Symplectic Groups and Quaternions

Total Page:16

File Type:pdf, Size:1020Kb

Symplectic Groups and Quaternions A Symplectic groups and quaternions The quaternions are the associative algebra H = 1,i ,i ,i = R4 with h 1 2 3i ∼ multiplication i1i2 = i2i1 = i3,i2i3 = i3i2 = i1,i3i1 = i1i3 = i2 and i2 = i2 = i2 = 1. If− we have a quaternion− x = x + 3− x i then its 1 2 3 − 0 j=1 j j conjugate is given byx ¯ = x 3 x i . The symplectic group, Sp(n) is 0 j=1 j j P the subgroup of Gl(n, H), the− invertible n n quaternionic matrices, which preserves the standard HermitianP form on×Hn: n x, y = x¯ y . h i i i i=1 X This means that if A Sp(n), A¯T A = AA¯T = 11, it is the quaternionic unitary group U(n, H),∈ sometimes called the hyperunitary group. Sp(n) is a real Lie group of dimension n(2n + 1), compact and (simply) connected. The Lie algebra is given by the n n quaternionic matrices B that satisfy × B + B¯T =0 . A different, but closely related, type of symplectic group is Sp(2n, F ) the group of degree 2n over a field F , in other words, the group of 2n 2n symplectic matrices with entries in F and with group operation that× of matrix multiplication. If F is the field of real/complex numbers the Lie group Sp(2n, F ) has real/complex dimension n(2n + 1). Since all symplectic matrices have unit determinant, the symplectic group is a subgroup of the special linear group Sl(2n, F ), in fact for n = 1 this means that Sp(2, F )= Sl(2, F ). If D Sp(2n, F ) then ∈ 0 11 DT D = with = . (A.1) C C C 11 0 − The Lie algebra of Sp(2n, F ) is given by the set of 2n 2n matrices E (over F ) that satisfy × E + ET =0 . C C 111 112 A Symplectic groups and quaternions The symplectic group Sp(2n, F ) can also be defined as the set of linear transformations of a 2n-dimensional vector space (over F ) that preserve a nondegenerate antisymmetric bilinear form. This precisely leads to the property (A.1). Unitary-symplectic groups are the intersection of unitary groups and sym- plectic groups, both acting in the same vector space. That is, the elements of the unitary-symplectic groups are elements in both unitary and sym- plectic groups: USp(n, n)= U(n, n; C) Sp(2n; C) . ∩ Explicitly we can construct such groups by considering (A.1) with D a 2n 2n complex matrix which has to satisfy the additional condition × 11n n 0 D† D = with = × . (A.2) H H H 0 11n n − × The general block form of this D is T V ? D = (A.3) V T ? making (A.2) equivalent to T †T V †V = 11 ?− ? T †V V †T =0 . − These groups are isomorphic to symplectic groups in the hyperunitary sense: USp(2n) ∼= Sp(n) . Finally there is the following isomorphism R Sp(2n; ) ∼= USp(2n) , (A.4) R from which we see that Sp(2n; ) ∼= Sp(n). A quaternionic manifold is Riemannian but not necessarily complex, which means that the holonomy group Sp(n) Sp(1) is contained in O(4n) as a subgroup. On the other hand, hyperk¨ahler× manifolds are in fact K¨ahler (with respect to all three complex structures, see also (1.5)) and must therefore have their holonomy contained in U(2n). In terms of holonomy groups, the difference between the two types of manifolds is the factor of Sp(1). This arises from the fact that (1.12) is defined up to local SO(3) ∼= Sp(1) rotations. This feature is absent in the hyperk¨ahler case since the complex structures are covariantly constant and globally defined. For more information on the relation between holonomy groups, symplectic groups and quaternions, see [23, 39, 68, 35, 132]..
