Descartes, Pascal, and the Epistemology of Mathematics: the Case of the Cycloid

Total Page:16

File Type:pdf, Size:1020Kb

Descartes, Pascal, and the Epistemology of Mathematics: the Case of the Cycloid Descartes, Pascal, and the Epistemology of Mathematics: The Case of the Cycloid Douglas M. Jesseph North Carolina State University This paper deals with the very different attitudes that Descartes and Pascal had to the cycloid—the curve traced by the motion of a point on the periphery of a circle as the circle rolls across a right line. Descartes insisted that such a curve was merely mechanical and not truly geometric, and so was of no real mathematical interest. He nevertheless responded to enquiries from Mersenne, who posed the problems of determining its area and constructing its tangent. Pascal, in contrast, saw the cycloid as a paradigm of geometric intelligibil- ity, and he made it the focus of a series of challenge problems he posed to the mathematical world in 1658. After dealing with some of the history of the cycloid (including the work of Galileo, Mersenne, and Torricelli), I trace this difference in attitude to an underlying difference in the mathematical epistemologies of Descartes and Pascal. For Descartes, the truly geometric is that which can be expressed in terms of ªnite ratios between right lines, which in turn are expressible as closed polynomial equations. As Descartes pointed out, this means that ratios between straight and curved lines are not geometrically admissible, and curves (such as the cycloid) that require them must be banished from geometry. Pascal, in contrast, thought that the scope of geometry included curves such as the cycloid, which are to be studied by em- ploying inªnitesimal methods and ratios between curved and straight lines. Introduction Mathematics has long held a prominent place in philosophical theorizing, either as a source of philosophical problems or as a paradigm of human in- tellectual achievement. Mathematical knowledge is generally regarded as more certain and secure than other claims to knowledge, and it is no won- der that mathematical examples have been central to epistemological dis- cussions at least since Pythagoras. Yet mathematics also raises some im- Perspectives on Science 2007, vol. 15, no. 4 ©2007 by The Massachusetts Institute of Technology 410 Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/posc.2007.15.4.410 by guest on 26 September 2021 Perspectives on Science 411 portant puzzles. At a minimum, the ontological status of mathematical objects is hardly obvious: triangles and prime numbers are not the sort of thing one expects to stumble into on the way home from work, and it can be difªcult to articulate the sense in which these things exist and to ac- count for their relation to the more mundane things. Beyond that, the epistemological status of mathematics is far from straightforward. The certainty characteristic of mathematical knowledge stems from the fact that such knowledge is grounded in demonstrative proofs, yet it is dif- ªcult to specify just which methods of proof are truly rigorous, and the historical development of mathematics is ªlled with instances where the status of various proof techniques was unclear and contested. My purpose here is to consider an episode in the history and philosophy of mathemat- ics that can highlight some of these epistemological and conceptual issues. The case I have in mind is that of an interesting curve known as the cycloid, which was the focus of intense mathematical research from the early seventeenth century until well into the eighteenth century. The curve proved to have some astonishing properties, but it also provoked a remarkable number of disputes. The eighteenth-century French historian of mathematics Jean-Étienne Montucla compared it to “la pomme de discorde,” ([1799–1802] 1960, 2: 52) and in a curious mixing of his clas- sical metaphors then termed it “cette Hélène des géomètres” ([1799– 1802] 1960, 2: 55). The focal point of these disputes was the question of priority for the discovery of its many remarkable properties.1 Although I am not principally interested in the many squabbles that arose in the course of investigations into the cycloid, it should become clear that part of what made the curve so problematic was the fact that it raised issues about what kinds of curves count as genuinely geometrical and what methods of proof are truly rigorous. My primary concern is with the differing reactions of Descartes and Pascal to the study of the cycloid, but the case inevitably demands a treat- ment of the contributions of others. This investigation is divided into three sections. The ªrst gives a brief introduction to the cycloid and its place in seventeenth-century mathematics, emphasizing the mathematical and conceptual difªculties posed by the curve. The second considers Des- cartes’ oddly dismissive attitude toward a curve that others had deemed to be of tremendous mathematical signiªcance. The ªnal section gives a brief account of Pascal’s approach to the cycloid, and particularly his rather un- 1. Among the most intriguing of its properties are the fact that the cycloid is the brachistochrone (the curve of fastest descent under gravity) and the tautochrone (the curve yielding equal time of descent under gravity from any point along the curve). These two features were ªrst demonstrated by Jean Bernoulli in the eighteenth century. Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/posc.2007.15.4.410 by guest on 26 September 2021 412 Descartes, Pascal, and the Cycloid Figure 1 A simple cycloid generated by the motion of the circle AEC across the line AB characteristic behavior in using the cycloid as the subject of a series of challenge problems he posed to the mathematical world in 1658. In the end, I hope to explain how the very different epistemologies of Descartes and Pascal could lead the one to see the cycloid as a triºe of no intrinsic mathematical signiªcance, while the other could take it as a paradigmatic mathematical object, the study of which would introduce powerful new methods.2 1. The Cycloid and its History The cycloid is the curve traced by the point on the periphery of a circle as the circle rolls without slipping across a right line. In Figure 1, the circle with diameter AC moves to the right with a rotational velocity equal to its rectilinear velocity, rotating as it moves until point A arrives at B, making the line AB equal to the circumference of the circle. The cycloid is the curve ADB traced by the composition of rectilinear motion parallel to the line AB and rotational motion in the circumference AEC.3 The curve is simple enough to deªne and is the sort of thing that seems to arise quite naturally from the experience of a wheel rolling across a ºat surface. Nev- ertheless, the curve itself was not studied by Greek geometers and seems ªrst to have attracted the attention of mathematicians in the sixteenth century. As Pascal noted in the opening of his 1658 Histoire de la Roulette, 2. Mahoney (1990) considers similar issues regarding the cycloid in the late seven- teenth century. 3. Using parametric equations in the Cartesian plane, the curve is deªned as x ϭ rt Ϫ r sin(t) and y ϭ r Ϫ r cos(t), where r is the radius of the circle and t the angle of rotation. More complex cycloidal curves can be deªned by placing the generating point on the ra- dius inside the rolling circle (the curtate cycloid) or outside the circle (the prolate cycloid). I will only be concerned with the simple case, however. Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/posc.2007.15.4.410 by guest on 26 September 2021 Perspectives on Science 413 the curve “is described so often before the eyes of everyone that there is reason to be astonished that it had never been considered by the ancients, among whom we ªnd nothing about it” (Pascal 1963, 117). The reasons for this long neglect of something that appears quite evi- dent and natural are no doubt complex, but an essential part of the story is the restrictive framework of classical Greek geometry. Classical geometers distinguished among classes of problems on the basis of the constructions required to solve them. The simplest problems require only the compass and rule constructions of Euclidean geometry. These “planar” problems are paradigms of mathematical intelligibility because they demand noth- ing for their solution beyond straight lines and circles—the two simplest geometric objects, and ones that can be constructed in a two dimensional plane. In contrast, “solid” problems require more complex constructions. The conic sections, to take the standard example, are “solid” curves de- ªned in terms of the intersection of a plane with a cone. Problems that can be solved only by recourse to the construction of such curves are in some important sense more recondite and less accessible to the untutored intel- lect. Still more recherché problems are the so-called “linear” problems that require curves of a more complex nature.4 A classiªcation of curves arises naturally from this classiªcation of problems—the simplest curves being “plane loci” in contrast to solid and linear loci. As the fourth century (C.E.) geometer Pappus of Alexandria put it: [t]he ancients maintained that there are three types of problems, one of which is called plane, another solid, and the third linear. Therefore those problems which can be solved by right lines and the circumferences of circles are justly called plane, since the lines by which they are solved have their origin in the plane. But those problems whose resolution is found by one or more sections of the cone are called solid problems, for it is necessary in the construction to use the surfaces of solids, namely cones.
