with a narrow extension of the third infrarobital bone (second suborbital) extending backward and downward across the cheek and usually firmly bound to preopercle.No postorbital bones. Branchiostegal rays 7. Skin over gill covers strongly fused to isthmus. Dorsal fin with VII or VIII (rarely VI) short spines and 12 to 14 branched soft rays. Anal fin usually with II short spines, followed by 11 or 12 branched soft rays. Caudal fin rounded, never forked. Pelvic fins small, difficult to see, with I stout spine and 2 or 3 (rarely 1) rays. Pectoral fins with 14 or 15 thickened rays. Scales absent, except for lateral line, but body densely covered with tubercles. Lateral-line scales present; usually 11 to 19 tubed scales. All species possess extrinsic striated swimbladder musculature. Vertebrae 24. Colour: orbicular velvetfish are either pale pinkish white with numerous small black spots, or light brown or greenish and with orange spots or reticulations. Habitat, biology, and fisheries: Velvetfishes live within the branches of Acropora, Poecillopora, and Stylophora corals, rarely venturing far from the coral head.
    [Show full text]
  • Oyster Mushrooms (Pleurotus) Are Useful for Utilizing Lignocellulosic Biomass
    Vol. 14(1), pp. 52-67, 7 January, 2015 DOI: 10.5897/AJB2014.14249 Article Number: AED32D349437 ISSN 1684-5315 African Journal of Biotechnology Copyright © 2015 Author(s) retain the copyright of this article http://www.academicjournals.org/AJB Review Oyster mushrooms (Pleurotus) are useful for utilizing lignocellulosic biomass E. A. Adebayo1,2* and D. Martínez-Carrera2 1Department of Pure and Applied Biology, Ladoke Akintola University of Technology, P.M.B. 4000, Ogbomoso, Nigeria. 2Biotechnology of Edible, Functional and Medicinal Mushrooms, Colegio de Postgraduados, Apartado Postal 129, Puela 72001, Puebla, Mexico. Received 16 October, 2014; Accepted 12 December, 2014 This review shows the biotechnological potential of oyster mushrooms with lignocellulosic biomass. The bioprocessing of plant byproducts using Pleurotus species provides numerous value-added products, such as basidiocarps, animal feed, enzymes, and other useful materials. The biodegradation and bioconversion of agro wastes (lignin, cellulose and hemicellulose) could have vital implication in cleaning our environment. The bioprocessing of lignin depends on the potent lignocellulolytic enzymes such as phenol oxidases (laccase) or heme peroxidases (lignin peroxidase (LiP), manganese peroxidase (MnP) and versatile peroxidase) produced by the organism. The cellulose-hydrolysing enzymes (that is, cellulases) basically divided into endo-β-1,4-glucanase , exo-β-1,4-glucanase I and II, and β-glucosidase, they attack cellulose to release glucose, a monomers units from the cellobiose, while several enzymes acted on hemicellulose to give D-xylose from xylobiose. These enzymes have been produced by species of Pleurotus from lignocellulose and can also be used in several biotechnological applications, including detoxification, bioconversion, and bioremediation of resistant pollutants.
    [Show full text]
  • Correlates of Eye Colour and Pattern in Mantellid Frogs
    SALAMANDRA 49(1) 7–17 30Correlates April 2013 of eyeISSN colour 0036–3375 and pattern in mantellid frogs Correlates of eye colour and pattern in mantellid frogs Felix Amat 1, Katharina C. Wollenberg 2,3 & Miguel Vences 4 1) Àrea d‘Herpetologia, Museu de Granollers-Ciències Naturals, Francesc Macià 51, 08400 Granollers, Catalonia, Spain 2) Department of Biology, School of Science, Engineering and Mathematics, Bethune-Cookman University, 640 Dr. Mary McLeod Bethune Blvd., Daytona Beach, FL 32114, USA 3) Department of Biogeography, Trier University, Universitätsring 15, 54286 Trier, Germany 4) Zoological Institute, Division of Evolutionary Biology, Technical University of Braunschweig, Spielmannstr. 8, 38106 Braunschweig, Germany Corresponding author: Miguel Vences, e-mail: [email protected] Manuscript received: 18 March 2013 Abstract. With more than 250 species, the Mantellidae is the most species-rich family of frogs in Madagascar. These frogs are highly diversified in morphology, ecology and natural history. Based on a molecular phylogeny of 248 mantellids, we here examine the distribution of three characters reflecting the diversity of eye colouration and two characters of head colouration along the mantellid tree, and their correlation with the general ecology and habitat use of these frogs. We use Bayesian stochastic character mapping, character association tests and concentrated changes tests of correlated evolu- tion of these variables. We confirm previously formulated hypotheses of eye colour pattern being significantly correlated with ecology and habits, with three main character associations: many tree frogs of the genus Boophis have a bright col- oured iris, often with annular elements and a blue-coloured iris periphery (sclera); terrestrial leaf-litter dwellers have an iris horizontally divided into an upper light and lower dark part; and diurnal, terrestrial and aposematic Mantella frogs have a uniformly black iris.
