"Aquaporins: Channels for the Molecule Of

Total Page:16

File Type:pdf, Size:1020Kb

Aquaporins: Channels for Advanced article Article Contents the Molecule of Life • Introduction • A Discovery Well Worth a Nobel Prize Uwe G Hacke, University of Alberta, Edmonton, Canada • Structure, Permeation and Substrate Specificity Joan Laur, University of Alberta, Edmonton, Canada • Regulation • Roles of Aquaporins in Different Life Forms • Future Directions • Acknowledgements Online posting date: 15th February 2016 Liquid water has unique properties that make it The aquaporin protein family is ancient, and aquaporins can be a universal solvent. Water is an essential compo- found in a wide range of organisms, from unicellular bacteria nent of almost all physiological and biochemical to giant Sequoia trees. All aquaporins are recognised by shared, reactions; therefore, its presence is required every- conserved structures. The structure of the channels is impor- tant because it determines which molecules can pass, which are where within an organism. The circulatory systems excluded and at which rate molecules can move through the pores. of animals and the vascular system of plants move fluids over long distances. In the tallest trees, water moves across a height gradient of 100 m or more, A Discovery Well Worth a Nobel thereby connecting roots and distant leaves. On a cellular and tissue level, water movement is facili- Prize tated by intrinsic membrane proteins called aqua- Transmembrane water flow was long believed to depend entirely porins. These water channels are found in all life on the permeability of the lipid bilayer and its composition. But forms. Aquaporins have been mostly studied in the high water permeability of certain membranes could not be mammals and plants, where water channels play fully explained until Peter Agre’s group (Smith and Agre, 1991; important physiological roles. This article gives an Agre et al., 1993) isolated and characterised the first human aqua- overview of the discovery, structure and regulation porin, CHIP28, later renamed AQP1. For decades, people have of aquaporins. Their roles in different life forms are speculated on the existence of microscopic pores that facilitate discussed. movement of molecules like water across biological membranes (Stein and Danielli, 1956). Rapid water flux was observed in toad bladders, mammalian kidneys and red blood cells. It was also found that high rates of water movement could be blocked in Introduction a reversible way by cytotoxic mercury reagents, suggesting the protein nature of what was later called aquaporins (Macey and While the lipid bilayer allows the slow diffusion of water Farmer, 1970; Macey, 1984). Finally, Wade et al. (1981) formu- molecules (see also: Lipid Bilayers), only the presence of lated the membrane shuttle hypothesis based on observations of a dedicated water channels can explain substantial water flow concomitant increase in cell permeability and the massive reloca- rates across some cell or subcellular membranes. Aquaporins are tion of protein aggregates from intracellular vesicles to the plasma integral membrane transport proteins, and they facilitate water membrane. What was the molecular identity of those proteins? movement in cells, tissues and entire organisms. The proper dis- It was also in the 1980s that Agre started working on the Rh tribution of the most abundant molecule in cells and living tissues blood group antigens. In the early years, his team had isolated is fundamental to life. In addition to water, certain aquaporins two membrane proteins of 32 and 28 kDa from red blood cells. also facilitate the transport of small solutes such as glycerol and The 28 kDa protein was found in spectacular quantity: 200 000 perhaps even gases like carbon dioxide. Molecules move through copies per red blood cell (Agre, 2004). The partial analysis of its the channels in response to osmotic/concentration gradients. sequence showed its close relation to proteins found in the kid- ney, eye lens, brain cells and also bacteria and plants; and several features suggested it was a membrane channel. The protein, tem- eLS subject area: Plant Science porarily named CHIP28 (for channel-like integral protein of 28 How to cite: kDa), was the subject of many discussions; but finally it was sug- Hacke, Uwe G and Laur, Joan (February 2016) Aquaporins: gested that it might be a water channel (Carbrey and Agre, 2009). Channels for the Molecule of Life. In: eLS. John Wiley & Sons, This hypothesis was soon tested by expressing CHIP28 in frog Ltd: Chichester. oocytes. This was a useful experiment, because oocytes nor- DOI: 10.1002/9780470015902.a0001289.pub2 mally show low water permeability. Oocytes expressing CHIP28 eLS © 2016, John Wiley & Sons, Ltd. www.els.net 1 Aquaporins: Channels for the Molecule of Life Control CHIP28 sequence cRNA Test Xenopus Oocytes Figure 1 Expression of CHIP28 water channel activity in Xenopus oocytes. Oocytes obtained from female Xenopus are injected with in vitro transcribed RNA of CHIP28. After a period of incubation, the water permeability of test oocytes expressing the protein and of control