Fish Culture in Brackish Water
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Short Nosed Sturgeon
Connecticut River Coordinator's Office: Fish Facts - Shortnose Sturgeon Page 1 of 3 Skip navigation links Fish Facts - Shortnose Sturgeon z Description z Life History z Distribution z Status z Restoration Efforts Download a Fact Sheet (85 KB Adobe pdf file) You will need Adobe Acrobat Reader software to open the document above. If you do not have this software, you may obtain it free of charge by following this link. Description The shortnose sturgeon (Acipenser brevirostrum) is one of two sturgeon species in the Connecticut River; the other is the Atlantic sturgeon. The shortnose is the smaller of the two, growing to be 2 to 3 feet in length and about 14 pounds in weight. Sturgeons are an ancient species with fossils dating back 65 million years. They are very distinctive, looking like a prehistoric cross between a shark and a catfish. Sturgeons lack teeth and scales but have a unique body armor of diamond-shaped bony plates called scutes. Some have been found to be over 60 years old. Life History Shortnose sturgeon are typically anadromous, migrating from the ocean to fresh water specifically to reproduce. However, of the two populations in the Connecticut River system (formed by the construction of dams), one is considered to be partially landlocked and the other is likely to be http://www.fws.gov/r5crc/Fish/zf_acbr.html 1/3/2007 Connecticut River Coordinator's Office: Fish Facts - Shortnose Sturgeon Page 2 of 3 amphidromous, moving between fresh and salt water. Shortnose reproduce in the spring. They broadcast their eggs in areas with rubble substrate. -
The Role of a Fish Pond in Optimizing Nutrient Flows in Integrated Agriculture-Aquaculture Farming Systems
The role of a fish pond in optimizing nutrient flows in integrated agriculture-aquaculture farming systems Dang Kieu Nhan Promotor: Prof. Dr. J.A.J. Verreth Hoogleraar Aquacultuur en Visserij Wageningen Universiteit Co-promotor: Dr. M.C.J. Verdegem Universitair Docent, Leerstoelgroep Aquacultuur en Visserij Wageningen Universiteit Promotiecommissie: Prof. Dr. Ir. A.J. van der Zijpp Wageningen Universiteit Dr. M. Ana Milstein Fish and Aquaculture Research Station, Israel Prof. Dr. R. Ruben Radboud Universiteit Nijmegen Prof. Dr. Nguyen Anh Tuan Can Tho University, Vietnam Dit onderzoek is uitgevoerd binnen de onderzoeksschool Wageningen Institute of Animal Sciences (WIAS) The role of a fish pond in optimizing nutrient flows in integrated agriculture-aquaculture farming systems Dang Kieu Nhan Proefschrift ter verkrijging van de graad van doctor op gezag van de rector magnificus van Wageningen Universiteit, Prof. dr. M.J.Kropff, in het openbaar te verdedigen op woensdag 3 oktober 2007 des namiddags te vier uur in de Aula Nhan, D.K., 2007. The role of a fish pond in optimizing nutrient flows in integrated agriculture-aquaculture farming systems. PhD Thesis, Wageningen University, The Netherlands ISBN: 978-90-8504-739-1 Contents Chapter 1 General introduction 1 Chapter 2 Integrated freshwater aquaculture, crop and livestock production in 9 the Mekong Delta, Vietnam: determinants and the role of the pond Chapter 3 Food inputs, water quality and nutrient accumulation in integrated 37 pond systems: a multivariate approach Chapter 4 Water and nutrient budgets of ponds in integrated agriculture- 67 aquaculture systems in the Mekong Delta, Vietnam Chapter 5 Economic and nutrient discharge tradeoffs of excreta-fed 93 aquaculture in the Mekong Delta, Vietnam Chapter 6 General discussion 121 References 133 Summary (English) 145 Summary (Dutch) 149 Summary (Vietnamese) 153 Acknowledgements 157 Training and Supervision Plan 159 Curriculum vitae 160 List of publications 161 Chapter 1 General introduction Chapter 1 1. -
Ecosystem Services Generated by Fish Populations
