Effects of Irrigating with Brackish Water on Soil Moisture, Soil Salinity
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Freshwater Ecosystems and Biodiversity
Network of Conservation Educators & Practitioners Freshwater Ecosystems and Biodiversity Author(s): Nathaniel P. Hitt, Lisa K. Bonneau, Kunjuraman V. Jayachandran, and Michael P. Marchetti Source: Lessons in Conservation, Vol. 5, pp. 5-16 Published by: Network of Conservation Educators and Practitioners, Center for Biodiversity and Conservation, American Museum of Natural History Stable URL: ncep.amnh.org/linc/ This article is featured in Lessons in Conservation, the official journal of the Network of Conservation Educators and Practitioners (NCEP). NCEP is a collaborative project of the American Museum of Natural History’s Center for Biodiversity and Conservation (CBC) and a number of institutions and individuals around the world. Lessons in Conservation is designed to introduce NCEP teaching and learning resources (or “modules”) to a broad audience. NCEP modules are designed for undergraduate and professional level education. These modules—and many more on a variety of conservation topics—are available for free download at our website, ncep.amnh.org. To learn more about NCEP, visit our website: ncep.amnh.org. All reproduction or distribution must provide full citation of the original work and provide a copyright notice as follows: “Copyright 2015, by the authors of the material and the Center for Biodiversity and Conservation of the American Museum of Natural History. All rights reserved.” Illustrations obtained from the American Museum of Natural History’s library: images.library.amnh.org/digital/ SYNTHESIS 5 Freshwater Ecosystems and Biodiversity Nathaniel P. Hitt1, Lisa K. Bonneau2, Kunjuraman V. Jayachandran3, and Michael P. Marchetti4 1U.S. Geological Survey, Leetown Science Center, USA, 2Metropolitan Community College-Blue River, USA, 3Kerala Agricultural University, India, 4School of Science, St. -
Short Nosed Sturgeon
Connecticut River Coordinator's Office: Fish Facts - Shortnose Sturgeon Page 1 of 3 Skip navigation links Fish Facts - Shortnose Sturgeon z Description z Life History z Distribution z Status z Restoration Efforts Download a Fact Sheet (85 KB Adobe pdf file) You will need Adobe Acrobat Reader software to open the document above. If you do not have this software, you may obtain it free of charge by following this link. Description The shortnose sturgeon (Acipenser brevirostrum) is one of two sturgeon species in the Connecticut River; the other is the Atlantic sturgeon. The shortnose is the smaller of the two, growing to be 2 to 3 feet in length and about 14 pounds in weight. Sturgeons are an ancient species with fossils dating back 65 million years. They are very distinctive, looking like a prehistoric cross between a shark and a catfish. Sturgeons lack teeth and scales but have a unique body armor of diamond-shaped bony plates called scutes. Some have been found to be over 60 years old. Life History Shortnose sturgeon are typically anadromous, migrating from the ocean to fresh water specifically to reproduce. However, of the two populations in the Connecticut River system (formed by the construction of dams), one is considered to be partially landlocked and the other is likely to be http://www.fws.gov/r5crc/Fish/zf_acbr.html 1/3/2007 Connecticut River Coordinator's Office: Fish Facts - Shortnose Sturgeon Page 2 of 3 amphidromous, moving between fresh and salt water. Shortnose reproduce in the spring. They broadcast their eggs in areas with rubble substrate. -
Water on Earth (Pages 392–395) Key Concept