Recommended publications
  • Engineering Curves – I
    Engineering Curves – I 1. Classification 2. Conic sections - explanation 3. Common Definition 4. Ellipse – ( six methods of construction) 5. Parabola – ( Three methods of construction) 6. Hyperbola – ( Three methods of construction ) 7. Methods of drawing Tangents & Normals ( four cases) Engineering Curves – II 1. Classification 2. Definitions 3. Involutes - (five cases) 4. Cycloid 5. Trochoids – (Superior and Inferior) 6. Epic cycloid and Hypo - cycloid 7. Spiral (Two cases) 8. Helix – on cylinder & on cone 9. Methods of drawing Tangents and Normals (Three cases) ENGINEERING CURVES Part- I {Conic Sections} ELLIPSE PARABOLA HYPERBOLA 1.Concentric Circle Method 1.Rectangle Method 1.Rectangular Hyperbola (coordinates given) 2.Rectangle Method 2 Method of Tangents ( Triangle Method) 2 Rectangular Hyperbola 3.Oblong Method (P-V diagram - Equation given) 3.Basic Locus Method 4.Arcs of Circle Method (Directrix – focus) 3.Basic Locus Method (Directrix – focus) 5.Rhombus Metho 6.Basic Locus Method Methods of Drawing (Directrix – focus) Tangents & Normals To These Curves. CONIC SECTIONS ELLIPSE, PARABOLA AND HYPERBOLA ARE CALLED CONIC SECTIONS BECAUSE THESE CURVES APPEAR ON THE SURFACE OF A CONE WHEN IT IS CUT BY SOME TYPICAL CUTTING PLANES. OBSERVE ILLUSTRATIONS GIVEN BELOW.. Ellipse Section Plane Section Plane Hyperbola Through Generators Parallel to Axis. Section Plane Parallel to end generator. COMMON DEFINATION OF ELLIPSE, PARABOLA & HYPERBOLA: These are the loci of points moving in a plane such that the ratio of it’s distances from a fixed point And a fixed line always remains constant. The Ratio is called ECCENTRICITY. (E) A) For Ellipse E<1 B) For Parabola E=1 C) For Hyperbola E>1 Refer Problem nos.
    [Show full text]
  • RM Calendar 2017
    Rudi Mathematici x3 – 6’135x2 + 12’545’291 x – 8’550’637’845 = 0 www.rudimathematici.com 1 S (1803) Guglielmo Libri Carucci dalla Sommaja RM132 (1878) Agner Krarup Erlang Rudi Mathematici (1894) Satyendranath Bose RM168 (1912) Boris Gnedenko 1 2 M (1822) Rudolf Julius Emmanuel Clausius (1905) Lev Genrichovich Shnirelman (1938) Anatoly Samoilenko 3 T (1917) Yuri Alexeievich Mitropolsky January 4 W (1643) Isaac Newton RM071 5 T (1723) Nicole-Reine Etable de Labrière Lepaute (1838) Marie Ennemond Camille Jordan Putnam 2002, A1 (1871) Federigo Enriques RM084 Let k be a fixed positive integer. The n-th derivative of (1871) Gino Fano k k n+1 1/( x −1) has the form P n(x)/(x −1) where P n(x) is a 6 F (1807) Jozeph Mitza Petzval polynomial. Find P n(1). (1841) Rudolf Sturm 7 S (1871) Felix Edouard Justin Emile Borel A college football coach walked into the locker room (1907) Raymond Edward Alan Christopher Paley before a big game, looked at his star quarterback, and 8 S (1888) Richard Courant RM156 said, “You’re academically ineligible because you failed (1924) Paul Moritz Cohn your math mid-term. But we really need you today. I (1942) Stephen William Hawking talked to your math professor, and he said that if you 2 9 M (1864) Vladimir Adreievich Steklov can answer just one question correctly, then you can (1915) Mollie Orshansky play today. So, pay attention. I really need you to 10 T (1875) Issai Schur concentrate on the question I’m about to ask you.” (1905) Ruth Moufang “Okay, coach,” the player agreed.