AR-211 Ecological Economics 29 (1999) 253 –268 ANALYSIS Ecosystem services generated by fish populations Cecilia M. Holmlund *, Monica Hammer Natural Resources Management, Department of Systems Ecology, Stockholm University, S-106 91, Stockholm, Sweden Abstract In this paper, we review the role of fish populations in generating ecosystem services based on documented ecological functions and human demands of fish. The ongoing overexploitation of global fish resources concerns our societies, not only in terms of decreasing fish populations important for consumption and recreational activities. Rather, a number of ecosystem services generated by fish populations are also at risk, with consequences for biodiversity, ecosystem functioning, and ultimately human welfare. Examples are provided from marine and freshwater ecosystems, in various parts of the world, and include all life-stages of fish. Ecosystem services are here defined as fundamental services for maintaining ecosystem functioning and resilience, or demand-derived services based on human values. To secure the generation of ecosystem services from fish populations, management approaches need to address the fact that fish are embedded in ecosystems and that substitutions for declining populations and habitat losses, such as fish stocking and nature reserves, rarely replace losses of all services. © 1999 Elsevier Science B.V. All rights reserved. Keywords: Ecosystem services; Fish populations; Fisheries management; Biodiversity 1. Introduction 15 000 are marine and nearly 10 000 are freshwa ter (Nelson, 1994). Global capture fisheries har Fish constitute one of the major protein sources vested 101 million tonnes of fish including 27 for humans around the world. There are to date million tonnes of bycatch in 1995, and 11 million some 25 000 different known fish species of which tonnes were produced in aquaculture the same year (FAO, 1997). -
And Brackish Water Environments What Is Brackish Water Brackish Water Is Water Which Contains More Sea Salts Than Freshwater but Less Than the Open Sea
http://www.unaab.edu.ng COURSE CODE: FIS316 COURSE TITLE: Marine and Brackishwater Economic Resources NUMBER OF UNITS: 2 Units COURSE DURATION: Two hours per week COURSECOURSE DETAILS:DETAILS: Course Coordinator: Prof. Yemi Akegbejo‐Samsons Email: [email protected] Office Location: Room D210, COLERM Other Lecturers: Dr. D.O. Odulate COURSE CONTENT: Study of major marine and brackish water fin and shell fish species in relation to their development for culture, food and industrial uses. Methods of harvesting e.g. electro‐ fishing. COURSE REQUIREMENTS: This is a compulsory course for all students in Department of Aquaculture & Fisheries Management. In view of this, students are expected to participate in all the course activities and have minimum of 75% attendance to be eligible to write the final examination. READING LIST: E LECTURE NOTES 1. Study of major marine and brackish water fin and shell fish species in relation to their development for culture, food and industrial uses. 2. Methods of harvesting e.g. electro-fishing. This course is taught by Prof Yemi Akegbejo-Samsons and Dr D O Odulate. The venue for the interaction with students is on the ground floor of the College of Environmental Resources Management. Topic 1 Marine and Brackish water environments What is Brackish Water Brackish water is water which contains more sea salts than freshwater but less than the open sea. http://www.unaab.edu.ng Moreover, brackish water environments are also fluctuating environments. The salinity is variable depending on the tide, the amount of freshwater entering from rivers or as rain, and the rate of evaporation. -
Caspian Sea, Estuarine, Zooplankton, Diversity, Physicochemical
Advances in Life Sciences 2014, 4(3): 135-139 DOI: 10.5923/j.als.20140403.07 The Influence of Salinity Variations on Zooplankton Community Structure in South Caspian Sea Basin Estuary Maryam Shapoori1,*, Mansoure Gholami2 1Department of Fishery, College of Natural resources, Savadkooh Branch, Islamic Azad University, Savadkooh, Iran 2Department of Fishery, College of Natural resources, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran Abstract In order to better understanding the impact of changes in salinity on zooplankton community structure, investigations on the physicochemical characteristics, phytoplankton, and zooplankton component of an estuarine zone in South-Eastern Caspian Sea was carried out for one year between March, 2011 and July, 2012. The study showed notable seasonal variation in the components investigated. Salinity and water flow rate regime seemed a major determinant of the composition, abundance and seasonal variation of encountered estuarine biota. Rain events associated with reducing salinities and inflow associated with decreasing salinities may be key hydro-meteorological forcing operating in the estuary. The collection of juvenile forms (Zooplankton) recorded probably points to the suitability of