Name Date Class Fresh Water ■ Adapted Reading and Study Water on Earth (pages 392–395) The Water Cycle (pages 392–393) Key Concept: In the water cycle, water moves from bodies of water, land, and living things on Earth’s surface to the atmosphere and back to Earth’s surface. • The water cycle is how water moves from Earth’s surface to the atmosphere and back again. The water cycle never stops. It has no beginning or end. • The sun is the source of energy for the water cycle. • Water evaporates from Earth’s surface. Water is always evaporating from oceans and lakes. Water is given off by plants as water vapor. • When water vapor in the air cools, it condenses. The result of this condensation is clouds. • From clouds, water falls back to Earth as precipitation. Precipitation is water that falls to Earth as rain, snow, hail, or sleet. • If the precipitation falls on land, it may soak into the soil. Or, it may run off into rivers and lakes. Answer the following questions. Use your textbook and the ideas above. 1. The process by which water moves from Earth’s surface to the atmosphere and back again is the . 2. Water that falls to Earth as rain, snow, hail, or Fresh Water Fresh sleet is called . © Pearson Education, Inc., publishing as Pearson Prentice Hall. All rights reserved. 185 Name Date Class Fresh Water ■ Adapted Reading and Study 3. Circle the letter of each sentence that is true about the water cycle. a. The water cycle begins with the formation of clouds. -
And Brackish Water Environments What Is Brackish Water Brackish Water Is Water Which Contains More Sea Salts Than Freshwater but Less Than the Open Sea
http://www.unaab.edu.ng COURSE CODE: FIS316 COURSE TITLE: Marine and Brackishwater Economic Resources NUMBER OF UNITS: 2 Units COURSE DURATION: Two hours per week COURSECOURSE DETAILS:DETAILS: Course Coordinator: Prof. Yemi Akegbejo‐Samsons Email: [email protected] Office Location: Room D210, COLERM Other Lecturers: Dr. D.O. Odulate COURSE CONTENT: Study of major marine and brackish water fin and shell fish species in relation to their development for culture, food and industrial uses. Methods of harvesting e.g. electro‐ fishing. COURSE REQUIREMENTS: This is a compulsory course for all students in Department of Aquaculture & Fisheries Management. In view of this, students are expected to participate in all the course activities and have minimum of 75% attendance to be eligible to write the final examination. READING LIST: E LECTURE NOTES 1. Study of major marine and brackish water fin and shell fish species in relation to their development for culture, food and industrial uses. 2. Methods of harvesting e.g. electro-fishing. This course is taught by Prof Yemi Akegbejo-Samsons and Dr D O Odulate. The venue for the interaction with students is on the ground floor of the College of Environmental Resources Management. Topic 1 Marine and Brackish water environments What is Brackish Water Brackish water is water which contains more sea salts than freshwater but less than the open sea. http://www.unaab.edu.ng Moreover, brackish water environments are also fluctuating environments. The salinity is variable depending on the tide, the amount of freshwater entering from rivers or as rain, and the rate of evaporation. -
The Conservation and Sustainable Use of Freshwater Resources in West Asia, Central Asia and North Africa
IUCN-WESCANA Water Publication The Conservation and Sustainable Use of Freshwater Resources in West Asia, Central Asia and North Africa The 3rd IUCN World Conservation Congress Bangkok, Kingdom of Thailand, November 17-25, 2004 IUCN Regional Office for West/Central Asia and North Africa Kuwait Foundation For The Advancement of Sciences The World Conservation Union 1 2 3 The Conservation and Sustainable Use of Freshwater Resources in West Asia, Central Asia and North Africa The 3rd IUCN World Conservation Congress Bangkok, Kingdom of Thailand, November 17-25, 2004 IUCN Regional Office for West/Central Asia and North Africa Kuwait Foundation 2 For The Advancement of Sciences The World Conservation Union 3 4 5 Table of Contents The demand for freshwater resources and the role of indigenous people in the conservation of wetland biodiversity Mehran Niazi.................................................................................. 8 Managing water ecosystems for sustainability and productivity in North Africa Chedly Rais................................................................................... 17 Market role in the conservation of freshwater biodiversity in West Asia Abdul Majeed..................................................................... 20 Water-ecological problems of the Syrdarya river delta V.A. Dukhovny, N.K. Kipshakbaev,I.B. Ruziev, T.I. Budnikova, and V.G. Prikhodko............................................... 