    [Show full text]
  • A New Species Isolated from Salt Pans in Goa, India
    Author version: Eur. J. Phycol., vol.48(1); 2013; 61-78 Tetraselmis indica (Chlorodendrophyceae, Chlorophyta), a new species isolated from salt pans in Goa, India MANI ARORA1, 2, ARGA CHANDRASHEKAR ANIL1, FREDERIK LELIAERT3, JANE DELANY2 AND EHSAN MESBAHI2 1 CSIR-National Institute of Oceanography, Dona Paula, Goa, 403004, India 2School of Marine Science and Technology, Newcastle University, Newcastle-Upon-Tyne NE1 7RU, UK 3Phycology Research Group, Biology Department, Ghent University, Krijgslaan 281 S8, 9000 Ghent, Belgium Running Title: Tetraselmis indica sp. nov. Correspondence to: Arga Chandrashekar Anil. E-mail: [email protected] A new species of Tetraselmis, T. indica Arora & Anil, was isolated from nanoplankton collected from salt pans in Goa (India) and is described based on morphological, ultrastructural, 18S rRNA gene sequence, and genome size data. The species is characterized by a distinct eyespot, rectangular nucleus, a large number of Golgi bodies, two types of flagellar pit hairs and a characteristic type of cell division. In nature, the species was found in a wide range of temperatures (48°C down to 28°C) and salinities, from hypersaline (up to 350 psu) down to marine (c. 35 psu) conditions. Phylogenetic analysis based on 18S rDNA sequence data showed that T. indica is most closely related to unidentified Tetraselmis strains from a salt lake in North America. Key words: Chlorodendrophyceae, green algae, molecular phylogeny, morphology, pit hairs, Prasinophyceae, taxonomy, Tetraselmis indica, ultrastructure Introduction The Chlorodendrophyceae is a small class of green algae, comprising the genera Tetraselmis and Scherffelia (Massjuk, 2006; Leliaert et al., 2012). Although traditionally considered as members of the prasinophytes, these unicellular flagellates share several ultrastructural features with the core Chlorophyta (Trebouxiophyceae, Ulvophyceae and Chlorophyceae), including closed mitosis and a phycoplast (Mattox & Stewart, 1984; Melkonian, 1990; Sym & Pienaar, 1993).