Recommended publications
  • Low-Dimensional Representations of Matrix Groups and Group Actions on CAT (0) Spaces and Manifolds
    Low-dimensional representations of matrix groups and group actions on CAT(0) spaces and manifolds Shengkui Ye National University of Singapore January 8, 2018 Abstract We study low-dimensional representations of matrix groups over gen- eral rings, by considering group actions on CAT(0) spaces, spheres and acyclic manifolds. 1 Introduction Low-dimensional representations are studied by many authors, such as Gural- nick and Tiep [24] (for matrix groups over fields), Potapchik and Rapinchuk [30] (for automorphism group of free group), Dokovi´cand Platonov [18] (for Aut(F2)), Weinberger [35] (for SLn(Z)) and so on. In this article, we study low-dimensional representations of matrix groups over general rings. Let R be an associative ring with identity and En(R) (n ≥ 3) the group generated by ele- mentary matrices (cf. Section 3.1). As motivation, we can consider the following problem. Problem 1. For n ≥ 3, is there any nontrivial group homomorphism En(R) → En−1(R)? arXiv:1207.6747v1 [math.GT] 29 Jul 2012 Although this is a purely algebraic problem, in general it seems hard to give an answer in an algebraic way. In this article, we try to answer Prob- lem 1 negatively from the point of view of geometric group theory. The idea is to find a good geometric object on which En−1(R) acts naturally and non- trivially while En(R) can only act in a special way. We study matrix group actions on CAT(0) spaces, spheres and acyclic manifolds. We prove that for low-dimensional CAT(0) spaces, a matrix group action always has a global fixed point (cf.
    [Show full text]
  • The General Linear Group
    18.704 Gabe Cunningham 2/18/05 [email protected] The General Linear Group Definition: Let F be a field. Then the general linear group GLn(F ) is the group of invert- ible n × n matrices with entries in F under matrix multiplication. It is easy to see that GLn(F ) is, in fact, a group: matrix multiplication is associative; the identity element is In, the n × n matrix with 1’s along the main diagonal and 0’s everywhere else; and the matrices are invertible by choice. It’s not immediately clear whether GLn(F ) has infinitely many elements when F does. However, such is the case. Let a ∈ F , a 6= 0. −1 Then a · In is an invertible n × n matrix with inverse a · In. In fact, the set of all such × matrices forms a subgroup of GLn(F ) that is isomorphic to F = F \{0}. It is clear that if F is a finite field, then GLn(F ) has only finitely many elements. An interesting question to ask is how many elements it has. Before addressing that question fully, let’s look at some examples. ∼ × Example 1: Let n = 1. Then GLn(Fq) = Fq , which has q − 1 elements. a b Example 2: Let n = 2; let M = ( c d ). Then for M to be invertible, it is necessary and sufficient that ad 6= bc. If a, b, c, and d are all nonzero, then we can fix a, b, and c arbitrarily, and d can be anything but a−1bc. This gives us (q − 1)3(q − 2) matrices.
    [Show full text]
  • Unitary Group - Wikipedia
    Unitary group - Wikipedia https://en.wikipedia.org/wiki/Unitary_group Unitary group In mathematics, the unitary group of degree n, denoted U( n), is the group of n × n unitary matrices, with the group operation of matrix multiplication. The unitary group is a subgroup of the general linear group GL( n, C). Hyperorthogonal group is an archaic name for the unitary group, especially over finite fields. For the group of unitary matrices with determinant 1, see Special unitary group. In the simple case n = 1, the group U(1) corresponds to the circle group, consisting of all complex numbers with absolute value 1 under multiplication. All the unitary groups contain copies of this group. The unitary group U( n) is a real Lie group of dimension n2. The Lie algebra of U( n) consists of n × n skew-Hermitian matrices, with the Lie bracket given by the commutator. The general unitary group (also called the group of unitary similitudes ) consists of all matrices A such that A∗A is a nonzero multiple of the identity matrix, and is just the product of the unitary group with the group of all positive multiples of the identity matrix. Contents Properties Topology Related groups 2-out-of-3 property Special unitary and projective unitary groups G-structure: almost Hermitian Generalizations Indefinite forms Finite fields Degree-2 separable algebras Algebraic groups Unitary group of a quadratic module Polynomial invariants Classifying space See also Notes References Properties Since the determinant of a unitary matrix is a complex number with norm 1, the determinant gives a group 1 of 7 2/23/2018, 10:13 AM Unitary group - Wikipedia https://en.wikipedia.org/wiki/Unitary_group homomorphism The kernel of this homomorphism is the set of unitary matrices with determinant 1.
