Chapter 1 Sheaf Theory

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 1 Sheaf Theory This version: 28/02/2014 Chapter 1 Sheaf theory The theory of sheaves has come to play a central roleˆ in the theories of several complex variables and holomorphic differential geometry. The theory is also essential to real analytic geometry. The theory of sheaves provides a framework for solving “local to global” problems of the sort that are normally solved using partitions of unity in the smooth case. In this chapter we provide a fairly comprehensive overview of sheaf theory. The presentation in this chapter is thorough but basic. When one delves deeply into sheaf theory, a categorical approach is significantly more efficient than the direct approach we undertake here. However, for many first-timers to the world of sheaves—particularly those coming to sheaves from the differential geometric rather than the algebraic world—the categorical setting for sheaf theory is an impediment to understanding the point of the theory. In Chapter 4 we discuss the cohomology of sheaves and use category theory to do so. We use this opportunity to review the more categorical approach to sheaf theory, as this provides a very nice nontrivial application of category theory. There are many references available for the theory of sheaves. A classical reference is that of Godement[1958], where the subject is developed from the point of view of algebraic topology. An updated treatment along the same lines is that of Bredon [1997]. The theory is developed quite concisely in the book of Tennison[1976] and in Chapter 5 of [Warner 1983]. A comprehensive review of applications of sheaf theory in differential geometry is given in [Kashiwara and Schapira 1990]. A quite down to earth development of differential geometry with the language of sheaves playing an integral roleˆ is given by Ramanan[2005]. Regardless of one’s route to their understanding of the theory of sheaves, it is a subject that will consume some time in order to develop a useful understanding. 1.1 The basics of sheaf theory In this section we review those parts of the theory that will be useful for us. Our interest in sheaves arises primarily in the context of holomorphic and real analytic functions and sections of real analytic vector bundles. However, in order to provide some colour for the particular setting in which we are interested, we give a treatment with greater generality. The treatment, however, is far from comprehensive, and we 2 1 Sheaf theory 28/02/2014 refer to the references at the beginning of the chapter for more details. One of the places we do engage in some degree of generality is the class of functions and sections for which we consider sheaves. While our applications of sheaf theory will focus on the holomorphic and real analytic cases, we will also treat the cases of general differentiability. Specifically, we consider sheaves of functions and sections of r class C for r Z 0 ; !; hol . The manifolds on which we consider a certain class ≥ of differentiability2 will,[ f1 of course,g vary with the degree of differentiability. To encode this, we shall use the language, “ let r0 ; !; hol be as required.” By this we mean 2 f1 g that r0 = if r Z 0 , that r0 = ! if r = !, and r0 = hol if r = hol. Also, we shall 1 2 ≥ [ f1g implicitly or explicitly let F = R if r Z 0 ;! and let F = C if r = hol. ≥ We shall deal with three classes2 of sheaves[ f1 ing this book: sheaves of sets, sheaves of rings, and sheaves of modules. We shall on occasion separate the presentation according to these three classes. This will serve to clarify that many of the constructions have their basis in sheaves of sets, and the application to sheaves of rings or modules is a matter of invoking the algebraic structure on the constructions on sets. This manner of presentation has the benefit of being unambiguous—and sometimes this is useful—but is also pointlessly repetitive. You lose where you win, sometimes. 