I Lecture Note
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
MACHINES OR ENGINES, in GENERAL OR of POSITIVE-DISPLACEMENT TYPE, Eg STEAM ENGINES
F01B MACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES (of rotary-piston or oscillating-piston type F01C; of non-positive-displacement type F01D; internal-combustion aspects of reciprocating-piston engines F02B57/00, F02B59/00; crankshafts, crossheads, connecting-rods F16C; flywheels F16F; gearings for interconverting rotary motion and reciprocating motion in general F16H; pistons, piston rods, cylinders, for engines in general F16J) Definition statement This subclass/group covers: Machines or engines, in general or of positive-displacement type References relevant to classification in this subclass This subclass/group does not cover: Rotary-piston or oscillating-piston F01C type Non-positive-displacement type F01D Informative references Attention is drawn to the following places, which may be of interest for search: Internal combustion engines F02B Internal combustion aspects of F02B 57/00; F02B 59/00 reciprocating piston engines Crankshafts, crossheads, F16C connecting-rods Flywheels F16F Gearings for interconverting rotary F16H motion and reciprocating motion in general Pistons, piston rods, cylinders for F16J engines in general 1 Cyclically operating valves for F01L machines or engines Lubrication of machines or engines in F01M general Steam engine plants F01K Glossary of terms In this subclass/group, the following terms (or expressions) are used with the meaning indicated: In patent documents the following abbreviations are often used: Engine a device for continuously converting fluid energy into mechanical power, Thus, this term includes, for example, steam piston engines or steam turbines, per se, or internal-combustion piston engines, but it excludes single-stroke devices. Machine a device which could equally be an engine and a pump, and not a device which is restricted to an engine or one which is restricted to a pump. -
Assessing Steam Locomotive Dynamics and Running Safety by Computer Simulation
TRANSPORT PROBLEMS 2015 PROBLEMY TRANSPORTU Volume 10 Special Edition steam locomotive; balancing; reciprocating; hammer blow; rolling stock and track interaction Dāvis BUŠS Institute of Transportation, Riga Technical University Indriķa iela 8a, Rīga, LV-1004, Latvia Corresponding author. E-mail: [email protected] ASSESSING STEAM LOCOMOTIVE DYNAMICS AND RUNNING SAFETY BY COMPUTER SIMULATION Summary. Steam locomotives are preserved on heritage railways and also occasionally used on mainline heritage trips, but since they are only partially balanced reciprocating piston engines, damage is made to the railway track by dynamic impact, also known as hammer blow. While causing a faster deterioration to the track on heritage railways, the steam locomotive may also cause deterioration to busy mainline tracks or tracks used by high speed trains. This raises the question whether heritage operations on mainline can be done safely and without influencing the operation of the railways. If the details of the dynamic interaction of the steam locomotive's components are examined with computerised calculations they show differences with the previous theories as the smaller components cannot be disregarded in some vibration modes. A particular narrow gauge steam locomotive Gr-319 was analyzed and it was found, that the locomotive exhibits large dynamic forces on the track, much larger than those given by design data, and the safety of the ride is impaired. Large unbalanced vibrations were found, affecting not only the fatigue resistance of the locomotive, but also influencing the crew and passengers in the train consist. Developed model and simulations were used to check several possible parameter variations of the locomotive, but the problems were found to be in the original design such that no serious improvements can be done in the space available for the running gear and therefore the running speed of the locomotive should be limited to reduce its impact upon the track. -
From Crank to Click the Evolution of the Car Key in 1769, the French