    [Show full text]
  • Material on Algebraic and Lie Groups
    2 Lie groups and algebraic groups. 2.1 Basic Definitions. In this subsection we will introduce the class of groups to be studied. We first recall that a Lie group is a group that is also a differentiable manifold 1 and multiplication (x, y xy) and inverse (x x ) are C1 maps. An algebraic group is a group7! that is also an algebraic7! variety such that multi- plication and inverse are morphisms. Before we can introduce our main characters we first consider GL(n, C) as an affi ne algebraic group. Here Mn(C) denotes the space of n n matrices and GL(n, C) = g Mn(C) det(g) =) . Now Mn(C) is given the structure nf2 2 j 6 g of affi ne space C with the coordinates xij for X = [xij] . This implies that GL(n, C) is Z-open and as a variety is isomorphic with the affi ne variety 1 Mn(C) det . This implies that (GL(n, C)) = C[xij, det ]. f g O Lemma 1 If G is an algebraic group over an algebraically closed field, F , then every point in G is smooth. Proof. Let Lg : G G be given by Lgx = gx. Then Lg is an isomorphism ! 1 1 of G as an algebraic variety (Lg = Lg ). Since isomorphisms preserve the set of smooth points we see that if x G is smooth so is every element of Gx = G. 2 Proposition 2 If G is an algebraic group over an algebraically closed field F then the Z-connected components Proof.
    [Show full text]
  • Be the Integral Symplectic Group and S(G) Be the Set of All Positive Integers Which Can Occur As the Order of an Element in G
    FINITE ORDER ELEMENTS IN THE INTEGRAL SYMPLECTIC GROUP KUMAR BALASUBRAMANIAN, M. RAM MURTY, AND KARAM DEO SHANKHADHAR Abstract For g 2 N, let G = Sp(2g; Z) be the integral symplectic group and S(g) be the set of all positive integers which can occur as the order of an element in G. In this paper, we show that S(g) is a bounded subset of R for all positive integers g. We also study the growth of the functions f(g) = jS(g)j, and h(g) = maxfm 2 N j m 2 S(g)g and show that they have at least exponential growth. 1. Introduction Given a group G and a positive integer m 2 N, it is natural to ask if there exists k 2 G such that o(k) = m, where o(k) denotes the order of the element k. In this paper, we make some observations about the collection of positive integers which can occur as orders of elements in G = Sp(2g; Z). Before we proceed further we set up some notations and briefly mention the questions studied in this paper. Let G = Sp(2g; Z) be the group of all 2g × 2g matrices with integral entries satisfying > A JA = J 0 I where A> is the transpose of the matrix A and J = g g . −Ig 0g α1 αk Throughout we write m = p1 : : : pk , where pi is a prime and αi > 0 for all i 2 f1; 2; : : : ; kg. We also assume that the primes pi are such that pi < pi+1 for 1 ≤ i < k.