1.1.1 Presheaves The basic ingredient in the theory of sheaves is a presheaf. We shall need vari- ous sorts of presheaves, and will define these separately. This is admittedly a little laboured, and is certainly a place where a categorical presentation of the subject is more efficient. But we elect not to follow this abstract approach. Presheaves of sets Since nothing is made more complicated by doing so at this point, we give our general definition of presheaf in terms of topological spaces. 1.1.1 Definition (Presheaf of sets) Let (S; O) be a topological space. A presheaf of sets over S is an assignment to each U O a set F (U) and to each V; U O with V U 2 2 ⊆ a mapping rU;V : F (U) F (V) called the restriction map, with these assignments having the following properties:! (i) rU;U is the identity map; (ii) if W; V; U O with W V U, then rU W = rV W rU V. 2 ⊆ ⊆ ; ; ◦ ; We shall frequently use a single symbol, like F , to refer to a presheaf, with the understanding that F = (F (U))U O , and that the restriction maps are understood. 2 • Let us introduce the common terminology for presheaves. 1.1.2 Definition (Local section, global section) Let F be a presheaf of sets over a topolog- ical space (S; O). An element s F (U) is called a section of F over U and an element 2 of F (S) is called a global section. • 28/02/2014 1.1 The basics of sheaf theory 3 Presheaves can be restricted to open sets. 1.1.3 Definition (Restriction of a presheaf) Let F be a presheaf of sets over a topological space (S; O). If U O then we denote by F U the restriction of F to U, which is the 2 j presheaf over U whose sections over V U are simply F (V). ⊆ • Let us look at the principal examples we shall use in this book. 1.1.4 Examples (Presheaves of sets) 1. Let S = pt be a one point set. A presheaf of sets over S is then defined by F(x ) = X f g 0 and F ( ) = pt where X is a set. ; f g (We shall see in Lemma 1.1.12 that it is natural to take sections over the empty set to be singletons, even though this is not required by the definition of a presheaf.) 2. Let (S; O) be a topological space and let x S. Let X be a set. We define a presheaf 0 2 of sets S by x0;X 8 >X; x U; U < 0 Sx0;X( ) = > 2 :> pt ; x0 < U: f g The restriction maps are prescribed as the natural maps that can be defined. To be clear, if U; V O satisfy V U, then, if x U), we define 2 ⊆ 0 2 8 > <>X; x V; rU;V(x) = > 2 :> pt ; x0 < V f g and, if x0 < U, we define rU;V(pt) = pt. This is called a skyscraper presheaf. 3. If X is a set, a constant presheaf of sets FX on a topological space (S; O) is defined by FX(U) = X for every U O. The restriction maps are taken to be rU V = idX for 2 ; every U; V O with V U. 2 ⊆ • Presheaves of rings Now we adapt the preceding constructions to rings rather than sets. Let us make an assumption on the rings we shall use is sheaf theory (and almost everywhere else). 1.1.5 Assumption (Assumption about rings) “Ring” means “commutative ring with unit.” • We can now go ahead and make our definition of presheaves of rings. 1.1.6 Definition (Presheaf of rings) Let (S; O) be a topological space. A presheaf of rings over S is an assignment to each U O a set R(U) and to each V; U O with V U a ring 2 2 ⊆ homomorphism rU;V : R(U) R(V) called the restriction map, with these assignments having the following properties:! (i) rU;U is the identity map; (ii) if W; V; U O with W V U, then rU W = rV W rU V. 2 ⊆ ⊆ ; ; ◦ ; 4 1 Sheaf theory 28/02/2014 We shall frequently use a single symbol, like R, to refer to a presheaf of rings, with the understanding that R = (R(U))U O , and that the restriction maps are understood. 2 • The notions of a local section and a global section of a presheaf of rings, and of the restriction of a presheaf of rings is exactly as in the case of a presheaf of sets; see Definitions 1.1.2 and 1.1.3. Let us give some examples of presheaves of rings. 1.1.7 Examples (Presheaves of rings) 1. If S = pt is a one point set, we can define presheaves of rings by taking a ring R f g and defining F(x ) = R and F ( ) = 0 . 0 ; f g 2. Let (S; O) be a topological space and let x S. We let R be a ring and take define 0 2 S R by x0; 8 >R; x U; U < 0 Sx0;R( ) = > 2 :> 0 ; x0 < U: f g This is a skyscraper presheaf of rings. The restriction maps are as in Example 1.1.4–2. 3. In Example 1.1.4–3, if the set X has a ring structure, then we have a constant presheaf of rings. The next few examples give some specific instances of this.