Car Key Origins: From Crank to Click The Evolution of the Car Key In 1769, the French inventor, Nicolas-Joseph Cugnot, introduced the first automobile to the world. Ever since then, cars have continued to evolve at a remarkable rate. You might think that car keys have accompanied cars all along, but that's a little inaccurate. Car keys, along with auto locksmith services, only saw the light of day in the late 1940's. So what's the story of cars and keys? Read on to find out. Early Cars Had no Keys This might come as a shock, but older cars had no keys to speak of. In the early years of the last century, many used to chain their vehicles to lampposts in order to secure them. Back in the day as well, to start your car's engine, you needed to manually crank up the engine. But this had its drawbacks. With engines getting bigger and more powerful, rotating a lever to start your car proved inconvenient, even dangerous. In turn, this made way for the electric starter, a small motor driven with a high enough voltage to start the engine. A Step closer to a Car Key In addition to the electric starter, the early decades of the twentieth century featured others types of starters, such as spring motors and air starter motors. The driver was able to operate those starters by pressing a button on the dashboard or the floor. Alternatively, a few cars had pedals to engage the starter by foot. The advent of button-operated starters meant an easier, safer way of starting your car. -
Positive Displacement Reciprocating Pump Fundamentals— Power and Direct Acting Types
POSITIVE DISPLACEMENT RECIPROCATING PUMP FUNDAMENTALS— POWER AND DIRECT ACTING TYPES by Herbert H. Tackett, Jr. Reciprocating Product Manager James A. Cripe Senior Reciprocating Product Engineer Union Pump Company; A Textron Company Battle Creek, Michigan and Gary Dyson Director of Product Development - Aftermarket Union Pump, A Textron Company A Trading Division of David Brown Engineering, Limited Penistone, Sheffield ABSTRACT Herbert H. Tackett, Jr., is Reciprocating Product Manager for Union Pump Company, This tutorial is intended to provide an understanding of the in Battle Creek, Michigan. He has 39 years fundamental principles of positive displacement reciprocating of experience in the design, application, and pumps of both power and direct acting types. Topics include: maintenance of reciprocating power and • A definition and overview of the pump types—Including the direct acting pumps. Prior to Mr. Tackett’s differences between single acting and double acting pumps, how current position in Aftermarket Product both types work, where they are used, and how they are applied. Development, he served as R&D Engineer, Field Service Engineer, and new equipment • Component options—Covers aspects of valve designs and when order Engineer, in addition to several they should be used; describes the various stuffing box designs positions in Reciprocating Pump Sales and Marketing. He has been available with specific reference to their function and application, a member of ASME since 1991. and points out the differences between plungers and pistons and their selection criteria. • Specification criteria and methodology—What application James A. Cripe currently is a Senior information is needed by pump suppliers to correctly size and Reciprocating Product Engineer assigned supply appropriate equipment? to the New Product Development Team for Union Pump Company, in Battle Creek, • Additional topics—Volumetric and mechanical efficiency, net Michigan. -
Reciprocating Pump
Mechanical Engineering Fundamentals Vipan Bansal Department of Mechanical Engineering ([email protected]) Mechanical Engineering Fundamentals (MEC103) L T P Cr 4 0 0 4 Content 1) Fundamental Concepts of Thermodynamics 2) Laws of Thermodynamics 3) Pressure and its Measurement 4) Heat Transfer 5) Power Absorbing Devices 6) Power Producing Devices 7) Principles of Design 8) Power Transmission Devices and Machine Elements Lecture No. - 2 • Positive displacement Pumps Power Absorbing Devices The equipment's or devices that consume power for the working are called power absorbing devices. Examples: Pumps, Compressor, Refrigerators etc. Classification of Pumps Type of Pumps Positive Dynamic Displacement Reciprocating Rotary Centrifugal Axial Positive Displacement vs Dynamic Pumps S. No. Parameter Positive Displacement Pumps Dynamic Pumps 1 Flow Rate Low flow rate High flow rate 2 Pressure High Moderate 3 Priming Very Rarely Always 4 Viscosity