the estuary characteristics to serve as breeding ground and place of refuge for diverse aquatic species. Keywords Caspian Sea, Estuarine, Zooplankton, Diversity, Physicochemical levels within coastal aquatic ecosystems in south Caspian 1. Introduction Sea region. Salinity is amongst the most important environmental factors with the potential to significantly River mouths are common hydrological features of South- influence estuarine communities [11]. Therefore, Eastern features of Caspian Sea and form part of the fluctuations in salinity and other environmental factors (e.g. numerous ecological niches associated with the Caspian temperature, pH, nutrients and pigments) on both spatial and coastal environment. -
Water Quality Guidelines for the Management of Pond Fish Culture
International Journal of Environment Sciences Vol. 5 No.INTERNATIONAL 2 (July-December, 2019) JOURNAL OF ENVIRONMENTAL SCIENCES Volume 3, No 6, 2013 Received:© Copyright 14th May by 2019the authors Revised: - Licensee 30th June IPA 2019- Under Accepted: Creative 15th Commons July 2019 license 3.0 Research article ISSN 0976 – 4402 Water quality guidelines for the management of pond fish culture Anita Bhatnagar, Pooja Devi Department of Zoology, Kurukshetra University, Kurukshetra, India-136119 [email protected] doi: 10.6088/ijes.2013030600019 ABSTRACT The Optimum fish production is totally dependent on the physical, chemical and biological qualities of water to most of the extent. Hence, successful pond management requires an understanding of water quality. Water quality is determined by variables like temperature, transparency, turbidity, water colour, carbon dioxide, pH, alkalinity, hardness, unionised ammonia, nitrite, nitrate, primary productivity, BOD, plankton population etc. In the present chapter water quality management principles in fish culture have been reviewed to make aware the fish culturist and environmentalist about the important water quality factors that influence health of a pond and are required in optimum values to increase the fish yields to meet the growing demands of present day scenario of the world, when the food resources are in a state of depletion and the population pressure is increasing on these resources. Keywords: Assessment and Monitoring, Culture, Fish productivity, Parameters, Water quality 1. Introduction Fish is an inexpensive source of protein and an important cash crop in many regions of world and water is the physical support in which they carry out their life functions such as feeding, swimming, breeding, digestion and excretion (Bronmark and Hansson, 2005). -
Shortnose Sturgeon Fact Sheet
Shortnose Sturgeon Acipenser brevirostrum Description: Facts: olive-yellow to gray or bluish on the back listed as endangered, it is unlawful to kill or possess this fish milky white to dark yellow on the belly long lived, like most sturgeon 5 rows of pale bony plates, called scutes males spawn every other year, females spawn every (one on the back, two on the belly and one on each third year side) semi anadromous (migrates from salt water to spawn scutes are pale and contrast with background in fresh water) 4 barbels in front of its large underslung mouth eat sludge worms, insect larvae, plants, snails, shrimp and crayfish short blunt conical snout use barbels to locate food Size: rarely exceeds 3.5 feet and 14 pounds SHORTNOSE STURGEON CATCH TOTALS Year Total 2004 1 Range: Grand Total 1 Atlantic seaboard in North America, from the St. *shortnose sturgeon were only caught during the John’s River in New Brunswick to the St. John River years shown in Florida NJ Department of Environmental Protection Division of Fish and Wildlife Bureau of Marine Fisheries www.NJFishandWildlife.com Shortnose Sturgeon Acipenser brevirostrum Historically, the Delaware Estuary has been an important habitat for two species of sturgeon: the shortnose sturgeon, and its cousin, the Atlantic sturgeon. Atlantic sturgeon primarily live in the ocean, and migrate through the estuary to spawn in freshwater. Shortnose sturgeon spend most of their time in the brackish water of the estuary, moving upstream to fresher water to spawn. Over the duration of the Delaware River seine survey, only one sturgeon has ever been caught. -
MODULE 1 Choice of Species Goa Ls