Recommended publications
  • Math 5853 Homework Solutions 36. a Map F : X → Y Is Called an Open
    Math 5853 homework solutions 36. A map f : X → Y is called an open map if it takes open sets to open sets, and is called a closed map if it takes closed sets to closed sets. For example, a continuous bijection is a homeomorphism if and only if it is a closed map and an open map. 1. Give examples of continuous maps from R to R that are open but not closed, closed but not open, and neither open nor closed. open but not closed: f(x) = ex is a homeomorphism onto its image (0, ∞) (with the logarithm function as its inverse). If U is open, then f(U) is open in (0, ∞), and since (0, ∞) is open in R, f(U) is open in R. Therefore f is open. However, f(R) = (0, ∞) is not closed, so f is not closed. closed but not open: Constant functions are one example. We will give an example that is also surjective. Let f(x) = 0 for −1 ≤ x ≤ 1, f(x) = x − 1 for x ≥ 1, and f(x) = x+1 for x ≤ −1 (f is continuous by “gluing together on a finite collection of closed sets”). f is not open, since (−1, 1) is open but f((−1, 1)) = {0} is not open. To show that f is closed, let C be any closed subset of R. For n ∈ Z, −1 −1 define In = [n, n + 1]. Now, f (In) = [n + 1, n + 2] if n ≥ 1, f (I0) = [−1, 2], −1 −1 f (I−1) = [−2, 1], and f (In) = [n − 1, n] if n ≤ −2.
    [Show full text]
  • The Calabi Complex and Killing Sheaf Cohomology
    The Calabi complex and Killing sheaf cohomology Igor Khavkine Department of Mathematics, University of Trento, and TIFPA-INFN, Trento, I{38123 Povo (TN) Italy [email protected] September 26, 2014 Abstract It has recently been noticed that the degeneracies of the Poisson bra- cket of linearized gravity on constant curvature Lorentzian manifold can be described in terms of the cohomologies of a certain complex of dif- ferential operators. This complex was first introduced by Calabi and its cohomology is known to be isomorphic to that of the (locally constant) sheaf of Killing vectors. We review the structure of the Calabi complex in a novel way, with explicit calculations based on representation theory of GL(n), and also some tools for studying its cohomology in terms of of lo- cally constant sheaves. We also conjecture how these tools would adapt to linearized gravity on other backgrounds and to other gauge theories. The presentation includes explicit formulas for the differential operators in the Calabi complex, arguments for its local exactness, discussion of general- ized Poincar´eduality, methods of computing the cohomology of locally constant sheaves, and example calculations of Killing sheaf cohomologies of some black hole and cosmological Lorentzian manifolds. Contents 1 Introduction2 2 The Calabi complex4 2.1 Tensor bundles and Young symmetrizers..............5 2.2 Differential operators.........................7 2.3 Formal adjoint complex....................... 11 2.4 Equations of finite type, twisted de Rham complex........ 14 3 Cohomology of locally constant sheaves 16 3.1 Locally constant sheaves....................... 16 3.2 Acyclic resolution by a differential complex............ 18 3.3 Generalized Poincar´eduality...................