    [Show full text]
  • Effects of Land Use on the Diversity of Macrofungi in Kereita Forest Kikuyu Escarpment, Kenya
    Current Research in Environmental & Applied Mycology (Journal of Fungal Biology) 8(2): 254–281 (2018) ISSN 2229-2225 www.creamjournal.org Article Doi 10.5943/cream/8/2/10 Copyright © Beijing Academy of Agriculture and Forestry Sciences Effects of Land Use on the Diversity of Macrofungi in Kereita Forest Kikuyu Escarpment, Kenya Njuguini SKM1, Nyawira MM1, Wachira PM 2, Okoth S2, Muchai SM3, Saado AH4 1 Botany Department, National Museums of Kenya, P.O. Box 40658-00100 2 School of Biological Studies, University of Nairobi, P.O. Box 30197-00100, Nairobi 3 Department of Clinical Studies, College of Agriculture & Veterinary Sciences, University of Nairobi. P.O. Box 30197- 00100 4 Department of Climate Change and Adaptation, Kenya Red Cross Society, P.O. Box 40712, Nairobi Njuguini SKM, Muchane MN, Wachira P, Okoth S, Muchane M, Saado H 2018 – Effects of Land Use on the Diversity of Macrofungi in Kereita Forest Kikuyu Escarpment, Kenya. Current Research in Environmental & Applied Mycology (Journal of Fungal Biology) 8(2), 254–281, Doi 10.5943/cream/8/2/10 Abstract Tropical forests are a haven of biodiversity hosting the richest macrofungi in the World. However, the rate of forest loss greatly exceeds the rate of species documentation and this increases the risk of losing macrofungi diversity to extinction. A field study was carried out in Kereita, Kikuyu Escarpment Forest, southern part of Aberdare range forest to determine effect of indigenous forest conversion to plantation forest on diversity of macrofungi. Macrofungi diversity was assessed in a 22 year old Pinus patula (Pine) plantation and a pristine indigenous forest during dry (short rains, December, 2014) and wet (long rains, May, 2015) seasons.
    [Show full text]
  • Biotechnology Volume 14 Number 1, 7 January, 2015 ISSN 1684-5315
    African Journal of Biotechnology Volume 14 Number 1, 7 January, 2015 ISSN 1684-5315 ABOUT AJB The African Journal of Biotechnology (AJB) (ISSN 1684-5315) is published weekly (one volume per year) by Academic Journals. African Journal of Biotechnology (AJB), a new broad-based journal, is an open access journal that was founded on two key tenets: To publish the most exciting research in all areas of applied biochemistry, industrial microbiology, molecular biology, genomics and proteomics, food and agricultural technologies, and metabolic engineering. Secondly, to provide the most rapid turn-around time possible for reviewing and publishing, and to disseminate the articles freely for teaching and reference purposes. All articles published in AJB are peer- reviewed. Submission of Manuscript Please read the Instructions for Authors before submitting your manuscript. The manuscript files should be given the last name of the first author Click here to Submit manuscripts online If you have any difficulty using the online submission system, kindly submit via this email [email protected]. With questions or concerns, please contact the Editorial Office at [email protected]. Editor-In-Chief Associate Editors George Nkem Ude, Ph.D Prof. Dr. AE Aboulata Plant Breeder & Molecular Biologist Plant Path. Res. Inst., ARC, POBox 12619, Giza, Egypt Department of Natural Sciences 30 D, El-Karama St., Alf Maskan, P.O. Box 1567, Crawford Building, Rm 003A Ain Shams, Cairo, Bowie State University Egypt 14000 Jericho Park Road Bowie, MD 20715, USA Dr. S.K Das Department of Applied Chemistry and Biotechnology, University of Fukui, Japan Editor Prof. Okoh, A. I. N.
    [Show full text]
  • Venom Evolution Widespread in Fishes: a Phylogenetic Road Map for the Bioprospecting of Piscine Venoms
    Journal of Heredity 2006:97(3):206–217 ª The American Genetic Association. 2006. All rights reserved. doi:10.1093/jhered/esj034 For permissions, please email: [email protected]. Advance Access publication June 1, 2006 Venom Evolution Widespread in Fishes: A Phylogenetic Road Map for the Bioprospecting of Piscine Venoms WILLIAM LEO SMITH AND WARD C. WHEELER From the Department of Ecology, Evolution, and Environmental Biology, Columbia University, 1200 Amsterdam Avenue, New York, NY 10027 (Leo Smith); Division of Vertebrate Zoology (Ichthyology), American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024-5192 (Leo Smith); and Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024-5192 (Wheeler). Address correspondence to W. L. Smith at the address above, or e-mail: [email protected]. Abstract Knowledge of evolutionary relationships or phylogeny allows for effective predictions about the unstudied characteristics of species. These include the presence and biological activity of an organism’s venoms. To date, most venom bioprospecting has focused on snakes, resulting in six stroke and cancer treatment drugs that are nearing U.S. Food and Drug Administration review. Fishes, however, with thousands of venoms, represent an untapped resource of natural products. The first step in- volved in the efficient bioprospecting of these compounds is a phylogeny of venomous fishes. Here, we show the results of such an analysis and provide the first explicit suborder-level phylogeny for spiny-rayed fishes. The results, based on ;1.1 million aligned base pairs, suggest that, in contrast to previous estimates of 200 venomous fishes, .1,200 fishes in 12 clades should be presumed venomous.