MODULE 1 Choice of Species Goa ls • To provide the trainees with the knowledge to have a better understanding about the criteria used for species selection for culture. • Make trainees aware of what are the options available in the Caribbean for culture. Be aware of multiple species, local and Learning exotic options for Caribbean aquaculture. Objectives Be able to select possible species for culture based on th e crite ria ou tlin e d . What is Aquaculture? • Aquaculture, also known as aquafarming. • The farming of organisms in aquatic medium including fish, crustaceans, molluscs, aquatic plants, algae. • Aquaculture ranges from freshwater to saltwater populations under controlled conditions, and can be comparable to commercial fishing, which is the harvesting of wild fish. Criteria for Species Selection • It should be able to withstand the climate of the region in which it will be raised. • Its rate of growth must be sufficiently high. • It must be able to reproduce successfully under culture conditions. • It must accept and thrive on abundant and cheap artificial food. • It must be acceptable to the consumer. • It should support a high population density in ponds or tanks. • It must be disease -resistant. Most good aquaculture species are excellent aquatic Alien Invasive Species. Op tion al Sp ecies Su itab le for th e Carib b ean : Fish Grey mullet F= Fresh water, B= Brackish water, S= Salt water Op tion al Sp ecies Su itab le for th e Carib b ean : Fish American eel F= Fresh water, B= Brackish water, S= Salt water Op tion al Sp ecies -
Brackish Water Community Tank
Elmer’s Aquarium Community Tank Ideas Tank Size- 20 gal or more B rackish Water Community Tank What is a Brackish Water Tank? Brackish fish originate from areas in which freshwater and saltwater meet. Fish that have adapted to these areas typically can tolerate a wide range of salinities. Housing: Add 2-4 tablespoons of salt per gallon. We advise Seachem Brackish/Livebearer salt or Instant Ocean Marine salt. The salinity should be around 1.010 to 1.015. (The salinity of seawater is 1.025) . Keep pH 7.2-7.8. Use a marine substrate such as Aragonite sand to help maintain an alkaline pH. Maintain standard filtration and heating. Decor: Driftwood and plastic plants create hiding spots. It is a challenge to grow live plants in a brackish setup. If you want to try live plants use Java Fern. Mangrove Plants: Some interesting displays can be made with the use of Mangrove Plants. Feeding: Feed 2-3 times a day with standard foods a variety of quality foods. Use flake foods, frozen mysis shrimp, frozen bloodworms, Formula One, and plankton. Brackish Water Fish: Here is a list of some brackish water fish you may see at our store: Be sure to study the individual requirements when you are establishing your tank. Eels: Freshwater Moray Eel, ( Gymnothorax tile ) Gobies: Sand Sifting Sleeper Goby, Knight Goby, Dragonfish Goby, Bumblebee Goby, Purple Spot Goby. Others: Pike Livebearer (belonesox), Black Molly, Archer, Flounder. Cichlids: Orange Chromide. Puffers: (Typically kept in a species only tank) Spotted Puffer, Figure 8 Puffer, Fahaka Puffer Suitable for smaller tanks: (10 gal or more) Bumblebee Goby. -
New Distributional Record of the Endemic Estuarine Sand Whiting, Sillago Vincenti Mckay, 1980 from the Pichavaram Mangrove Ecosystem, Southeast Coast of India
Indian Journal of Geo Marine Sciences Vol. 47 (03), March 2018, pp. 660-664 New distributional record of the endemic estuarine sand whiting, Sillago vincenti McKay, 1980 from the Pichavaram mangrove ecosystem, southeast coast of India Mahesh. R1δ, Murugan. A2, Saravanakumar. A1*, Feroz Khan. K1 & Shanker. S1 1CAS in Marine Biology, Faculty of Marine Sciences, Annamalai University, Porto Novo, Tamil Nadu, India - 608 502. 2Department of Value Added Aquaculture (B.Voc.), Vivekananda College, Agasteeswaram, India - 629 701. δ Present Address: National Centre for Sustainable Coastal Management, MoEF & CC, Chennai, India - 600 025. *[E-mail: [email protected]] Received 27 December 2013 ; revised 17 November 2016 The Sillaginids, commonly known as sand whiting are one among the common fishes caught by the traditional fishers in estuarine ecosystems all along the Tamil Nadu coast. The present study records the new distributional range extension for Sillago vincenti from the waters of Pichavaram mangrove, whereas earlier reports were restricted to only the Palk Bay and Gulf of Mannar regions of the Tamil Nadu coast, whereas it enjoys a wide range of distribution both in the east and west coast of India. This study marks the additional extension of the distributional record for S. vincenti in the east coast of India. Biological information on these fishes will have ecological applications particularly on account on their extreme abundance in the mangrove waters. The present study is based on the collection of specimens from handline fishing practices undertaken in the shallow waters of Pichavaram mangroves, on the southeast coast of India. [Keywords: Sillagnids, Sillago vincenti, Pichavaram, India] Introduction Sillaginopodys and Sillaginops)8. -
