Report on the Implementation of the CIM As the Reference Data Model for the Project D2.4

Total Page:16

File Type:pdf, Size:1020Kb

Report on the Implementation of the CIM As the Reference Data Model for the Project D2.4 Real proven solutions to enable active demand and distributed generation flexible integration, through a fully controllable LOW Voltage and medium voltage distribution grid WP 2 – Innovative Distribution Grid Use Cases and Functions Report on the implementation of the CIM as the reference data model for the project D2.4 2015 The UPGRID Consortium This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 646.531 WP 2 – INNOVATIVE DISTRIBUTION GRID USE CASES AND FUNCTIONS D.2.1 REPORT ON THE IMPLEMENTATION OF THE CIM AS THE REFERENCE DATA MODEL FOR THE PROJECT PROGRAMME H2020 – Energy Theme GRANT AGREEMENT NUMBER 646.531 PROJECT ACRONYM UPGRID DOCUMENT D2.4 TYPE (DISTRIBUTION LEVEL) ☒ Public ☐ Confidential ☐ Restricted DUE DELIVERY DATE 31/12/2016 DATE OF DELIVERY STATUS AND VERSION V1.0 NUMBER OF PAGES 129 WP / TASK RELATED WP2/T2.3 WP / TASK RESPONSIBLE COMILLAS AUTHOR (S) José Antonio Rodríguez Mondéjar (COMILLAS), José María Oyarzabal Moreno (TECNALIA) PARTNER(S) CONTRIBUTING Vattenfall, GE, Iberdrola, ITE, Energa, IEN, Powel FILE NAME D_2_4 Report on the implementation of the CIM as the reference data model for the project v1.2 2 | 129 WP 2 – INNOVATIVE DISTRIBUTION GRID USE CASES AND FUNCTIONS D.2.1 REPORT ON THE IMPLEMENTATION OF THE CIM AS THE REFERENCE DATA MODEL FOR THE PROJECT DOCUMENT HISTORY VERS. ISSUE DATE CONTENT AND CHANGES 0.0 1/10/2016 Initial draft with TOC 0.1 1/12/2016 First draft by the partners 1.0 12/12/2016 First version of the document (for official review) 1.1 16/12/2016 Modification of Chapter 5.3 with data from the Polish demo 1.2 21/12/2016 Integration of the reviewer comments 1.2c 1/12/2017 Deliverable set up as “Public” according to the UPGRID Amendment 1 3 | 129 WP 2 – INNOVATIVE DISTRIBUTION GRID USE CASES AND FUNCTIONS D.2.1 REPORT ON THE IMPLEMENTATION OF THE CIM AS THE REFERENCE DATA MODEL FOR THE PROJECT EXECUTIVE SUMMARY This deliverable reports the using of the CIM (Common Information Model) as the reference data model of the project UPGRID. The CIM models the information that defines a power system, both the static and the dynamic view, to facilitate the integration of EMS (Energy Management System) and DMS (Distribution Management System) applications developed independently by different vendors. The CIM is standardized through the IEC 61970, IEC 61968 and 62325 series. The CIM also provides two methods for transmitting the CIM data using the XML language: the CIM RDF XML format for transferring the full CIM model of a power system or for transferring changes in the CIM model; and the CIM XML format for transferring simple changes in the CIM model or add new data, as meter readings. The aims of using the CIM in the UPGRID project were: • Common language to interoperate between working groups. This objective was fundamental in the project. The development of distribution networks has historically followed different approaches in the countries where demos are placed (Spain, Portugal, Sweden, and Poland). For instance, components have different local names that depend on the technical background and the country language. • Common messaging between applications to be developed in the project. If an application is going to be deployed in different demos, the CIM offers a common way, using XML messages, for interchanging electrical data and related data. • Fast development of applications. The CIM is based on object-oriented modelling using UML. So, the development time of applications will be shortened thanks to this approach, because many tools in the market provide a direct link between the UML model and the final application code. These goals have been achieved through the following tasks performed at WP2 and WPs of the demos: • CIM modelling of the data requirements of the components to be developed at WP2. This modelling has provided a common vocabulary for the developers. Additionally, the best strategy (CIM RDF XML format or CIM XML format) has been established for communicating the CIM data between each component and other DMS applications. Also, a full profile based on CIM XML has been generated for one of the components for guiding the development of the interfaces of this component and the rest of the components of WP2. • Development of a CIM interface based on CIM XML RDF between the different existing databases and the LVNMS (Low Voltage Network Management System) in the Spanish demo. In this case, an application gets the electrical and asset data disseminated in different databases and generates the CIM data. The configuration and continuous update of the LVNMS are based on this data. To achieve the objective, the CIM model was extended to fulfil the data requirements of the Spanish demo and some limitations of the application. The CIM has proved their capacity using its own mechanism for generating the extensions when the standard CIM classes cannot fulfil