oocytes is tested in distilledwater. Almost immediately, ‘the test oocytes were highly permeable to water and exploded like popcorn’ (Agre, 2004). immediately swelled and exploded when transferred in distilled the answer is ‘no’; exceptionally high flow rates are possible water (Figure 1). Permeability to water was drastically increased. because of fine-tuned interactions between water molecules and The first water channel protein had just been functionally charac- the molecules forming the channel (Kozono et al., 2002; Eriksson terised ‘following the well-known scientific approach known as et al., 2013). sheer blind luck’ (Agre, 2004) and years of hard work. Aside from the central NPA constriction, aquaporins contain an outer constriction. This aromatic/arginine (ar/R) constriction region creates the narrowest section of the channel and constitutes Structure, Permeation a major checkpoint for solute permeability (Figure 2,dashed and Substrate Specificity ellipse). By mutating the ar/R filter, Beitz et al.(2006)were able to modify the water selectivity of AQP1 to allow urea, Aquaporins belong to the highly conserved major intrinsic protein ammonia and glycerol permeation. In aquaglyceroporins, the (MIP) super family (Danielson and Johanson, 2010). MIPs exist ar/R constriction region is wider than in orthodox water pores, as tetramers. Each subunit is behaving as a single aqueous pore. allowing the passage of larger molecules such as glycerol. Subunits share the same hourglass structure consisting of six transmembrane domains connected by several loops (Figure 2). Two of these loops fold back into the membrane and overlap. Regulation The overlapping loops each contain the conserved signature motif asparagine, proline, alanine (NPA). Located in the narrow centre Some aquaporins contain an additional energy barrier to water of the pore, the NPA region represents a key feature for water permeation, which allows these channels to be opened or permeation. The centre of water-selective pores has a minimum closed. In the spinach aquaporin SoPIP2;1, the phosphorylated diameter of 2.8 Å, almost matching the diameter of a water status of highly conserved amino acids, Ser115 and Ser274, molecule (Kozono et al., 2002). This means that water molecules controls the open/close conformation (gating) of the channel move through the centre of each pore in single-file configuration. (Törnroth-Horsefield et al., 2006). Such modifications, and also The water molecule passing the NPA motifs undergoes a transient the changes in pH, osmolarity and membrane tension, may lead reorientation as it forms hydrogen bonds between its oxygen and to the physical obstruction of the channel (Hedfalk et al., 2006). the partial positive charges of pore-lining asparagine residues. Other than gating, two other major modes of aquaporin regu- As a result of this and other features of the channel, protons are lation have been actively investigated: modification of their sub- unable to permeate the pores. The conserved NPA motifs’ partial cellular localisation and changes in gene expression. The shut- charges also play a key role in enhancing flow rates through the tle hypothesis (Wade et al., 1981), for instance, introduced the channel (Farimani et al., 2014). idea of water channel trafficking as a regulation strategy. The Despite the fact that water channels are only slightly wider than vasopressin-induced relocation of AQP2 that was observed in the water molecules that pass through them, they are enormously kidney cells is still intensively studied (Nedvetsky et al., 2009), efficient. Computer simulations suggest that a single water chan- and several other examples of protein transfer to the membrane nel allows the passive passage of more than one billion water have been reported (Ishikawa et al., 1999; Vera-Estrella et al., molecules per second; this is considerably faster than transport 2004; Boursiac et al., 2008;Luuet al., 2012). in some ion channels. With such extraordinary permeation rates, Another strategy to alter the number of proteins present in aquaporins are ideal channels to distribute water within organs or the membrane is to modify the level of gene expression, an tissues. The channels have to be narrow to be selective, but should approach used in the field of plant biotechnology in an effort this not come at the cost of slowing down transport? Apparently, to improve traits like drought resistance (Martre et al., 2002; 2 eLS © 2016, John Wiley & Sons, Ltd. www.els.net Aquaporins: Channels for the Molecule of Life Extracellular side HE H2H H4 H3 ar/R filter NPA signature motifs H6 H5 H1 HB N C Intracellular side Figure 2 All aquaporin proteins share a common hourglass structure. They are composed of six transmembrane helices (H1–H6) connected by five loops (LA–LE); both N-andC-termini are located on the cytoplasmic side of the membrane. Two short helical domains (HB and HE) of LB and LE form a seventh ‘broken’ helix; they both contain a signature motif NPA (asparagine, proline, alanine) located in the middle of the pore. The aromatic/arginine constriction site (ar/R) is located closer to the extracellular side.