    [Show full text]
  • Special Sheaves of Algebras
    Special Sheaves of Algebras Daniel Murfet October 5, 2006 Contents 1 Introduction 1 2 Sheaves of Tensor Algebras 1 3 Sheaves of Symmetric Algebras 6 4 Sheaves of Exterior Algebras 9 5 Sheaves of Polynomial Algebras 17 6 Sheaves of Ideal Products 21 1 Introduction In this note “ring” means a not necessarily commutative ring. If A is a commutative ring then an A-algebra is a ring morphism A −→ B whose image is contained in the center of B. We allow noncommutative sheaves of rings, but if we say (X, OX ) is a ringed space then we mean OX is a sheaf of commutative rings. Throughout this note (X, OX ) is a ringed space. Associated to this ringed space are the following categories: Mod(X), GrMod(X), Alg(X), nAlg(X), GrAlg(X), GrnAlg(X) We show that the forgetful functors Alg(X) −→ Mod(X) and nAlg(X) −→ Mod(X) have left adjoints. If A is a nonzero commutative ring, the forgetful functors AAlg −→ AMod and AnAlg −→ AMod have left adjoints given by the symmetric algebra and tensor algebra con- structions respectively. 2 Sheaves of Tensor Algebras Let F be a sheaf of OX -modules, and for an open set U let P (U) be the OX (U)-algebra given by the tensor algebra T (F (U)). That is, ⊗2 P (U) = OX (U) ⊕ F (U) ⊕ F (U) ⊕ · · · For an inclusion V ⊆ U let ρ : OX (U) −→ OX (V ) and η : F (U) −→ F (V ) be the morphisms of abelian groups given by restriction. For n ≥ 2 we define a multilinear map F (U) × · · · × F (U) −→ F (V ) ⊗ · · · ⊗ F (V ) (m1, .
    [Show full text]
  • Local Topological Algebraicity of Analytic Function Germs Marcin Bilski, Adam Parusinski, Guillaume Rond
    Local topological algebraicity of analytic function germs Marcin Bilski, Adam Parusinski, Guillaume Rond To cite this version: Marcin Bilski, Adam Parusinski, Guillaume Rond. Local topological algebraicity of analytic function germs. Journal of Algebraic Geometry, American Mathematical Society, 2017, 26 (1), pp.177 - 197. 10.1090/jag/667. hal-01255235 HAL Id: hal-01255235 https://hal.archives-ouvertes.fr/hal-01255235 Submitted on 13 Jan 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. LOCAL TOPOLOGICAL ALGEBRAICITY OF ANALYTIC FUNCTION GERMS MARCIN BILSKI, ADAM PARUSINSKI,´ AND GUILLAUME ROND Abstract. T. Mostowski showed that every (real or complex) germ of an analytic set is homeomorphic to the germ of an algebraic set. In this paper we show that every (real or com- plex) analytic function germ, defined on a possibly singular analytic space, is topologically equivalent to a polynomial function germ defined on an affine algebraic variety. 1. Introduction and statement of results The problem of approximation of analytic objects (sets or mappings) by algebraic ones has attracted many mathematicians, see e.g. [2] and the bibliography therein. Nevertheless there are very few positive results if one requires that the approximation gives a homeomorphism between the approximated object and the approximating one.
    [Show full text]
  • Sheaf Theory
    Sheaf Theory Anne Vaugon December 20, 2013 The goals of this talk are • to define a generalization denoted by RΓ(F) of de Rham cohomology; • to explain the notation RΓ(F) (here F is a sheaf and RΓ is a derived functor). 1 Presheaves and sheaves 1.1 Definitions and examples Let X be a topological space. Definition 1.1. A presheaf of k-modules F on X is defined by the following data: • a k-module F(U) for each open set U of X; • a map rUV : F(U) → F(V ) for each pair V ⊂ U of open subsets such that – rWV ◦ rVU = rWU for all open subsets W ⊂ V ⊂ U; – rUU = Id for all open subsets U. Therefore, a presheaf is a functor from the opposite category of open sets to the category of k-modules. If F is a presheaf, F(U) is called the set of sections of U and rVU the restriction from U to V . Definition 1.2. A presheaf F is a sheaf if • for any family (Ui)i∈I of open subsets of X • for any family of elements si ∈ F(Ui) such that rUi∩Uj ,Ui (si) = rUi∩Uj ,Uj (sj) for all i, j ∈ I there exists a unique s ∈ F(U) where U = ∪i∈I Ui such that rUi,U (s) = si for all i ∈ I. This means that we can extend a locally defined section. Definition 1.3. A morphism of presheaves f : F → G is a natural trans- formation between the functors F and G: for each open set U, there exists a morphism f(U): F(U) → G(U) such that the following diagram is commutative for V ⊂ U.