the 4 | 129 WP 2 – INNOVATIVE DISTRIBUTION GRID USE CASES AND FUNCTIONS D.2.1 REPORT ON THE IMPLEMENTATION OF THE CIM AS THE REFERENCE DATA MODEL FOR THE PROJECT requirements. Nevertheless, the majority of the used CIM classes belongs to the standard core of the CIM model. • Development of an alternative profile for the Spanish demo. In the last task, some new classes were added due to the application limitations. This task has generated a full model of the distribution network without these limitations. Only 2 new classes were necessary to add. This task has proved the power of the standard CIM core for modelling distribution systems and, also, as in the last task, the ability to include new classes inside the CIM, if they are necessary. • Development of a CIM interface, also based on CIM XML RDF, between the existing database and the LVNMS in the Swedish demo. This task is similar to the Spanish demo, except that new classes have not been added because the Swedish demo has fewer data requirements, and the Swedish application for doing the translation to the CIM format is more flexible. This also proves the adaptability of the CIM. Moreover, the use of CIM has allowed sharing experiences between developer groups to facilitate the comparisons between solutions, and generate a practical guideline about using CIM, in addition to the ample available bibliography. • Development of a CIM interface in the Polish demo, based on the CIM XML format, for transferring mainly reading data between applications. This proves the adaptability of CIM by offering solutions of varying degrees of complexity: the CIM XML format for communicating a simple set of data, the CIM RDF XML format for complex electric models. This document has also displayed some disadvantages of working with the CIM. The main one is the development from scratch of CIM solutions using only as input the IEC standard documents. The IEC only provides PDF documents that cannot be copied. The IEC must provide the codes of the models as the CIM XML schemas or the CIM RDF XML schemas. Another negative aspect is the learning curve of the CIM model. The model is fractioned in hundreds of classes with many relationships between classes. New tools are necessary that permit an engineer with a non-deep object oriented programming background to deal with this issue. In summary, the CIM has played, and it is playing, an important role in the UPGRID project because it has provided a common vocabulary, a common way for modelling the distribution networks and a common way for transmitting the associated data. And also, its flexibility permits one to include new element types in the future in a way compatible with what has already been developed, without waiting to be standardized. 5 | 129 WP 2 – INNOVATIVE DISTRIBUTION GRID USE CASES AND FUNCTIONS D.2.1 REPORT ON THE IMPLEMENTATION OF THE CIM AS THE REFERENCE DATA MODEL FOR THE PROJECT TABLE OF CONTENTS EXECUTIVE SUMMARY _________________________________________________________________ 4 TABLE OF CONTENTS __________________________________________________________________ 6 LIST OF FIGURES ______________________________________________________________________ 8 LIST OF TABLES ______________________________________________________________________ 11 ABBREVIATIONS AND ACRONYMS ______________________________________________________ 13 1. INTRODUCTION ___________________________________________________________________ 14 2. BRIEF INTRODUCTION TO CIM ________________________________________________________ 15 2.1 THE CIM MODEL _______________________________________________________________________ 15 2.2 COMMUNICATION OF THE CIM DATA ______________________________________________________ 17 2.2.1 CIM RDF XML _________________________________________________________________________________ 17 2.2.2 CIM XML ____________________________________________________________________________________ 19 2.3 CIM PROFILES _________________________________________________________________________ 23 3. THE CIM PHOTO AT THE BEGINNING OF THE PROJECT ____________________________________ 25 4. THE APPLICATION OF CIM IN THE DEVELOPMENT OF WP2 COMPONENTS ____________________ 29 4.1 CIM VERSION HARMONIZATION ___________________________________________________________ 29 4.2 MATCHING BETWEEN COMPONENT DATA MODEL REQUIREMENTS AND THE CIM ___________________ 30 4.4 PROFILE DEVELOPMENT _________________________________________________________________ 38 4.4.1 LOAD AND GENERATION FORECASTING AT SECONDARY SUBSTATION ___________________________________ 39 4.5 STUDY ON THE USE OF THE CIM MODEL
Recommended publications
  • Introduction to Iec 62361-102 Cim - 61850 Harmonization