    [Show full text]
  • The Cycloid: Tangents, Velocity Vector, Area, and Arc Length
    The Cycloid: Tangents, Velocity Vector, Area, and Arc Length [This is Chapter 2, section 13 of Historical Perspectives for the Reform of Mathematics Curriculum: Geometric Curve Drawing Devices and their Role in the Transition to an Algebraic Description of Functions; http://www.quadrivium.info/mathhistory/CurveDrawingDevices.pdf Interactive applets for the figures can also be found at Mathematical Intentions.] The circle is the curve with which we all have the most experience. It is an ancient symbol and a cultural icon in most human societies. It is also the one curve whose area, tangents, and arclengths are discussed in our mathematics curriculum without the use of calculus, and indeed long before students approach calculus. This discussion can take place, because most people have a lot of experience with circles, and know several ways to generate them. Pascal thought that, second only to the circle, the curve that he saw most in daily life was the cycloid (Bishop, 1936). Perhaps the large and slowly moving carriage wheels of the seventeenth century were more easily observed than those of our modern automobile, but the cycloid is still a curve that is readily generated and one in which many students of all ages easily take an interest. In a variety of settings, when I have mentioned, for example, the path of an ant riding on the side of a bicycle tire, some immediate interest has been sparked (see Figure 2.13a). Figure 2.13a The cycloid played an important role in the thinking of the seventeenth century. It was used in architecture and engineering (e.g.
    [Show full text]
  • The Tautochrone/Brachistochrone Problems: How to Make the Period of a Pendulum Independent of Its Amplitude
    The Tautochrone/Brachistochrone Problems: How to make the Period of a Pendulum independent of its Amplitude Tatsu Takeuchi∗ Department of Physics, Virginia Tech, Blacksburg VA 24061, USA (Dated: October 12, 2019) Demo presentation at the 2019 Fall Meeting of the Chesapeake Section of the American Associa- tion of Physics Teachers (CSAAPT). I. THE TAUTOCHRONE A. The Period of a Simple Pendulum In introductory physics, we teach our students that a simple pendulum is a harmonic oscillator, and that its angular frequency ! and period T are given by s rg 2π ` ! = ;T = = 2π ; (1) ` ! g where ` is the length of the pendulum. This, of course, is not quite true. The period actually depends on the amplitude of the pendulum's swing. 1. The Small-Angle Approximation Recall that the equation of motion for a simple pendulum is d2θ g = − sin θ : (2) dt2 ` (Note that the equation of motion of a mass sliding frictionlessly along a semi-circular track of radius ` is the same. See FIG. 1.) FIG. 1. The motion of the bob of a simple pendulum (left) is the same as that of a mass sliding frictionlessly along a semi-circular track (right). The tension in the string (left) is simply replaced by the normal force from the track (right). ∗ [email protected] CSAAPT 2019 Fall Meeting Demo { Tatsu Takeuchi, Virginia Tech Department of Physics 2 We need to make the small-angle approximation sin θ ≈ θ ; (3) to render the equation into harmonic oscillator form: d2θ rg ≈ −!2θ ; ! = ; (4) dt2 ` so that it can be solved to yield θ(t) ≈ A sin(!t) ; (5) where we have assumed that pendulum bob is at θ = 0 at time t = 0.