20020011.Pdf
Color profile: Generic CMYK printer profile Composite Default screen 1144 PERSPECTIVE Geological and evolutionary underpinnings for the success of Ponto-Caspian species invasions in the Baltic Sea and North American Great Lakes David F. Reid and Marina I. Orlova1 Abstract: Between 1985 and 2000, ~70% of new species that invaded the North American Great Lakes were endemic to the Ponto-Caspian (Caspian, Azov, and Black seas) basins of eastern Europe. Sixteen Ponto-Caspian species were also established in the Baltic Sea as of 2000. Many Ponto-Caspian endemic species are characterized by wide environmental tolerances and high phenotypic variability. Ponto-Caspian fauna evolved over millions of years in a series of large lakes and seas with widely varying salinities and water levels and alternating periods of isolation and open connections between the Caspian Sea and Black Sea depressions and between these basins and the Mediterranean Basin and the World Ocean. These conditions probably resulted in selection of Ponto-Caspian endemic species for the broad environmental tolerances and euryhalinity many exhibit. Both the Baltic Sea and the Great Lakes are geologi- cally young and present much lower levels of endemism. The high tolerance of Ponto-Caspian fauna to varying environmental conditions, their ability to survive exposure to a range of salinities, and the similarity in environmental conditions available in the Baltic Sea and Great Lakes probably contribute to the invasion success of these species. Human activities have dramatically increased the opportunities for transport and introduction and have played a cata- lytic role. Résumé : Entre 1985 et 2000, environ 70 % des espèces qui ont envahi pour la première fois les Grands-Lacs d’Amérique du Nord étaient endémiques aux bassins versants de la région pontocaspienne de l’Europe de l’Est, soit ceux de la mer Caspienne, de la mer d’Azov et de la mer Noire. -
Understanding Your Fish Pond Water Analsysis Report
Cooperative Aquaculture/Fisheries Extension Program University of Arkansas at Pine Bluff Understanding Your Fish Pond Water Analysis Report Nathan M. Stone Figure 1 Extension Fisheries Water Analysis Report: Fish Specialist (Example) Hugh K. Thomforde pH - - - - - - - - - - - - - - - - - - - - - - - - - - -7.24 Extension Aquaculture Some sportfish and aquaculture Electrical Conductivity - - -205 mSiemens/cm Specialist pond owners choose to submit water Alkalinity, Total - - - - - 100.00 mg/l as CaCO3 samples to the University of Hardness, Total - - - - -103.80 mg/l as CaCO3 Arkansas Cooperative Extension CO (Carbonate) - - - - - 0.09 mg/l as CaCO Service for analysis. The water 3 3 samples are mailed to the Water HCO3 (Bicarbonate) - - 99.90 mg/l as CaCO3 Quality Laboratory, Arkansas Water Fe (Iron) - - - - - - - - - - - - - - - - - - -0.05 mg/l Resources Center, University of Mn (Manganese) - - - - - - - - - - - - -0.01 mg/l Arkansas at Fayetteville. The labora F (Fluoride) - - - - - - - - - - - - - - - - -0.15 mg/l tory tests the water and sends the Cl (Chloride) - - - - - - - - - - - - - - - - -3.13 mg/l results back. Below are some guide lines for interpreting those results. SO4 (Sulfate) - - - - - - - - - - - - - - - - 3.21 mg/l These guidelines describe how to NO3 (Nitrate) - - - - - - - - - - - - - - - - 0.04 mg/l interpret results for both surface NO3-N (Nitrate-Nitrogen) - - - - - - - 0.01 mg/l waters and ground waters. Surface NH -N (Ammonia-Nitrogen) - - - - - 0.11 mg/l waters are those exposed to the air 3 and sunlight, such as streams, ponds, NO2-N (Nitrite-Nitrogen) - - - - - - - - 0.00 mg/l reservoirs and lakes. Ground waters PO4 (Phosphate) - - - - - - - - - - - - - 0.06 mg/l are waters from wells or springs tapping underground aquifers and are often devoid of dissolved oxygen. These waters may also contain high levelsInterpreting of dissolved Results gasses or iron.