    25th International Conference on Electricity Distribution Madrid, 3-6 June 2019 Paper n° 1368 INTRODUCTION TO IEC 62361-102 CIM - 61850 HARMONIZATION Tom BERRY Schneider Electric – France [email protected] ABSTRACT TR IEC 62361-102 [1] is a Technical Specification that describes a mapping for information exchange between power system installations based on the modelling approach of IEC 61850; and business systems based on IEC CIM standard data exchanges. The document includes proposals to ‘harmonize’ the two standards by adapting or extending existing information models and/or defining new models, where such changes will enable more effective communication. This paper explains the key mapping principles and some of the recommendations for future editions of the standards. WHAT IS THE PROBLEM? The smart grid initiatives in the USA, Europe and Asia Figure 1: Data models for Smart Grids Architectural have all recognized the necessity to establish solid Methodology standards for communicating between all the "smart" devices. For interoperability purposes, it has been Several studies [3] and reports [4,5] have already been recognized, at an early stage, that widely shared semantics produced on the subject of harmonization, but failed to get to describe power systems would be necessary. Power sufficient support for publication as IEC standards or systems are complex and several technical groups have technical specifications. The approach taken by the task worked on different aspects of communication. There are force was to concentrate on a fundamental use case related different needs for information exchange within different to configuration of real time communication between contexts e.g. within a substation or within control centres.
    [Show full text]
  • Technical Framework on Local Energy Communities TF-LEC Vol.1
    Integrating the Energy System – IES Technical Framework on Local Energy Communities TF-LEC Vol.1 Version 0.5 First trial release January 14, 2021 TF-LEC Vol.1 i Document Information Title Technical Framework on Local Energy Communities – Vol.1 Editors Gerald Franzl, Stefan Wilker Authors Gerald Franzl Filename TF-LocalEnergyCommunities-Vol1_v005.pdf Description Local Energy Communities – operation principle and environment Last changes First trial release 01/2021 sClassification WHITE: open to public Version History Version Date Changed by Comment 0.1 2020-03-20 Gerald Franzl Start compiling content & text 0.3 2020-07-10 Gerald Franzl Invite cFlex team to contribute 0.5 2021-01-15 Gerald Franzl Publish the first trial version The TF-LEC was initiated and created within the cFlex project [energyit.ict.tuwien.ac.at/projects/project-cflex] by: Danube University Krems TU Wien Department for Integrated Sensor Systems Institute of Computer Technology (E384) Viktor Kaplan Strasse 2/E, Gusshaus Strasse 27-29/384, A-2700 Wiener Neustadt, Austria A-1040 Vienna, Austria www.donau-uni.ac.at/diss www.ict.tuwien.ac.at Corresponding author: [email protected] Acknowledgement: This Technical Framework was initiated and prepared in the course of the national project cFlex funded by the Austrian Climate and Energy Fund (KLIEN), administrated by the Austrian Research Promotion Agency (FFG) under contract number 871657. The initial authors like to thank all the contributing team members from the cFlex project for their invaluable contribution of knowledge, experience and support toward a better joint understanding of the complexities involved in operating Local Energy Communities.
    [Show full text]
  • Smart Grid Standardization Documentation Map
    D2.1 – SMART GRID STANDARDIZATION DOCUMENTATION MAP The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement no 318782. STARGRID FP7 - 318782 D2.1 – SMART GRID STANDARDIZATION DOCUMENTATION MAP Version V1.3 Status Final Draft Work Package WP2 Preparation Date 2013-11-08 Due Date M8 Submission Date 2013-06-28 Inés Gómez (TECNALIA) J. Emilio Rodríguez (TECNALIA) Main Author(s) Eugenia Aghinii (ASRO) Speranta Stomff (ASRO) Joseba Jimeno (TECNALIA) Christoph Nölle (IWES) Contributors Ibon Arechalde (TECNALIA) Eduardo García (TECNALIA) Eutimio Sánchez (TECNALIA) Dissemination Level PU Nature R Keywords Smart Grid, Standardization, Industry Initiatives D2.1 – Smart Grid standardization documentation map VERSION HISTORY Version Date Author(s) Comments Inés Gómez (TECNALIA) J. Emilio Rodríguez (TECNALIA) Eugenia Aghinii (ASRO) v0.1 2013-06-25 First draft Speranta Stomff (ASRO) Joseba Jimeno (TECNALIA) Christoph Nölle (IWES) Inés Gómez (TECNALIA) J. Emilio Rodríguez (TECNALIA) Eugenia Aghinii (ASRO) V0.2 2013-06-27 Final draft Speranta Stomff (ASRO) Joseba Jimeno (TECNALIA) Christoph Nölle (IWES) Inés Gómez (TECNALIA) J. Emilio Rodríguez (TECNALIA) Eugenia Aghinii (ASRO) v1.0 2013-06-28 Final version, submitted Speranta Stomff (ASRO) Joseba Jimeno (TECNALIA) Christoph Nölle (IWES) Inés Gómez (TECNALIA) J. Emilio Rodríguez (TECNALIA) Eugenia Aghinii (ASRO) V1.2 2013-07-16 Periodic review Speranta Stomff (ASRO) Joseba Jimeno (TECNALIA) Christoph Nölle (IWES) Inés Gómez (TECNALIA) J. Emilio Rodríguez (TECNALIA) Eugenia Aghinii (ASRO) V1.3 2013-11-08 Periodic review Speranta Stomff (ASRO) Joseba Jimeno (TECNALIA) Christoph Nölle (IWES) 2013-11-08 v1.3 2/312 D2.1 – Smart Grid standardization documentation map TABLE OF CONTENTS Version History................................................................................................................................................