Virtually No effect Strong effect 5 Energy added to In positive displacement pumps, In dynamic pumps, energy is added to fluid the energy is added periodically to the fluid continuously through the the fluid. rotary motion of the blades. Reciprocating Pump • Reciprocating pumps are positive displacement pumps thus for the functioning of these pumps no priming (No need to fill the cylinder with liquid before starting) is required in their starting. • High pressure is the main characters of this pump. Reciprocating Pump • In reciprocating pumps, the chamber in which the liquid is trapped or entered, is a stationary cylinder that contains piston or plunger or diaphragm. • Reciprocating pumps are used in limited applications because they require lots of maintenance. • Piston pump, plunger pumps, and diaphragm pumps are examples of reciprocating pump. -
SB-10052498-5734.Pdf
SB-10052498-5734 ATTENTION: IMPORTANT - All GENERAL MANAGER q Service Personnel PARTS MANAGER q Should Read and CLAIMS PERSONNEL q Initial in the boxes SERVICE MANAGER q provided, right. SERVICE BULLETIN APPLICABILITY: 2013MY Legacy and Outback 2.5L Models NUMBER: 11-130-13R 2012-13MY Impreza 2.0L Models DATE: 04/05/13 2013MY XV Crosstrek REVISED: 06/19/13 2011-2014MY Forester 2013MY BRZ SUBJECT: Difficulty Starting, Rough Idle, Cam Position or Misfire DTCs P0340, P0341, P0345, P0346, P0365, P0366, P0390, P0391, P0301, P0302, P0303 or P0304 INTRODUCTION This Bulletin provides inspection and repair procedures for intake and exhaust camshaft position-related and/or engine misfire DTCs for the FA and FB engine-equipped models listed above. The camshaft position sensor (CPS) clearance may be out of specification causing these condition(s) and one or more of the DTCs listed above to set. In addition to a Check Engine light coming on, there may or may not be customer concerns of rough idle, extended cranking or no start. NOTES: • This Service Bulletin will replace Bulletin numbers 11-100-11R, 11-122-12, 11-124-12R and 11-125-12. • Read this Bulletin completely before starting any repairs as service procedures have changed. • An exhaust cam position sensor clearance out of specification willNOT cause a startability issue. COUNTERMEASURE IN PRODUCTION MODEL STARTING VIN Legacy D*038918 Outback D*295279 Impreza 4-Door D*020700 Impreza 5-Door D*835681 XV Crosstrek Forester E*410570 BRZ D*607924 NOTE: These VINs are for reference only. There may be a small number of vehicles after the starting VINs listed above which do not have the countermeasure due to production sequence changes. -
[Thesis Title Goes Here]
DETAILED STUDY OF THE TRANSIENT ROD PNEUMATIC SYSTEM ON THE ANNULAR CORE RESEARCH REACTOR A Thesis Presented to The Academic Faculty by Brandon M. Fehr In Partial Fulfillment of the Requirements for the Degree Master of Science in Nuclear Engineering in the School of Nuclear and Radiological Engineering and Medical Physics Program, George W. Woodruff School of Mechanical Engineering Georgia Institute of Technology May 2016 COPYRIGHT © 2016 BY BRANDON M. FEHR iv DETAILED STUDY OF THE TRANSIENT ROD PNEUMATIC SYSTEM ON THE ANNULAR CORE RESEARCH REACTOR Approved by: Dr. Farzad Rahnema, Advisor Mr. Michael Black School of Nuclear and Radiological R&D S&E Mechanical Engineering Engineering Sandia National Laboratories Georgia Institute of Technology Dr. Tristan Utschig School of Nuclear and Radiological Engineering Georgia Institute of Technology Dr. Bojan Petrovic School of Nuclear and Radiological Engineering Georgia Institute of Technology Date Approved: April 11, 2016 v ACKNOWLEDGEMENTS I would like to give the utmost appreciation to my colleagues at Sandia National Laboratories for their support, with special thanks to Michael Black, James Arnold, and Paul Helmick for their technical guidance. I would also like to thank Dulce Barrera and Elliott Pelfrey for their encouragement and support, and Bennett Lee for his help with proofreading and formatting. Special thanks to Dr. Farzad Rahnema for his guidance and contract support, as well as, Dr. Bojan Petrovic and Dr. Tris Utschig for serving on my committee. Lastly, I would like to thank my parents for their support and encouragement during the whole journey. This research was funded by Weapons Science & Technology (WS&T), Readiness in Technical Base and Facilities (RTBF). -