26 Fresh water biodiversity conservation: The case of the Aral Sea E. Kreuzberg-Mukhina, N. Gorelkin, A. Kreuzberg V. Talskykh, E. Bykova, V. Aparin, I. Mirabdullaev, and R. Toryannikova............................................. 32 Water scarcity in the WESCANA Region: Threat or prospect for peace? Odeh Al-Jayyousi ......................................................................... 48 4 5 6 7 Summary The IUCN-WESCANA Water Publication – The Conservation and Sustainable Use Of Freshwater Resources in West Asia, Central Asia and North Africa - is the first publication of the IUCN-WESCANA Office, Amman-Jordan. -
Caspian Sea, Estuarine, Zooplankton, Diversity, Physicochemical
Advances in Life Sciences 2014, 4(3): 135-139 DOI: 10.5923/j.als.20140403.07 The Influence of Salinity Variations on Zooplankton Community Structure in South Caspian Sea Basin Estuary Maryam Shapoori1,*, Mansoure Gholami2 1Department of Fishery, College of Natural resources, Savadkooh Branch, Islamic Azad University, Savadkooh, Iran 2Department of Fishery, College of Natural resources, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran Abstract In order to better understanding the impact of changes in salinity on zooplankton community structure, investigations on the physicochemical characteristics, phytoplankton, and zooplankton component of an estuarine zone in South-Eastern Caspian Sea was carried out for one year between March, 2011 and July, 2012. The study showed notable seasonal variation in the components investigated. Salinity and water flow rate regime seemed a major determinant of the composition, abundance and seasonal variation of encountered estuarine biota. Rain events associated with reducing salinities and inflow associated with decreasing salinities may be key hydro-meteorological forcing operating in the estuary. The collection of juvenile forms (Zooplankton) recorded probably points to the suitability of the estuary characteristics to serve as breeding ground and place of refuge for diverse aquatic species. Keywords Caspian Sea, Estuarine, Zooplankton, Diversity, Physicochemical levels within coastal aquatic ecosystems in south Caspian 1. Introduction Sea region. Salinity is amongst the most important environmental factors with the potential to significantly River mouths are common hydrological features of South- influence estuarine communities [11]. Therefore, Eastern features of Caspian Sea and form part of the fluctuations in salinity and other environmental factors (e.g. numerous ecological niches associated with the Caspian temperature, pH, nutrients and pigments) on both spatial and coastal environment. -
Freshwater Resources
3 Freshwater Resources Coordinating Lead Authors: Blanca E. Jiménez Cisneros (Mexico), Taikan Oki (Japan) Lead Authors: Nigel W. Arnell (UK), Gerardo Benito (Spain), J. Graham Cogley (Canada), Petra Döll (Germany), Tong Jiang (China), Shadrack S. Mwakalila (Tanzania) Contributing Authors: Thomas Fischer (Germany), Dieter Gerten (Germany), Regine Hock (Canada), Shinjiro Kanae (Japan), Xixi Lu (Singapore), Luis José Mata (Venezuela), Claudia Pahl-Wostl (Germany), Kenneth M. Strzepek (USA), Buda Su (China), B. van den Hurk (Netherlands) Review Editor: Zbigniew Kundzewicz (Poland) Volunteer Chapter Scientist: Asako Nishijima (Japan) This chapter should be cited as: Jiménez Cisneros , B.E., T. Oki, N.W. Arnell, G. Benito, J.G. Cogley, P. Döll, T. Jiang, and S.S. Mwakalila, 2014: Freshwater resources. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, and L.L. White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 229-269. 229 Table of Contents Executive Summary ............................................................................................................................................................ 232 3.1. Introduction ........................................................................................................................................................... -
Shortnose Sturgeon Fact Sheet