    [Show full text]
  • The Cycloid Scott Morrison
    The cycloid Scott Morrison “The time has come”, the old man said, “to talk of many things: Of tangents, cusps and evolutes, of curves and rolling rings, and why the cycloid’s tautochrone, and pendulums on strings.” October 1997 1 Everyone is well aware of the fact that pendulums are used to keep time in old clocks, and most would be aware that this is because even as the pendu- lum loses energy, and winds down, it still keeps time fairly well. It should be clear from the outset that a pendulum is basically an object moving back and forth tracing out a circle; hence, we can ignore the string or shaft, or whatever, that supports the bob, and only consider the circular motion of the bob, driven by gravity. It’s important to notice now that the angle the tangent to the circle makes with the horizontal is the same as the angle the line from the bob to the centre makes with the vertical. The force on the bob at any moment is propor- tional to the sine of the angle at which the bob is currently moving. The net force is also directed perpendicular to the string, that is, in the instantaneous direction of motion. Because this force only changes the angle of the bob, and not the radius of the movement (a pendulum bob is always the same distance from its fixed point), we can write: θθ&& ∝sin Now, if θ is always small, which means the pendulum isn’t moving much, then sinθθ≈. This is very useful, as it lets us claim: θθ&& ∝ which tells us we have simple harmonic motion going on.
    [Show full text]
  • Unity Via Diversity 81
    Unity via diversity 81 Unity via diversity Unity via diversity is a concept whose main idea is that every entity could be examined by different point of views. Many sources name this conception as interdisciplinarity . The mystery of interdisciplinarity is revealed when people realize that there is only one discipline! The division into multiple disciplines (or subjects) is just the human way to divide-and-understand Nature. Demonstrations of how informatics links real life and mathematics can be found everywhere. Let’s start with the bicycle – a well-know object liked by most students. Bicycles have light reflectors for safety reasons. Some of the reflectors are attached sideway on the wheels. Wheel reflector Reflectors notify approaching vehicles that there is a bicycle moving along or across the road. Even if the conditions prevent the driver from seeing the bicycle, the reflector is a sufficient indicator if the bicycle is moving or not, is close or far, is along the way or across it. Curve of the reflector of a rolling wheel When lit during the night, the wheel’s side reflectors create a beautiful luminous curve – a trochoid . 82 Appendix to Chapter 5 A trochoid curve is the locus of a fixed point as a circle rolls without slipping along a straight line. Depending on the position of the point a trochoid could be further classified as curtate cycloid (the point is internal to the circle), cycloid (the point is on the circle), and prolate cycloid (the point is outside the circle). Cycloid, curtate cycloid and prolate cycloid An interesting activity during the study of trochoids is to draw them using software tools.
    [Show full text]
  • A Tale of the Cycloid in Four Acts
    A Tale of the Cycloid In Four Acts Carlo Margio Figure 1: A point on a wheel tracing a cycloid, from a work by Pascal in 16589. Introduction In the words of Mersenne, a cycloid is “the curve traced in space by a point on a carriage wheel as it revolves, moving forward on the street surface.” 1 This deceptively simple curve has a large number of remarkable and unique properties from an integral ratio of its length to the radius of the generating circle, and an integral ratio of its enclosed area to the area of the generating circle, as can be proven using geometry or basic calculus, to the advanced and unique tautochrone and brachistochrone properties, that are best shown using the calculus of variations. Thrown in to this assortment, a cycloid is the only curve that is its own involute. Study of the cycloid can reinforce the curriculum concepts of curve parameterisation, length of a curve, and the area under a parametric curve. Being mechanically generated, the cycloid also lends itself to practical demonstrations that help visualise these abstract concepts. The history of the curve is as enthralling as the mathematics, and involves many of the great European mathematicians of the seventeenth century (See Appendix I “Mathematicians and Timeline”). Introducing the cycloid through the persons involved in its discovery, and the struggles they underwent to get credit for their insights, not only gives sequence and order to the cycloid’s properties and shows which properties required advances in mathematics, but it also gives a human face to the mathematicians involved and makes them seem less remote, despite their, at times, seemingly superhuman discoveries.