    [Show full text]
  • Travaux Scientifiques Du Parc National De La Vanoise : BUVAT (R.), 1972
    ISSN 0180-961 X a Vanoise .'.Parc National du de la Recueillis et publiés sous la direction de Emmanuel de GUILLEBON Directeur du Parc national et Ch. DEGRANGE Professeur honoraire à l'Université Joseph Fourier, Grenoble Ministère de l'Environnement Direction de la Nature et des Paysages Cahiers du Parc National de la Vanoise 135 rue du Docteur Julliand Boîte Postale 706 F-73007 Chambéry cedex ISSN 0180-961 X © Parc national de la Vanoise, Chambéry, France, 1995 SOMMAIRE COMPOSITION DU COMITÉ SCIENTIFIQUE ........................................................................................................ 5 LECTURE CRITIQUE DES ARTICLES .......................................................................................................................... 6 LISTE DES COLLABORATEURS DU VOLUME ..................................................................................................... 6 EN HOMMAGE : ]V[arius HUDRY (1915-1994) ........................................................................................... 7 CONTRIBUTIONS SCIENTIFIQUES M. HUDRY (+). - Vanoise : son étymologie .................................................................................. 8 J. DEBELMAS et J.-P. EAMPNOUX. - Notice explicative de la carte géolo- gique simplifiée du Parc national de la Vanoise et de sa zone périphé- rique (Savoie) ......................................................................................................,.........................................^^ 16 G. NlCOUD, S. FUDRAL, L. JUIF et J.-P. RAMPNOUX. - Hydrogéologie
    [Show full text]
  • Zootaxa 1401: 53–61 (2007) ISSN 1175-5326 (Print Edition) ZOOTAXA Copyright © 2007 · Magnolia Press ISSN 1175-5334 (Online Edition)
    Zootaxa 1401: 53–61 (2007) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2007 · Magnolia Press ISSN 1175-5334 (online edition) Descriptions of the tadpoles of two species of Gephyromantis, with a discussion of the phylogenetic origin of direct development in mantellid frogs ROGER-DANIEL RANDRIANIAINA1, FRANK GLAW2, MEIKE THOMAS3, JULIAN GLOS4, NOROMALALA RAMINOSOA1, MIGUEL VENCES4* 1 Département de Biologie Animale, Université d’Antananarivo, Antananarivo, Madagascar 2 Zoologische Staatssammlung, Münchhausenstr. 21, 81247 München, Germany 3 University of Zurich, Institute of Zoology, Winterthurerstrasse 190, 8057 Zurich, Switzerland 4 Technical University of Braunschweig, Spielmannstr. 8, 38106 Braunschweig, Germany Abstract We describe the larval stages of two Malagasy frog species of the genus Gephyromantis, based on specimens identified by DNA barcoding. The tadpoles of Gephyromantis ambohitra are generalized stream-living Orton type IV type larvae with two lateral small constrictions of the body wall at the plane of spiracle. Gephyromantis pseudoasper tadpoles are characterized by totally keratinised jaw sheaths with hypertrophied indentation, a reduced number of labial tooth rows, enlarged papillae on the oral disc, and a yellowish coloration of the tip of the tail in life. The morphology of the tadpole of G. pseudoasper agrees with that of G. corvus, supporting the current placement of these two species in a subgenus Phy- lacomantis, and suggesting that the larvae of G. pseudoasper may also have carnivorous habits as known in G. corvus. Identifying the tadpole of Gephyromantis ambohitra challenges current assumptions of the evolution of different devel- opmental modes in Gephyromantis, since this species is thought to be related to G.
    [Show full text]