    [Show full text]
  • CGMES Profiling User Guide V1.0
    European Network of Transmission System Operators for Electricity CGMES Profiling User Guide v1.0 2021-04-21 SOC APPROVED VERSION 1.0 ENTSO-E AISBL • Rue de Spa, 8 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • Fax +32 2 741 09 51 • [email protected] • www.entsoe.eu CGMES Profiling User Guide v1.0 European Network of Transmission System Operators for Electricity Copyright notice: Copyright © ENTSO-E. All Rights Reserved. This document and its whole translations may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and d erivative works. However, this document itself may not be modified in any way, except for literal and whole translation into languages other than English and under all circumstances, the copyright notice or references to ENTSO-E may not be removed. This document and the information contained herein is provided on an "as is" basis. ENTSO-E DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Maintenance notice: This document is maintained by the ENTSO-E CIM EG. Comments or remarks are to be provided at [email protected] NOTE CONCERNING WORDING USED IN THIS DOCUMENT The force of the following words is modified by the requirement level of the document in which they are used.
    [Show full text]
  • 57-61968-5-Ed1-FDIS
    IEC 61968-5 ED1 © IEC:2020 – 1 – 1 CONTENTS 2 3 FOREWORD ........................................................................................................................... 4 4 INTRODUCTION ..................................................................................................................... 6 5 Scope ..................................................................................................................................... 8 6 Normative references .............................................................................................................. 9 7 Terms, definitions and abbreviated terms .............................................................................. 10 8 3.1 Terms and definitions............................................................................................ 10 9 3.3 Abbreviated terms ................................................................................................. 10 10 Conventions .......................................................................................................................... 11 11 DER enterprise integration use cases ................................................................................... 11 12 5.1 General ................................................................................................................. 11 13 5.2 DER Group Creation ............................................................................................. 14 14 5.3 Maintenance of DERGroups .................................................................................
    [Show full text]
  • IEC-International Electrotechnical Commission
    Standards Manager Web Standards List IEC-International Electrotechnical Commission Id Number Title Year Organization Page 1 60034-2-3 Rotating electrical machines _ Part 2-3: Specific test methods for determining losses and efficiency of converter-fed AC 2020 IEC motors - Edition 1.0 2 60034-3 Rotating electrical machines _ Part 3: Specific requirements for synchronous generators driven by steam turbines or 2020 IEC combustion gas turbines and for synchronous compensators - Edition 7.0 3 60034-5 Rotating electrical machines _ Part 5: Degrees of protection provided by the integral design of rotating electrical machines 2020 IEC (IP code) _ Classification - Edition 5.0 4 60034-7 Rotating electrical machines _ Part 7: Classification of types of construction, mounting arrangements and terminal box 2020 IEC position (IM Code) - Edition 3.0 5 60034-11 Rotating electrical machines _ Part 11: Thermal protection - Edition 3.0 2020 IEC 6 60034-18-42 Rotating electrical machines _ Part 18-42: Partial discharge resistant electrical insulation systems (Type II) used in rotating 2020 IEC electrical machines fed from voltage converters _ Qualification tests - Edition 1.1; Consolidated Reprint 7 60045-1 Steam turbines _ Part 1: Specifications - Edition 2.0 2020 IEC 8 60050-113 NULL 2020 IEC AMD 2 9 60050-113 AMENDMENT 3 International Electrotechnical Vocabulary (IEV) _ Part 113: Physics for electrotechnology - Edition 1.0 2020 IEC AMD 3 10 60050-151 AMENDMENT 4 International Electrotechnical Vocabulary (IEV) _ Part 151: Electrical and magnetic devices
    [Show full text]
  • Review of Smart Grid Standards for Testing and Certification Landscape Analysis
    NIST Technical Note 2042 Review of Smart Grid Standards for Testing and Certification Landscape Analysis Eugene Y. Song Cuong Nguyen Avi Gopstein This publication is available free of charge from: https://doi.org/10.6028/NIST.TN.2042 NIST Technical Note 2042 Review of Smart Grid Standards for Testing and Certification Landscape Analysis Eugene Y. Song Cuong Nguyen Avi Gopstein Smart Grid and Cyber-Physical Systems Program Office Engineering Laboratory This publication is available free of charge from: https://doi.org/10.6028/NIST.TN.2042 April 2019 U.S. Department of Commerce Wilbur L. Ross, Jr., Secretary National Institute of Standards and Technology Walter Copan, NIST Director and Undersecretary of Commerce for Standards and Technology Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental procedure or concept adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the entities, materials, or equipment are necessarily the best available for the purpose. National Institute of Standards and Technology Technical Note 2042 Natl. Inst. Stand. Technol. Tech. Note 2042, 76 pages (April 2019) CODEN: NTNOEF This publication is available free of charge from: https://doi.org/10.6028/NIST.TN.2042 Disclaimers Certain commercial entities, equipment, or materials may be identified in this document to describe an experimental procedure or concept adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the entities, materials, or equipment are necessarily the best available for the purpose.