    [Show full text]
  • Matrix Lie Groups
    Maths Seminar 2007 MATRIX LIE GROUPS Claudiu C Remsing Dept of Mathematics (Pure and Applied) Rhodes University Grahamstown 6140 26 September 2007 RhodesUniv CCR 0 Maths Seminar 2007 TALK OUTLINE 1. What is a matrix Lie group ? 2. Matrices revisited. 3. Examples of matrix Lie groups. 4. Matrix Lie algebras. 5. A glimpse at elementary Lie theory. 6. Life beyond elementary Lie theory. RhodesUniv CCR 1 Maths Seminar 2007 1. What is a matrix Lie group ? Matrix Lie groups are groups of invertible • matrices that have desirable geometric features. So matrix Lie groups are simultaneously algebraic and geometric objects. Matrix Lie groups naturally arise in • – geometry (classical, algebraic, differential) – complex analyis – differential equations – Fourier analysis – algebra (group theory, ring theory) – number theory – combinatorics. RhodesUniv CCR 2 Maths Seminar 2007 Matrix Lie groups are encountered in many • applications in – physics (geometric mechanics, quantum con- trol) – engineering (motion control, robotics) – computational chemistry (molecular mo- tion) – computer science (computer animation, computer vision, quantum computation). “It turns out that matrix [Lie] groups • pop up in virtually any investigation of objects with symmetries, such as molecules in chemistry, particles in physics, and projective spaces in geometry”. (K. Tapp, 2005) RhodesUniv CCR 3 Maths Seminar 2007 EXAMPLE 1 : The Euclidean group E (2). • E (2) = F : R2 R2 F is an isometry . → | n o The vector space R2 is equipped with the standard Euclidean structure (the “dot product”) x y = x y + x y (x, y R2), • 1 1 2 2 ∈ hence with the Euclidean distance d (x, y) = (y x) (y x) (x, y R2).
    [Show full text]
  • LECTURE 12: LIE GROUPS and THEIR LIE ALGEBRAS 1. Lie
    LECTURE 12: LIE GROUPS AND THEIR LIE ALGEBRAS 1. Lie groups Definition 1.1. A Lie group G is a smooth manifold equipped with a group structure so that the group multiplication µ : G × G ! G; (g1; g2) 7! g1 · g2 is a smooth map. Example. Here are some basic examples: • Rn, considered as a group under addition. • R∗ = R − f0g, considered as a group under multiplication. • S1, Considered as a group under multiplication. • Linear Lie groups GL(n; R), SL(n; R), O(n) etc. • If M and N are Lie groups, so is their product M × N. Remarks. (1) (Hilbert's 5th problem, [Gleason and Montgomery-Zippin, 1950's]) Any topological group whose underlying space is a topological manifold is a Lie group. (2) Not every smooth manifold admits a Lie group structure. For example, the only spheres that admit a Lie group structure are S0, S1 and S3; among all the compact 2 dimensional surfaces the only one that admits a Lie group structure is T 2 = S1 × S1. (3) Here are two simple topological constraints for a manifold to be a Lie group: • If G is a Lie group, then TG is a trivial bundle. n { Proof: We identify TeG = R . The vector bundle isomorphism is given by φ : G × TeG ! T G; φ(x; ξ) = (x; dLx(ξ)) • If G is a Lie group, then π1(G) is an abelian group. { Proof: Suppose α1, α2 2 π1(G). Define α : [0; 1] × [0; 1] ! G by α(t1; t2) = α1(t1) · α2(t2). Then along the bottom edge followed by the right edge we have the composition α1 ◦ α2, where ◦ is the product of loops in the fundamental group, while along the left edge followed by the top edge we get α2 ◦ α1.