Considerations About “Dead Centre” in Cycling. in Bicycle Pedalling, The
Project 003: Considerations about “Dead Centre” in cycling. In bicycle pedalling, the pedal crank cycle is characterized by a power phase (pedal down-stroke) followed by a recovery phase (pedal up-stroke). Scientific and other publications introduce the notion of “Dead Centre” (or “Dead Spot” or “Dead Point”), separating the “power phase” from the “recovery phase” and being arbitrary located at 0° (Top-Dead-Centre or TDC) respectively at 180° (Bottom-Dead-Centre or BDC). In this position the cranks are vertically positioned. Many authors try to explain possible biomechanical advantages of the non- circular chainring by the effect of the reduced immediate gear ratio making the crank arm pass through these “idle zones” faster (what happens when the crank arm is oriented roughly in line with the minor axis of the oval). The question is: -what is the exact meaning of the “Dead Centre” in the bicycle pedalling cycle? -where is or are the “Dead Centre(s)” located? 1. Definition of “Dead Centre” In mechanical engineering, by describing a crank-conrod-rod mechanism (see a 2-stroke engine) the notion of “Dead Centre” is meaningful and is perfectly defined. See picture 1. Picture 1: Crank-conrod-rod 1 In the crank - conrod - rod mechanism, the rod is the driving element. The force F in the direction of the rod is transferred to the crank by means of the connecting rod (conrod). The joints of the bars are perfect pivot points. The crank will rotate when the pivot point of the joint “crank-conrod” is not positioned in a “dead centre”. -
Reciprocating Pump
Reciprocating Pump Nazaruddin Sinaga Efficiency and Energy Conservation Laboratory Diponegoro University Positive Displacement Pump Linear Type Reciprocating Type Rotary Type Piston Pump Diaphragm Pump Causes a fluid to move by trapping a fixed amount of it and then forcing (displacing) that trapped volume into the discharge pipe. Also known as “Constant Flow Machines” Pushing of liquid by a piston that executes a reciprocating motion in a closed fitting cylinder. Crankshaft-connecting rod mechanism. Conversion of rotary to reciprocating motion. Entry and exit of fluid. Cylinder. Suction Pipe. Delivery Pipe. Suction valve. Delivery Valve. Triplex No generation of head. Because of the conversion of rotation to Crank-shaft Rotation linear motion, flow varies within each pump revolution. Flow variation for the triplex Quintuplex reciprocating is 23%. Flow variation for the quintuplex pump is 7.1%. Crank-shaft Rotation Reciprocating Pump Provides a nearly constant flow rate Centrifugal over a wider range of pressure. Pressure Pump Fluid viscosity has little effect on the flow rate as the pressure increases. Flow Rate They are reciprocating pumps that use a plunger or piston to move media through a cylindrical chamber. It is actuated by a steam powered, pneumatic, hydraulic, or electric drive. Other names are well service pumps, high pressure pumps, or high viscosity pumps. Cylindrical mechanism to create a reciprocating motion along an axis, which then builds pressure in a cylinder or working barrel to force gas or fluid through the pump. The pressure in the chamber actuates the valves at both the suction and discharge points. The volume of the fluid discharged is equal to the area of the plunger or piston, multiplied by its stroke length. -
Diesel Engine Starting Systems Are As Follows: a Diesel Engine Needs to Rotate Between 150 and 250 Rpm
chapter 7 DIESEL ENGINE STARTING SYSTEMS LEARNING OBJECTIVES KEY TERMS After reading this chapter, the student should Armature 220 Hold in 240 be able to: Field coil 220 Starter interlock 234 1. Identify all main components of a diesel engine Brushes 220 Starter relay 225 starting system Commutator 223 Disconnect switch 237 2. Describe the similarities and differences Pull in 240 between air, hydraulic, and electric starting systems 3. Identify all main components of an electric starter motor assembly 4. Describe how electrical current flows through an electric starter motor 5. Explain the purpose of starting systems interlocks 6. Identify the main components of a pneumatic starting system 7. Identify the main components of a hydraulic starting system 8. Describe a step-by-step diagnostic