Shortnose Sturgeon Acipenser brevirostrum Description: Facts: olive-yellow to gray or bluish on the back listed as endangered, it is unlawful to kill or possess this fish milky white to dark yellow on the belly long lived, like most sturgeon 5 rows of pale bony plates, called scutes males spawn every other year, females spawn every (one on the back, two on the belly and one on each third year side) semi anadromous (migrates from salt water to spawn scutes are pale and contrast with background in fresh water) 4 barbels in front of its large underslung mouth eat sludge worms, insect larvae, plants, snails, shrimp and crayfish short blunt conical snout use barbels to locate food Size: rarely exceeds 3.5 feet and 14 pounds SHORTNOSE STURGEON CATCH TOTALS Year Total 2004 1 Range: Grand Total 1 Atlantic seaboard in North America, from the St. *shortnose sturgeon were only caught during the John’s River in New Brunswick to the St. John River years shown in Florida NJ Department of Environmental Protection Division of Fish and Wildlife Bureau of Marine Fisheries www.NJFishandWildlife.com Shortnose Sturgeon Acipenser brevirostrum Historically, the Delaware Estuary has been an important habitat for two species of sturgeon: the shortnose sturgeon, and its cousin, the Atlantic sturgeon. Atlantic sturgeon primarily live in the ocean, and migrate through the estuary to spawn in freshwater. Shortnose sturgeon spend most of their time in the brackish water of the estuary, moving upstream to fresher water to spawn. Over the duration of the Delaware River seine survey, only one sturgeon has ever been caught. -
MODULE 1 Choice of Species Goa Ls
MODULE 1 Choice of Species Goa ls • To provide the trainees with the knowledge to have a better understanding about the criteria used for species selection for culture. • Make trainees aware of what are the options available in the Caribbean for culture. Be aware of multiple species, local and Learning exotic options for Caribbean aquaculture. Objectives Be able to select possible species for culture based on th e crite ria ou tlin e d . What is Aquaculture? • Aquaculture, also known as aquafarming. • The farming of organisms in aquatic medium including fish, crustaceans, molluscs, aquatic plants, algae. • Aquaculture ranges from freshwater to saltwater populations under controlled conditions, and can be comparable to commercial fishing, which is the harvesting of wild fish. Criteria for Species Selection • It should be able to withstand the climate of the region in which it will be raised. • Its rate of growth must be sufficiently high. • It must be able to reproduce successfully under culture conditions. • It must accept and thrive on abundant and cheap artificial food. • It must be acceptable to the consumer. • It should support a high population density in ponds or tanks. • It must be disease -resistant. Most good aquaculture species are excellent aquatic Alien Invasive Species. Op tion al Sp ecies Su itab le for th e Carib b ean : Fish Grey mullet F= Fresh water, B= Brackish water, S= Salt water Op tion al Sp ecies Su itab le for th e Carib b ean : Fish American eel F= Fresh water, B= Brackish water, S= Salt water Op tion al Sp ecies -
Brackish Water Community Tank
Elmer’s Aquarium Community Tank Ideas Tank Size- 20 gal or more B rackish Water Community Tank What is a Brackish Water Tank? Brackish fish originate from areas in which freshwater and saltwater meet. Fish that have adapted to these areas typically can tolerate a wide range of salinities. Housing: Add 2-4 tablespoons of salt per gallon. We advise Seachem Brackish/Livebearer salt or Instant Ocean Marine salt. The salinity should be around 1.010 to 1.015. (The salinity of seawater is 1.025) . Keep pH 7.2-7.8. Use a marine substrate such as Aragonite sand to help maintain an alkaline pH. Maintain standard filtration and heating. Decor: Driftwood and plastic plants create hiding spots. It is a challenge to grow live plants in a brackish setup. If you want to try live plants use Java Fern. Mangrove Plants: Some interesting displays can be made with the use of Mangrove Plants. Feeding: Feed 2-3 times a day with standard foods a variety of quality foods. Use flake foods, frozen mysis shrimp, frozen bloodworms, Formula One, and plankton. Brackish Water Fish: Here is a list of some brackish water fish you may see at our store: Be sure to study the individual requirements when you are establishing your tank. Eels: Freshwater Moray Eel, ( Gymnothorax tile ) Gobies: Sand Sifting Sleeper Goby, Knight Goby, Dragonfish Goby, Bumblebee Goby, Purple Spot Goby. Others: Pike Livebearer (belonesox), Black Molly, Archer, Flounder. Cichlids: Orange Chromide. Puffers: (Typically kept in a species only tank) Spotted Puffer, Figure 8 Puffer, Fahaka Puffer Suitable for smaller tanks: (10 gal or more) Bumblebee Goby. -