    [Show full text]
  • RM Calendar 2019
    Rudi Mathematici x3 – 6’141 x2 + 12’569’843 x – 8’575’752’975 = 0 www.rudimathematici.com 1 T (1803) Guglielmo Libri Carucci dalla Sommaja RM132 (1878) Agner Krarup Erlang Rudi Mathematici (1894) Satyendranath Bose RM168 (1912) Boris Gnedenko 2 W (1822) Rudolf Julius Emmanuel Clausius (1905) Lev Genrichovich Shnirelman (1938) Anatoly Samoilenko 3 T (1917) Yuri Alexeievich Mitropolsky January 4 F (1643) Isaac Newton RM071 5 S (1723) Nicole-Reine Étable de Labrière Lepaute (1838) Marie Ennemond Camille Jordan Putnam 2004, A1 (1871) Federigo Enriques RM084 Basketball star Shanille O’Keal’s team statistician (1871) Gino Fano keeps track of the number, S( N), of successful free 6 S (1807) Jozeph Mitza Petzval throws she has made in her first N attempts of the (1841) Rudolf Sturm season. Early in the season, S( N) was less than 80% of 2 7 M (1871) Felix Edouard Justin Émile Borel N, but by the end of the season, S( N) was more than (1907) Raymond Edward Alan Christopher Paley 80% of N. Was there necessarily a moment in between 8 T (1888) Richard Courant RM156 when S( N) was exactly 80% of N? (1924) Paul Moritz Cohn (1942) Stephen William Hawking Vintage computer definitions 9 W (1864) Vladimir Adreievich Steklov Advanced User : A person who has managed to remove a (1915) Mollie Orshansky computer from its packing materials. 10 T (1875) Issai Schur (1905) Ruth Moufang Mathematical Jokes 11 F (1545) Guidobaldo del Monte RM120 In modern mathematics, algebra has become so (1707) Vincenzo Riccati important that numbers will soon only have symbolic (1734) Achille Pierre Dionis du Sejour meaning.
    [Show full text]
  • Saturn Dispute”
    An indirect convergence between the Accademia del Cimento and the Montmor Academy: the “Saturn dispute” Giulia Giannini, Università degli Studi di Milano Introduction The purpose of the present chapter is to examine an indirect (albeit significant) point of contact between the Florentine academy, later known as the Accademia del Cimento, and the so-called Montmor Academy: their role in the “Saturn dispute”. In particular, this essay intends to demonstrate how, despite fragmentary evidence and often interrupted exchanges, the issue of the planet’s strange appearances offers a unique standpoint from which to assess the interests and the ways in which the two societies operated, as well as the nature of their relations. The two academies were active between 1657 and 1666-7, in Florence and Paris, respectively. The first occasional meetings at the house of Henri Louis Habert de Montmor (1600-1679) can be dated back to the period between 1654 and 1656.1 However, it is only from 1657–when the academy approved its own statutes–that the beginning of the Parisian circle can be dated with certainty. The Cimento, on the other hand, never had official rules or statutes.2 The dating of its meetings can be determined thanks to the diaries kept by its academicians, and also through the only publication produced by the Florentine academy: the Saggi di naturali esperienze (1667). This book – signed by the “accademici del Cimento” and by the “Saggiato segretario”, Lorenzo Magalotti– attested that an ‘academy’, sponsored by Prince Leopoldo de’ Medici (1617-1675), was ‘founded in the year 1657’.3 Even less information is available regarding the cessation of their activities.
    [Show full text]
  • Cycloid Article(Final04)
    The Helen of Geometry John Martin The seventeenth century is one of the most exciting periods in the history of mathematics. The first half of the century saw the invention of analytic geometry and the discovery of new methods for finding tangents, areas, and volumes. These results set the stage for the development of the calculus during the second half. One curve played a central role in this drama and was used by nearly every mathematician of the time as an example for demonstrating new techniques. That curve was the cycloid. The cycloid is the curve traced out by a point on the circumference of a circle, called the generating circle, which rolls along a straight line without slipping (see Figure 1). It has been called it the “Helen of Geometry,” not just because of its many beautiful properties but also for the conflicts it engendered. Figure 1. The cycloid. This article recounts the history of the cycloid, showing how it inspired a generation of great mathematicians to create some outstanding mathematics. This is also a story of how pride, pettiness, and jealousy led to bitter disagreements among those men. Early history Since the wheel was invented around 3000 B.C., it seems that the cycloid might have been discovered at an early date. There is no evidence that this was the case. The earliest mention of a curve generated by a -1-(Final) point on a moving circle appears in 1501, when Charles de Bouvelles [7] used such a curve in his mechanical solution to the problem of squaring the circle.