Recommended publications
  • Combined Pharmacological Administration of AQP1 Ion Channel
    www.nature.com/scientificreports OPEN Combined pharmacological administration of AQP1 ion channel blocker AqB011 and water channel Received: 15 November 2018 Accepted: 13 August 2019 blocker Bacopaside II amplifes Published: xx xx xxxx inhibition of colon cancer cell migration Michael L. De Ieso 1, Jinxin V. Pei 1, Saeed Nourmohammadi1, Eric Smith 1,2, Pak Hin Chow1, Mohamad Kourghi1, Jennifer E. Hardingham 1,2 & Andrea J. Yool 1 Aquaporin-1 (AQP1) has been proposed as a dual water and cation channel that when upregulated in cancers enhances cell migration rates; however, the mechanism remains unknown. Previous work identifed AqB011 as an inhibitor of the gated human AQP1 cation conductance, and bacopaside II as a blocker of AQP1 water pores. In two colorectal adenocarcinoma cell lines, high levels of AQP1 transcript were confrmed in HT29, and low levels in SW480 cells, by quantitative PCR (polymerase chain reaction). Comparable diferences in membrane AQP1 protein levels were demonstrated by immunofuorescence imaging. Migration rates were quantifed using circular wound closure assays and live-cell tracking. AqB011 and bacopaside II, applied in combination, produced greater inhibitory efects on cell migration than did either agent alone. The high efcacy of AqB011 alone and in combination with bacopaside II in slowing HT29 cell motility correlated with abundant membrane localization of AQP1 protein. In SW480, neither agent alone was efective in blocking cell motility; however, combined application did cause inhibition of motility, consistent with low levels of membrane AQP1 expression. Bacopaside alone or combined with AqB011 also signifcantly impaired lamellipodial formation in both cell lines. Knockdown of AQP1 with siRNA (confrmed by quantitative PCR) reduced the efectiveness of the combined inhibitors, confrming AQP1 as a target of action.