    [Show full text]
  • The Smooth Locus in Infinite-Level Rapoport-Zink Spaces
    The smooth locus in infinite-level Rapoport-Zink spaces Alexander Ivanov and Jared Weinstein February 25, 2020 Abstract Rapoport-Zink spaces are deformation spaces for p-divisible groups with additional structure. At infinite level, they become preperfectoid spaces. Let M8 be an infinite-level Rapoport-Zink space of ˝ ˝ EL type, and let M8 be one connected component of its geometric fiber. We show that M8 contains a dense open subset which is cohomologically smooth in the sense of Scholze. This is the locus of p-divisible groups which do not have any extra endomorphisms. As a corollary, we find that the cohomologically smooth locus in the infinite-level modular curve Xpp8q˝ is exactly the locus of elliptic curves E with supersingular reduction, such that the formal group of E has no extra endomorphisms. 1 Main theorem Let p be a prime number. Rapoport-Zink spaces [RZ96] are deformation spaces of p-divisible groups equipped with some extra structure. This article concerns the geometry of Rapoport-Zink spaces of EL type (endomor- phisms + level structure). In particular we consider the infinite-level spaces MD;8, which are preperfectoid spaces [SW13]. An example is the space MH;8, where H{Fp is a p-divisible group of height n. The points of MH;8 over a nonarchimedean field K containing W pFpq are in correspondence with isogeny classes of p-divisible groups G{O equipped with a quasi-isogeny G b O {p Ñ H b O {p and an isomorphism K OK K Fp K n Qp – VG (where VG is the rational Tate module).
    [Show full text]
  • Bertini's Theorem on Generic Smoothness
    U.F.R. Mathematiques´ et Informatique Universite´ Bordeaux 1 351, Cours de la Liberation´ Master Thesis in Mathematics BERTINI1S THEOREM ON GENERIC SMOOTHNESS Academic year 2011/2012 Supervisor: Candidate: Prof.Qing Liu Andrea Ricolfi ii Introduction Bertini was an Italian mathematician, who lived and worked in the second half of the nineteenth century. The present disser- tation concerns his most celebrated theorem, which appeared for the first time in 1882 in the paper [5], and whose proof can also be found in Introduzione alla Geometria Proiettiva degli Iperspazi (E. Bertini, 1907, or 1923 for the latest edition). The present introduction aims to informally introduce Bertini’s Theorem on generic smoothness, with special attention to its re- cent improvements and its relationships with other kind of re- sults. Just to set the following discussion in an historical perspec- tive, recall that at Bertini’s time the situation was more or less the following: ¥ there were no schemes, ¥ almost all varieties were defined over the complex numbers, ¥ all varieties were embedded in some projective space, that is, they were not intrinsic. On the contrary, this dissertation will cope with Bertini’s the- orem by exploiting the powerful tools of modern algebraic ge- ometry, by working with schemes defined over any field (mostly, but not necessarily, algebraically closed). In addition, our vari- eties will be thought of as abstract varieties (at least when over a field of characteristic zero). This fact does not mean that we are neglecting Bertini’s original work, containing already all the rele- vant ideas: the proof we shall present in this exposition, over the complex numbers, is quite close to the one he gave.