    [Show full text]
  • IEC 62325-451-4 ® Edition 2.0 2017-04
    This is a preview - click here to buy the full publication IEC 62325-451-4 ® Edition 2.0 2017-04 INTERNATIONAL STANDARD colour inside Framework for energy market communications – Part 451-4: Settlement and reconciliation business process, contextual and assembly models for European market INTERNATIONAL ELECTROTECHNICAL COMMISSION ICS 33.200 ISBN 978-2-8322-4145-5 Warning! Make sure that you obtained this publication from an authorized distributor. ® Registered trademark of the International Electrotechnical Commission This is a preview - click here to buy the full publication – 2 – IEC 62325-451-4:2017 © IEC 2017 CONTENTS FOREWORD ........................................................................................................................... 6 INTRODUCTION ..................................................................................................................... 8 1 Scope .............................................................................................................................. 9 2 Normative references ...................................................................................................... 9 3 Terms and definitions .................................................................................................... 10 4 Document contextual model and message assembly model basic concepts ................... 11 4.1 Overview............................................................................................................... 11 4.2 European style market package structure ............................................................
    [Show full text]
  • Final Report Standards for Smart Grids
    Final report of the CEN/CENELEC/ETSI Joint Working Group on Standards for Smart Grids Final report of the CEN/CENELEC/ETSI Joint Working Group on Standards for Smart Grids Status: approved by the CEN/CENELEC/ETSI Joint Presidents Group (JPG) on 4 May 2011, subject to the formal approval by 2011-06-05 by the individual ESOs Final report of the CEN/CENELEC/ETSI Joint Working Group on Standards for Smart Grids Foreword < to be added> Final report of the CEN/CENELEC/ETSI Joint Working Group on Standards for Smart Grids Contents 1. Executive summary .................................................................................................................................. 6 2. Introduction ............................................................................................................................................... 8 2.1 Basic idea of smart grids ..................................................................................................................... 9 2.2 Current political background in Europe ............................................................................................. 11 2.3 Aim of a European standardization report ........................................................................................ 11 2.4 Standardization activities around the world ...................................................................................... 13 3. Description of the overall concept ....................................................................................................... 17 3.1
    [Show full text]
  • Common Information Model (CIM) European Style Market Profile User Guide
    1 European Network of Transmission System Operators for Electricity ENTSO-E Common information model (CIM) European style market profile User guide 2017-01-03 VERSION 3.0 ENTSO-E AISBL • Avenue de Cortenbergh, 100 • 1000 Brussels • Belgium • Tel +32 2 741 09 50 • Fax +32 2 741 09 51 • [email protected] • www.entsoe.eu European Network of ENTSO-E Common information model (CIM) European style market profile user guide Transmission System Operators for Electricity VERSION 3.0 2 Copyright notice: 3 Copyright © ENTSO-E. All Rights Reserved. 4 This document and its whole translations may be copied and furnished to other s, and 5 derivative works that comment on or otherwise explain it or assist in its implementation may 6 be prepared, copied, published and distributed, in whole or in part, without restriction of any 7 kind, provided that the above copyright notice and this paragraph are included on all such 8 copies and derivative works. However, this document itself may not be modified in any way, 9 except for literal and whole translation into languages other than English and under all 10 circumstances, the copyright notice or references to ENTSO-E may not be removed. 11 This document and the information contained herein is provided on an "as is" basis. 12 ENTSO-E DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT 13 LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT 14 INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR 15 FITNESS FOR A PARTICULAR PURPOSE. 16 Maintenance notice: 17 This document is maintained by the ENTSO-E WG EDI.