    [Show full text]
  • The Classical Groups and Domains 1. the Disk, Upper Half-Plane, SL 2(R
    (June 8, 2018) The Classical Groups and Domains Paul Garrett [email protected] http:=/www.math.umn.edu/egarrett/ The complex unit disk D = fz 2 C : jzj < 1g has four families of generalizations to bounded open subsets in Cn with groups acting transitively upon them. Such domains, defined more precisely below, are bounded symmetric domains. First, we recall some standard facts about the unit disk, the upper half-plane, the ambient complex projective line, and corresponding groups acting by linear fractional (M¨obius)transformations. Happily, many of the higher- dimensional bounded symmetric domains behave in a manner that is a simple extension of this simplest case. 1. The disk, upper half-plane, SL2(R), and U(1; 1) 2. Classical groups over C and over R 3. The four families of self-adjoint cones 4. The four families of classical domains 5. Harish-Chandra's and Borel's realization of domains 1. The disk, upper half-plane, SL2(R), and U(1; 1) The group a b GL ( ) = f : a; b; c; d 2 ; ad − bc 6= 0g 2 C c d C acts on the extended complex plane C [ 1 by linear fractional transformations a b az + b (z) = c d cz + d with the traditional natural convention about arithmetic with 1. But we can be more precise, in a form helpful for higher-dimensional cases: introduce homogeneous coordinates for the complex projective line P1, by defining P1 to be a set of cosets u 1 = f : not both u; v are 0g= × = 2 − f0g = × P v C C C where C× acts by scalar multiplication.
    [Show full text]
  • Lie Group and Geometry on the Lie Group SL2(R)
    INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR Lie group and Geometry on the Lie Group SL2(R) PROJECT REPORT – SEMESTER IV MOUSUMI MALICK 2-YEARS MSc(2011-2012) Guided by –Prof.DEBAPRIYA BISWAS Lie group and Geometry on the Lie Group SL2(R) CERTIFICATE This is to certify that the project entitled “Lie group and Geometry on the Lie group SL2(R)” being submitted by Mousumi Malick Roll no.-10MA40017, Department of Mathematics is a survey of some beautiful results in Lie groups and its geometry and this has been carried out under my supervision. Dr. Debapriya Biswas Department of Mathematics Date- Indian Institute of Technology Khargpur 1 Lie group and Geometry on the Lie Group SL2(R) ACKNOWLEDGEMENT I wish to express my gratitude to Dr. Debapriya Biswas for her help and guidance in preparing this project. Thanks are also due to the other professor of this department for their constant encouragement. Date- place-IIT Kharagpur Mousumi Malick 2 Lie group and Geometry on the Lie Group SL2(R) CONTENTS 1.Introduction ................................................................................................... 4 2.Definition of general linear group: ............................................................... 5 3.Definition of a general Lie group:................................................................... 5 4.Definition of group action: ............................................................................. 5 5. Definition of orbit under a group action: ...................................................... 5 6.1.The general linear
    [Show full text]
  • GEOMETRY and GROUPS These Notes Are to Remind You of The
    GEOMETRY AND GROUPS These notes are to remind you of the results from earlier courses that we will need at some point in this course. The exercises are entirely optional, although they will all be useful later in the course. Asterisks indicate that they are harder. 0.1 Metric Spaces (Metric and Topological Spaces) A metric on a set X is a map d : X × X → [0, ∞) that satisfies: (a) d(x, y) > 0 with equality if and only if x = y; (b) Symmetry: d(x, y) = d(y, x) for all x, y ∈ X; (c) Triangle Rule: d(x, y) + d(y, z) > d(x, z) for all x, y, z ∈ X. A set X with a metric d is called a metric space. For example, the Euclidean metric on RN is given by d(x, y) = ||x − y|| where v u N ! u X 2 ||a|| = t |an| n=1 is the norm of a vector a. This metric makes RN into a metric space and any subset of it is also a metric space. A sequence in X is a map N → X; n 7→ xn. We often denote this sequence by (xn). This sequence converges to a limit ` ∈ X when d(xn, `) → 0 as n → ∞ . A subsequence of the sequence (xn) is given by taking only some of the terms in the sequence. So, a subsequence of the sequence (xn) is given by n 7→ xk(n) where k : N → N is a strictly increasing function. A metric space X is (sequentially) compact if every sequence from X has a subsequence that converges to a point of X.