procedure for a slow cranking problem 9. Describe a step-by-step diagnostic procedure for a no crank problem 10. Explain how to test for excessive voltage drop in a starter circuit 216 M07_HEAR3623_01_SE_C07.indd 216 07/01/15 8:26 PM INTRODUCTION able to get the job done. Many large diesel engines will use a 24V starting system for even greater cranking power. ● SEE FIGURE 7–2 for a typical arrangement of a heavy-duty electric SAFETY FIRST Some specific safety concerns related to starter on a diesel engine. diesel engine starting systems are as follows: A diesel engine needs to rotate between 150 and 250 rpm ■ Battery explosion risk to start. The purpose of the starting system is to provide the torque needed to achieve the necessary minimum cranking ■ Burns from high current flow through battery cables speed. -
24 -Cylinder Sleeve- Valve Unit of 3,500 BMP
24 - cylinder Sleeve - valve Unit of 3,500 BMP. ' ITH what may well prove to be the last of the civil aircraft—particularly in view of the airscrew-turbine very high-powered piston engines Rolls-Royce position. have resurrected one of their most famous type In general terms composition of the Eagle may be sum- names—Eagle—and on examination there is no marized as consisting of twelve cylinders on each side reason to believe that this latest Derby creation formed in monobloc castings, through-bolted with the will not carry to new heights the lustre vertically split crankcase. Each row of six cylinders is bequeathed by its famous namesake. served by its own induction manifold which, in turn, is The new Eagle is a twin-crank flat-H sleeve-valve engine fed from an individual aftercooler. Exhaust is through aspirated with a two-stage two-speed supercharger, and, paired ejector stacks mounted in a • central row between in Mk 22 form, is equipped to drive an eight-blade contra- the upper and lower banks of cylinders. The reduc- rotating airscrew. It is the first Rolls-Royce production tion gearing is powered equally by both crankshafts, and sleeve-valve engine, although the company extensively with it is incorporated the contra-rotation gear for airscrew investigated the potentials of sleeve valves as a part of drive. In this particular instance—i.e., the Mk 22—the their normal research programme in the early 1930s. In nose-length requirements of the aircraft in which the point of fact, although it is not generally known, Rolls engine is first to be installed have called for an extended produced an air-cooled 22-litre sleeve-valve 24-cylinder snout bousing forward of the reduction gear, but for other engine of X-form which, called the "Exe," first flew in installations this might not apply, and the overall length September, 1938, in a Fairey Battle. -
WSA Engineering Branch Training 3
59 RECIPROCATING STEAM ENGINES Reciprocating type main engines have been used to propel This is accomplished by the guide and slipper shown in the ships, since Robert Fulton first installed one in the Clermont in drawing. 1810. The Clermont's engine was a small single cylinder affair which turned paddle wheels on the side of the ship. The boiler was only able to supply steam to the engine at a few pounds pressure. Since that time the reciprocating engine has been gradually developed into a much larger and more powerful engine of several cylinders, some having been built as large as 12,000 horsepower. Turbine type main engines being much smaller and more powerful were rapidly replacing reciprocating engines, when the present emergency made it necessary to return to the installation of reciprocating engines in a large portion of the new ships due to the great demand for turbines. It is one of the most durable and reliable type engines, providing it has proper care and lubrication. Its principle of operation consists essentially of a cylinder in which a close fitting piston is pushed back and forth or up and down according to the position of the cylinder. If steam is admitted to the top of the cylinder, it will expand and push the piston ahead of it to the bottom. Then if steam is admitted to the bottom of the cylinder it will push the piston back up. This continual back and forth movement of the piston is called reciprocating motion, hence the name, reciprocating engine. To turn the propeller the motion must be changed to a rotary one.