    [Show full text]
  • Interoperability Strategic Vision: Enabling an Interactive Grid DRAFT
    Interoperability Strategic Vision: Enabling an Interactive Grid DRAFT April 2017 SE Widergren M Martin MR Knight B Nordman RB Melton A Khandekar D Narang K Hardy PNNL-26338 DRAFT PNNL-26338 DRAFT Interoperability Strategic Vision: Enabling an Interactive Grid SE Widergren1 M Martin2 MR Knight1 B Nordman3 RB Melton1 A Khandekar3 D Narang2 K Hardy4 April 2017 An Interim Deliverable for Review 1 Pacific Northwest National Laboratory 2 National Renewable Energy Laboratory 3 Lawrence Berkeley National Laboratory 4 Argonne National Laboratory PNNL-26338 Executive Summary The purpose of this Interoperability Strategic Vision document is to promote a common understanding of the meaning and characteristics VALUE OF of interoperability and to promote a strategy to advance the state of INTEROPERABILITY interoperability as applied to integration challenges facing grid modernization. This includes addressing the quality of integrating Reduces the cost and effort for devices and systems and the discipline to improve the process of system integration successfully integrating these components as business models and Improves grid performance and information technology improve over time. Stated succinctly, efficiency interoperability is “the ability of two or more systems or components to exchange information and to use the information that has been Facilitates more comprehensive grid security and cybersecurity exchanged.”1 Reasons to invest effort in addressing interoperability practices issues are reflected in the sidebar.2 Increases customer choice and Interoperability has important economic consequences. Systems that participation integrate simply and predictably have lower equipment costs and Establishes industry-wide best lower transactions costs, higher productivity through automation, practices more conversion of data and information into insight, higher competition between technology suppliers, and increased technology Is a catalyst of innovation and application innovation.
    [Show full text]
  • IEC TC57 “Power System Management and Associated Information Exchange” Current and Future Smart Grid Standardization Activities
    INTERNATIONAL ELECTROTECHNICAL COMMISSION T. Lefebvre (Chairman), H. Englert (Secretary) IEC TC57 “Power system management and associated information exchange” Current and future smart grid standardization activities Objective and Scope of IEC TC57 To provide interoperability standards for the information exchange within and to power systems This includes communication interfaces, information security and data model specifications covering power utility automation (protection, substation automation, distribution automation), DER management, SCADA, energy management systems (EMS), distribution management systems (DMS), market communication as well as information exchange between power system and home-, building- and industry automation. Key Figures Reference Architecture . Established in 1964 . IEC/TR 62357-1 defines the standards’ framework of TC57 . 130 standard documents published . Provides basis for implementation strategies and architecture . More than 530 experts development for project realizations . 32 member and 12 observer countries . 28 active liaisons (16 internal, 2 type A, 10 type D) . 41 projects in development . 13 active working groups, 2 joint working groups (with TC13 and TC88) Strategy . Apply use case and requirements oriented approach for standards development . Open proprietary structures by standardization of data exchange interfaces among IT systems and software applications, avoid to standardize applications them selves . Use of state of the art standard information and communication technology platforms wherever available and applicable . Ensure quality, consistency and compatibility of TC57 standards portfolio Structure Core Semantic Standards for Smart Grid WG03 Telecontrol protocols The Common Information Model (CIM) (IEC 61968, IEC 61970 and IEC 62325 WG09 Distribution automation using distribution line carrier systems series) and IEC 61850 series, have been recognized as pillars for realization of WG10 Power system IED communication and associated data models the Smart Grid objectives of interoperability and device management.
    [Show full text]