    [Show full text]
  • Effects of Aquaporin 4 and Inward Rectifier
    9-Experimental Surgery Effects of aquaporin 4 and inward rectifier potassium channel 4.1 on medullospinal edema after methylprednisolone treatment to suppress acute spinal cord injury in rats1 Ye LiI, Haifeng HuII, Jingchen LiuIII, Qingsan ZhuIV, Rui GuV IAssociate Professor, Department of Orthopaedics, China-Japan Union Hospital, Jilin University, Changchun, China. Conception, design, intellectual and scientific content of the study; acquisition of data; manuscript writing; critical revision. IIAttending Doctor, Department of Orthopaedics, China-Japan Union Hospital, Jilin University, Changchun, China. Acquisition of data, manuscript writing. IIIProfessor, Department of Orthopaedics, China-Japan Union Hospital, Jilin University, Changchun, China. Scientific content of the study, acquisition of data, manuscript writing. IVProfessor, Department of Orthopaedics, China-Japan Union Hospital, Jilin University, Changchun, China. Acquisition of data. VProfessor, Department of Orthopaedics, China-Japan Union Hospital, Jilin University, Changchun, China. Intellectual, scientific, conception and design of the study; critical revision. Abstract Purpose: To investigate the effects of aquaporin 4 (AQP4) and inward rectifier potassium channel 4.1 (Kir4.1) on medullospinal edema after treatment with methylprednisolone (MP) to suppress acute spinal cord injury (ASCI) in rats. Methods: Sprague Dawley rats were randomly divided into control, sham, ASCI, and MP- treated ASCI groups. After the induction of ASCI, we injected 30 mg/kg MP via the tail vein at various time points. The Tarlov scoring method was applied to evaluate neurological symptoms, and the wet–dry weights method was applied to measure the water content of the spinal cord. Results: The motor function score of the ASCI group was significantly lower than that of the sham group, and the spinal water content was significantly increased.
    [Show full text]
  • Snapshot: Mammalian TRP Channels David E
    SnapShot: Mammalian TRP Channels David E. Clapham HHMI, Children’s Hospital, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA TRP Activators Inhibitors Putative Interacting Proteins Proposed Functions Activation potentiated by PLC pathways Gd, La TRPC4, TRPC5, calmodulin, TRPC3, Homodimer is a purported stretch-sensitive ion channel; form C1 TRPP1, IP3Rs, caveolin-1, PMCA heteromeric ion channels with TRPC4 or TRPC5 in neurons -/- Pheromone receptor mechanism? Calmodulin, IP3R3, Enkurin, TRPC6 TRPC2 mice respond abnormally to urine-based olfactory C2 cues; pheromone sensing 2+ Diacylglycerol, [Ca ]I, activation potentiated BTP2, flufenamate, Gd, La TRPC1, calmodulin, PLCβ, PLCγ, IP3R, Potential role in vasoregulation and airway regulation C3 by PLC pathways RyR, SERCA, caveolin-1, αSNAP, NCX1 La (100 µM), calmidazolium, activation [Ca2+] , 2-APB, niflumic acid, TRPC1, TRPC5, calmodulin, PLCβ, TRPC4-/- mice have abnormalities in endothelial-based vessel C4 i potentiated by PLC pathways DIDS, La (mM) NHERF1, IP3R permeability La (100 µM), activation potentiated by PLC 2-APB, flufenamate, La (mM) TRPC1, TRPC4, calmodulin, PLCβ, No phenotype yet reported in TRPC5-/- mice; potentially C5 pathways, nitric oxide NHERF1/2, ZO-1, IP3R regulates growth cones and neurite extension 2+ Diacylglycerol, [Ca ]I, 20-HETE, activation 2-APB, amiloride, Cd, La, Gd Calmodulin, TRPC3, TRPC7, FKBP12 Missense mutation in human focal segmental glomerulo- C6 potentiated by PLC pathways sclerosis (FSGS); abnormal vasoregulation in TRPC6-/-
    [Show full text]
  • Ubiquitination of Aquaporin-2 in the Kidney
    Electrolytes & Blood Pressure 7:1-4, 2009 1 Review article 1) Ubiquitination of Aquaporin-2 in the Kidney Yu-Jung Lee, M.D. and Tae-Hwan Kwon, M.D. Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Korea Ubiquitination is known to be important for endocytosis and lysosomal degradation of aquaporin-2 (AQP2). Ubiquitin (Ub) is covalently attached to the lysine residue of the substrate proteins and activation and attach - ment of Ub to a target protein is mediated by the action of three enzymes (i.e., E1, E2, and E3). In particular, E3 Ub-protein ligases are known to have substrate specificity. This minireview will discuss the ubiquitination of AQP2 and identification of potential E3 Ub-protein ligases for 1-deamino-8-D-arginine vasopressin (dDAVP)-dependent AQP2 regulation. Key Words : kidney tubules, collecting; ubiquitination; vasopressins; aquaporin 2 The kidneys are responsible for the regulation of body This process produces concentrated urine and is essential water and electrolyte metabolism. Thus, understanding of for regulation of body water metabolism 6) . In contrast to the underlying mechanisms for renal water transport is the well-established signaling pathways for the vaso- critical. Water permeability along the nephron has already pressin-regulated AQP2 trafficking and up-regulation of been well characterized in the mammalian kidney 1) . AQP2 expression, the underlying mechanisms for AQP2 Approximately, 180 L/day of glomerular filtrate is gen- endocytosis and intracellular degradation of AQP2 protein erated in an adult human, more than 80-90% of the glomer- are unclear. So far, two hormones (prostaglandin E2 and ular filtrate is constitutively reabsorbed by the highly water dopamine) cause AQP2 internalization independent of permeable proximal tubules and descending thin limbs of S256 dephosphorylation 7, 8) .