    [Show full text]
  • 10 Group Theory
    10 Group theory 10.1 What is a group? A group G is a set of elements f, g, h, ... and an operation called multipli- cation such that for all elements f,g, and h in the group G: 1. The product fg is in the group G (closure); 2. f(gh)=(fg)h (associativity); 3. there is an identity element e in the group G such that ge = eg = g; 1 1 1 4. every g in G has an inverse g− in G such that gg− = g− g = e. Physical transformations naturally form groups. The elements of a group might be all physical transformations on a given set of objects that leave invariant a chosen property of the set of objects. For instance, the objects might be the points (x, y) in a plane. The chosen property could be their distances x2 + y2 from the origin. The physical transformations that leave unchanged these distances are the rotations about the origin p x cos ✓ sin ✓ x 0 = . (10.1) y sin ✓ cos ✓ y ✓ 0◆ ✓− ◆✓ ◆ These rotations form the special orthogonal group in 2 dimensions, SO(2). More generally, suppose the transformations T,T0,T00,... change a set of objects in ways that leave invariant a chosen property property of the objects. Suppose the product T 0 T of the transformations T and T 0 represents the action of T followed by the action of T 0 on the objects. Since both T and T 0 leave the chosen property unchanged, so will their product T 0 T . Thus the closure condition is satisfied.
    [Show full text]
  • The Symplectic Group
    Sp(n), THE SYMPLECTIC GROUP CONNIE FAN 1. Introduction t ¯ 1.1. Definition. Sp(n)= (n, H)= A Mn(H) A A = I is the symplectic group. O { 2 | } 1.2. Example. Sp(1) = z M1(H) z =1 { 2 || | } = z = a + ib + jc + kd a2 + b2 + c2 + d2 =1 { | } 3 ⇠= S 2. The Lie Algebra sp(n) t ¯ 2.1. Definition. AmatrixA Mn(H)isskew-symplecticif A + A =0. 2 t ¯ 2.2. Definition. sp(n)= A Mn(H) A + A =0 is the Lie algebra of Sp(n) with commutator bracket [A,B]{ 2 = AB -| BA. } Proof. This was proven in class. ⇤ 2.3. Fact. sp(n) is a real vector space. Proof. Let A, B sp(n)anda, b R 2 2 (aA + bB)+taA + bB = a(A + tA¯)+b(B + tB¯)=0 ⇤ 1 2.4. Fact. The dimension of sp(n)is(2n +1)n. Proof. Let A sp(n). 2 a11 + ib11 + jc11 + kd11 a12 + ib12 + jc12 + kd12 ... a1n + ib1n + jc1n + kd1n . A = . .. 0 . 1 an1 + ibn1 + jcn1 + kdn1 an2 + ibn2 + jcn2 + kdn2 ... ann + ibnn + jcnn + kdnn @ A Then A + tA¯ = 2a11 (a12 + a21)+i(b12 b21)+j(c12 c21)+k(d12 d21) ... (a1n + an1)+i(b1n bn1)+j(c1n cn1)+k(d1n dn1) − − − − − − (a21 + a12)+i(b21 b12)+j(c21 c12)+k(d21 d12)2a22 ... (a2n + an2)+i(b2n bn2)+j(c2n cn2)+k(d2n dn2) − − − − − − 0 . 1 . .. B . C B C B(a1n + an1)+i(b1n bn1)+j(c1n cn1)+k(d1n dn1) ... 2ann C @ − − − A t 2 A + A¯ =0,so: axx =0, x 0degreesoffreedom 8 ! n(n 1) − axy = ayx,x= y 2 degrees of freedom − 6 !n(n 1) − bxy = byx,x= y 2 degrees of freedom 6 ! n(n 1) − cxy = cyx,x= y 2 degrees of freedom 6 ! n(n 1) − dxy = dyx,x= y 2 degrees of freedom b ,c ,d unrestricted,6 ! x 3n degrees of freedom xx xx xx 8 ! In total, dim(sp(n)) = 2n2 + n = n(2n +1) ⇤ 2.5.
    [Show full text]