Land Use, Climate, and Water Resources—Global Stages of Interaction
water Editorial Land Use, Climate, and Water Resources—Global Stages of Interaction Sujay S. Kaushal 1,*, Arthur J. Gold 2 ID and Paul M. Mayer 3 1 Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20740, USA 2 Department of Natural Resources Science, University of Rhode Island, Kingston, RI 02881, USA; [email protected] 3 National Health and Environmental Effects Research Lab, Western Ecology Division, US Environmental Protection Agency, 200 SW 35th Street, Corvallis, OR 97333, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-301-405-7048 Received: 13 September 2017; Accepted: 19 October 2017; Published: 24 October 2017 Abstract: Land use and climate change can accelerate the depletion of freshwater resources that support humans and ecosystem services on a global scale. Here, we briefly review studies from around the world, and highlight those in this special issue. We identify stages that characterize increasing interaction between land use and climate change. During the first stage, hydrologic modifications and the built environment amplify overland flow via processes associated with runoff-dominated ecosystems (e.g., soil compaction, impervious surface cover, drainage, and channelization). During the second stage, changes in water storage impact the capacity of ecosystems to buffer extremes in water quantity and quality (e.g., either losses in snowpack, wetlands, and groundwater recharge or gains in water and nutrient storage behind dams in reservoirs). During the third stage, extremes in water quantity and quality contribute to losses in ecosystem services and water security (e.g., clean drinking water, flood mitigation, and habitat availability). -
New Distributional Record of the Endemic Estuarine Sand Whiting, Sillago Vincenti Mckay, 1980 from the Pichavaram Mangrove Ecosystem, Southeast Coast of India
Indian Journal of Geo Marine Sciences Vol. 47 (03), March 2018, pp. 660-664 New distributional record of the endemic estuarine sand whiting, Sillago vincenti McKay, 1980 from the Pichavaram mangrove ecosystem, southeast coast of India Mahesh. R1δ, Murugan. A2, Saravanakumar. A1*, Feroz Khan. K1 & Shanker. S1 1CAS in Marine Biology, Faculty of Marine Sciences, Annamalai University, Porto Novo, Tamil Nadu, India - 608 502. 2Department of Value Added Aquaculture (B.Voc.), Vivekananda College, Agasteeswaram, India - 629 701. δ Present Address: National Centre for Sustainable Coastal Management, MoEF & CC, Chennai, India - 600 025. *[E-mail: [email protected]] Received 27 December 2013 ; revised 17 November 2016 The Sillaginids, commonly known as sand whiting are one among the common fishes caught by the traditional fishers in estuarine ecosystems all along the Tamil Nadu coast. The present study records the new distributional range extension for Sillago vincenti from the waters of Pichavaram mangrove, whereas earlier reports were restricted to only the Palk Bay and Gulf of Mannar regions of the Tamil Nadu coast, whereas it enjoys a wide range of distribution both in the east and west coast of India. This study marks the additional extension of the distributional record for S. vincenti in the east coast of India. Biological information on these fishes will have ecological applications particularly on account on their extreme abundance in the mangrove waters. The present study is based on the collection of specimens from handline fishing practices undertaken in the shallow waters of Pichavaram mangroves, on the southeast coast of India. [Keywords: Sillagnids, Sillago vincenti, Pichavaram, India] Introduction Sillaginopodys and Sillaginops)8.