    [Show full text]
  • Microarray Analysis Reveals the Inhibition of Intestinal Expression Of
    www.nature.com/scientificreports OPEN Microarray analysis reveals the inhibition of intestinal expression of nutrient transporters in piglets infected with porcine epidemic diarrhea virus Junmei Zhang1,3, Di Zhao1,3, Dan Yi1,3, Mengjun Wu1, Hongbo Chen1, Tao Wu1, Jia Zhou1, Peng Li1, Yongqing Hou1* & Guoyao Wu2 Porcine epidemic diarrhea virus (PEDV) infection can induce intestinal dysfunction, resulting in severe diarrhea and even death, but the mode of action underlying these viral efects remains unclear. This study determined the efects of PEDV infection on intestinal absorption and the expression of genes for nutrient transporters via biochemical tests and microarray analysis. Sixteen 7-day-old healthy piglets fed a milk replacer were randomly allocated to one of two groups. After 5-day adaption, piglets (n = 8/ group) were orally administrated with either sterile saline or PEDV (the strain from Yunnan province) 4.5 at 10 TCID50 (50% tissue culture infectious dose) per pig. All pigs were orally infused D-xylose (0.1 g/ kg BW) on day 5 post PEDV or saline administration. One hour later, jugular vein blood samples as well as intestinal samples were collected for further analysis. In comparison with the control group, PEDV infection increased diarrhea incidence, blood diamine oxidase activity, and iFABP level, while reducing growth and plasma D-xylose concentration in piglets. Moreover, PEDV infection altered plasma and jejunal amino acid profles, and decreased the expression of aquaporins and amino acid transporters (L-type amino acid
    [Show full text]
  • Modulation of Voltage-Gated Potassium Channels by Phosphatidylinositol-4,5-Bisphosphate Marina Kasimova
    Modulation of voltage-gated potassium channels by phosphatidylinositol-4,5-bisphosphate Marina Kasimova To cite this version: Marina Kasimova. Modulation of voltage-gated potassium channels by phosphatidylinositol-4,5- bisphosphate. Other. Université de Lorraine, 2014. English. NNT : 2014LORR0204. tel-01751176 HAL Id: tel-01751176 https://hal.univ-lorraine.fr/tel-01751176 Submitted on 29 Mar 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. AVERTISSEMENT Ce document est le fruit d'un long travail approuvé par le jury de soutenance et mis à disposition de l'ensemble de la communauté universitaire élargie. Il est soumis à la propriété intellectuelle de l'auteur. Ceci implique une obligation de citation et de référencement lors de l’utilisation de ce document. D'autre part, toute contrefaçon, plagiat, reproduction illicite encourt une poursuite pénale. Contact : [email protected] LIENS Code de la Propriété Intellectuelle. articles L 122. 4 Code de la Propriété Intellectuelle. articles L 335.2- L 335.10 http://www.cfcopies.com/V2/leg/leg_droi.php
    [Show full text]
  • I REGENERATIVE MEDICINE APPROACHES to SPINAL CORD
    REGENERATIVE MEDICINE APPROACHES TO SPINAL CORD INJURY A Dissertation Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Ashley Elizabeth Mohrman March 2017 i ABSTRACT Hundreds of thousands of people suffer from spinal cord injuries in the U.S.A. alone, with very few patients ever experiencing complete recovery. Complexity of the tissue and inflammatory response contribute to this lack of recovery, as the proper function of the central nervous system relies on its highly specific structural and spatial organization. The overall goal of this dissertation project is to study the central nervous system in the healthy and injured state so as to devise appropriate strategies to recover tissue homeostasis, and ultimately function, from an injured state. A specific spinal cord injury model, syringomyelia, was studied; this condition presents as a fluid filled cyst within the spinal