    [Show full text]
  • SHEAVES of MODULES 01AC Contents 1. Introduction 1 2
    SHEAVES OF MODULES 01AC Contents 1. Introduction 1 2. Pathology 2 3. The abelian category of sheaves of modules 2 4. Sections of sheaves of modules 4 5. Supports of modules and sections 6 6. Closed immersions and abelian sheaves 6 7. A canonical exact sequence 7 8. Modules locally generated by sections 8 9. Modules of finite type 9 10. Quasi-coherent modules 10 11. Modules of finite presentation 13 12. Coherent modules 15 13. Closed immersions of ringed spaces 18 14. Locally free sheaves 20 15. Bilinear maps 21 16. Tensor product 22 17. Flat modules 24 18. Duals 26 19. Constructible sheaves of sets 27 20. Flat morphisms of ringed spaces 29 21. Symmetric and exterior powers 29 22. Internal Hom 31 23. Koszul complexes 33 24. Invertible modules 33 25. Rank and determinant 36 26. Localizing sheaves of rings 38 27. Modules of differentials 39 28. Finite order differential operators 43 29. The de Rham complex 46 30. The naive cotangent complex 47 31. Other chapters 50 References 52 1. Introduction 01AD This is a chapter of the Stacks Project, version 77243390, compiled on Sep 28, 2021. 1 SHEAVES OF MODULES 2 In this chapter we work out basic notions of sheaves of modules. This in particular includes the case of abelian sheaves, since these may be viewed as sheaves of Z- modules. Basic references are [Ser55], [DG67] and [AGV71]. We work out what happens for sheaves of modules on ringed topoi in another chap- ter (see Modules on Sites, Section 1), although there we will mostly just duplicate the discussion from this chapter.
    [Show full text]
  • Arxiv:1307.5568V2 [Math.AG]
    PARTIAL POSITIVITY: GEOMETRY AND COHOMOLOGY OF q-AMPLE LINE BUNDLES DANIEL GREB AND ALEX KURONYA¨ To Rob Lazarsfeld on the occasion of his 60th birthday Abstract. We give an overview of partial positivity conditions for line bundles, mostly from a cohomological point of view. Although the current work is to a large extent of expository nature, we present some minor improvements over the existing literature and a new result: a Kodaira-type vanishing theorem for effective q-ample Du Bois divisors and log canonical pairs. Contents 1. Introduction 1 2. Overview of the theory of q-ample line bundles 4 2.1. Vanishing of cohomology groups and partial ampleness 4 2.2. Basic properties of q-ampleness 7 2.3. Sommese’s geometric q-ampleness 15 2.4. Ample subschemes, and a Lefschetz hyperplane theorem for q-ample divisors 17 3. q-Kodaira vanishing for Du Bois divisors and log canonical pairs 19 References 23 1. Introduction Ampleness is one of the central notions of algebraic geometry, possessing the extremely useful feature that it has geometric, numerical, and cohomological characterizations. Here we will concentrate on its cohomological side. The fundamental result in this direction is the theorem of Cartan–Serre–Grothendieck (see [Laz04, Theorem 1.2.6]): for a complete arXiv:1307.5568v2 [math.AG] 23 Jan 2014 projective scheme X, and a line bundle L on X, the following are equivalent to L being ample: ⊗m (1) There exists a positive integer m0 = m0(X, L) such that L is very ample for all m ≥ m0. (2) For every coherent sheaf F on X, there exists a positive integer m1 = m1(X, F, L) ⊗m for which F ⊗ L is globally generated for all m ≥ m1.
    [Show full text]
  • Differentials
    Section 2.8 - Differentials Daniel Murfet October 5, 2006 In this section we will define the sheaf of relative differential forms of one scheme over another. In the case of a nonsingular variety over C, which is like a complex manifold, the sheaf of differential forms is essentially the same as the dual of the tangent bundle in differential geometry. However, in abstract algebraic geometry, we will define the sheaf of differentials first, by a purely algebraic method, and then define the tangent bundle as its dual. Hence we will begin this section with a review of the module of differentials of one ring over another. As applications of the sheaf of differentials, we will give a characterisation of nonsingular varieties among schemes of finite type over a field. We will also use the sheaf of differentials on a nonsingular variety to define its tangent sheaf, its canonical sheaf, and its geometric genus. This latter is an important numerical invariant of a variety. Contents 1 K¨ahler Differentials 1 2 Sheaves of Differentials 2 3 Nonsingular Varieties 13 4 Rational Maps 16 5 Applications 19 6 Some Local Algebra 22 1 K¨ahlerDifferentials See (MAT2,Section 2) for the definition and basic properties of K¨ahler differentials. Definition 1. Let B be a local ring with maximal ideal m.A field of representatives for B is a subfield L of A which is mapped onto A/m by the canonical mapping A −→ A/m. Since L is a field, the restriction gives an isomorphism of fields L =∼ A/m. Proposition 1.