    [Show full text]
  • Vacuum in the 17Th Century and Onward the Beginning of Experimental Sciences Donald M
    HISTORY CORNER A SHORT HISTORY: VACUUM IN THE 17TH CENTURY AND ONWARD THE BEGINNING OF Experimental SCIENCES Donald M. Mattox, Management Plus Inc., Albuquerque, N.M. acuum as defined as a space with nothing in it (“perfect Early Vacuum Equipment vacuum”) was debated by the early Greek philosophers. The early period of vacuum technology may be taken as the V The saying “Nature abhors a vacuum” (horror vacui) is gener- 1640s to the 1850s. In the 1850s, invention of the platinum- ally attributed to Aristotle (Athens ~350 BC). Aristotle argued to-metal seal and improved vacuum pumping technology al- that vacuum was logically impossible. Plato (Aristotle’s teach- lowed the beginning of widespread studies of glow discharges er) argued against there being such a thing as a vacuum since using “Geissler tubes”[6]. Invention of the incandescent lamp “nothing” cannot be said to exist. Hero (Heron) of Alexandria in the 1850s provided the incentive for development of indus- (Roman Egypt) attempted using experimental techniques to trial scale vacuum technology[7]. create a vacuum (~50 AD) but his attempts failed although he did invent the first steam engine (“Heron’s steam engine”) and Single-stroke Mercury-piston Vacuum Pump “Heron’s fountain,” often used in teaching hydraulics. Hero It was the latter part of 1641 that Gasparo Berti demonstrated wrote extensively about siphons in his book Pneumatica and his water manometer, which consisted of a lead pipe about 10 noted that there was a maximum height to which a siphon can meters tall with a glass flask cemented to the top of the pipe “lift” water.
    [Show full text]
  • Marin Mersenne As Mathematical Intelligencer
    Hist. Sci., li (2013) SMall SkIllS, BIG NETwORkS: MaRIN MERSENNE aS MaTHEMaTICal INTEllIGENCER Justin Grosslight Independent Scholar Writing in August 1634, the French polymath Nicolas-Claude Fabri de Peiresc reflected upon Marin Mersenne’s endeavours. Mersenne, Peiresc asserted, had forced himself into “frontiers that are a little more in fashion of the times than these prolix treaties of the schools that so few men handle outside of the colleges”.1 Peiresc was quite prescient to realize the novel claims that Mersenne was promoting. From the middle of the 1620s until his death in 1648, Mersenne encouraged discussion on a number of new mathematical concepts, ideas that lacked a secure home within the Aristotelian university curriculum.2 By mathematics, I am referring to mixed mathematics, the application of arithmetic and geometry often to physical proc- esses, and related topics in natural philosophy: examples include Galilean mechan- ics, the question of whether a void exists in nature, and analysis of conic sections and their spatial counterparts.3 For Peiresc and others, Mersenne was an exemplar of new, heterodox ideas: though he was a member of the religious Minim order, he was respected widely as a mathematician, he lived a gregarious life in cosmopoli- tan Paris, and he was an intimate friend of the famed French mathematician rené Descartes as well as a correspondent with the Italian Galileo Galilei and the Dutch Christiaan huygens.4 But while Mersenne is still remembered as a mathematician and correspondent of famous mathematicians, Peiresc’s description of Mersenne as trend-conscious or even a trendsetter has been effectively forgotten.
    [Show full text]