    [Show full text]
  • On Numbers, Germs, and Transseries
    On Numbers, Germs, and Transseries Matthias Aschenbrenner, Lou van den Dries, Joris van der Hoeven Abstract Germs of real-valued functions, surreal numbers, and transseries are three ways to enrich the real continuum by infinitesimal and infinite quantities. Each of these comes with naturally interacting notions of ordering and deriva- tive. The category of H-fields provides a common framework for the relevant algebraic structures. We give an exposition of our results on the model theory of H-fields, and we report on recent progress in unifying germs, surreal num- bers, and transseries from the point of view of asymptotic differential algebra. Contemporaneous with Cantor's work in the 1870s but less well-known, P. du Bois- Reymond [10]{[15] had original ideas concerning non-Cantorian infinitely large and small quantities [34]. He developed a \calculus of infinities” to deal with the growth rates of functions of one real variable, representing their \potential infinity" by an \actual infinite” quantity. The reciprocal of a function tending to infinity is one which tends to zero, hence represents an \actual infinitesimal”. These ideas were unwelcome to Cantor [39] and misunderstood by him, but were made rigorous by F. Hausdorff [46]{[48] and G. H. Hardy [42]{[45]. Hausdorff firmly grounded du Bois-Reymond's \orders of infinity" in Cantor's set-theoretic universe [38], while Hardy focused on their differential aspects and introduced the logarithmico-exponential functions (short: LE-functions). This led to the concept of a Hardy field (Bourbaki [22]), developed further mainly by Rosenlicht [63]{[67] and Boshernitzan [18]{[21]. For the role of Hardy fields in o-minimality see [61].
    [Show full text]
  • SHEAF THEORY 1. Presheaves Definition 1.1. a Presheaf on A
    SHEAF THEORY 1. Presheaves Definition 1.1. A presheaf on a space X (any top. space) is a contravariant functor from open sets on X to a category (usually Ab= category of abelian groups). That is, given U open ⊆ X, you have an abelian group A (U), and if V ⊆ U, then you have a restriction map rV,U : A (U) → A (V ). Then rU,U = 1, rW,V rV,U = rW,U etc. Example 1.2. Let A (U) = G, a fixed abelian group ∀U, rU,V = 1 (constant presheaf) Example 1.3. Let A (U) = G, a fixed abelian group ∀U, rU,V = 0 (Texas A&M presheaf) Example 1.4. Let A (X) = G, A (U) = 0 ∀proper U ⊆ X (TCC presheaf) 0 if x∈ / U Example 1.5. Skyscraper presheaf: x ∈ X; A (U) = G if x ∈ U Example 1.6. X = M, A (U) = {real analytic fcns on U} Example 1.7. adapt above using words like continuous, holomorphic, polynomial, differen- tial forms, kth cohomology group Hk (U), ∞ ∞ 2 Example 1.8. or Hk (U) (closed support homology). For example, Hk (open disk in R ) = Z k = 2 0 otherwise restriction maps: cut things off ∗ ∞ Note: Poincare duality for closed support: H (M) = Hn−∗ (M)(M possibly noncompact) ∗ c Poincare duality for compact support: Hc (M) = Hn−∗ (M) ∞ Example 1.9. Orientation presheaf: on an n-manifold, Hn (U) 2. Sheaves Definition 2.1. A sheaf A is a space together with a projection π : A → X such that −1 (1) Ax := π (x) is an abelian group (or could generalize to other categories) ∀x ∈ X (stalk at x) (2) π is a local homeomorphism (⇒ π−1 (x) is discrete) (3) group operations are continuous, ie {(a, b) ∈ A × A | π (a) = π (b)} → A given by (a, b) 7→ ab−1 is continuous.
    [Show full text]