cord. Molecular evaluation at three and six weeks post-injury revealed a large inflammatory response including leukocyte invasion, losses in neuronal transmission and signaling, and upregulation in important osmoregulators. These included osmotic stress regulating metabolites betaine and taurine, as well as the betaine/GABA transporter (BGT-1), potassium chloride transporter (KCC4), and water transporter aquaporin 1 (AQP1). To study cellular behavior in native tissue, adult neural stem cells from the subventricular niche were differentiated in vitro. These cells were tested under various culture conditions for cell phenotype preferences. A mostly pure (>80%) population of neural stem cells could be specified using soft, hydrogel substrates with a laminin coating and interferon-γ supplementation.
    [Show full text]
  • Study of Selectivity and Permeation in Voltage-Gated Ion Channels
    Study of Selectivity and Permeation in Voltage-Gated Ion Channels By Janhavi Giri, Ph.D. Visiting Research Faculty Division of Molecular Biophysics and Physiology Rush University Medical Center Chicago, IL, USA Email: [email protected] i TABLE OF CONTENTS Page TABLE OF CONTENTS ..................................................................................................... i LIST OF TABLES ............................................................................................................. iii LIST OF FIGURES ........................................................................................................... iv SUMMARY ............................................................................................................... xvi CHAPTER 1. INTRODUCTION ....................................................................................... 1 1.1. Background ................................................................................................... 1 1.2. Overview .................................................................................................... 10 CHAPTER 2. SELF-ORGANIZED MODELS OF SELECTIVITY IN CALCIUM CHANNELS ........................................................................................... 13 2.1. Introduction ................................................................................................ 13 2.2. Methods ...................................................................................................... 19 2.2.1. Model of Channel and Electrolyte ........................................................19
    [Show full text]
  • An Aquaporin-4/Transient Receptor Potential Vanilloid 4 (AQP4/TRPV4) Complex Is Essential for Cell-Volume Control in Astrocytes
    An aquaporin-4/transient receptor potential vanilloid 4 (AQP4/TRPV4) complex is essential for cell-volume control in astrocytes Valentina Benfenatia,1, Marco Caprinib,1, Melania Doviziob, Maria N. Mylonakouc, Stefano Ferronib, Ole P. Ottersenc, and Mahmood Amiry-Moghaddamc,2 aInstitute for Nanostructured Materials, Consiglio Nazionale delle Ricerche, 40129 Bologna, Italy; bDepartment of Human and General Physiology, University of Bologna, 40127 Bologna, Italy; and cCenter for Molecular Biology and Neuroscience and Department of Anatomy, University of Oslo, 0317 Oslo, Norway Edited* by Peter Agre, Johns Hopkins Malaria Research Institute, Baltimore, MD, and approved December 27, 2010 (received for review September 1, 2010) Regulatory volume decrease (RVD) is a key mechanism for volume channels (VRAC). Osmolyte efflux through VRAC is thought to control that serves to prevent detrimental swelling in response to provide the driving force for water exit (6, 7). The factors that hypo-osmotic stress. The molecular basis of RVD is not understood. initiate RVD have received comparatively little attention. Here Here we show that a complex containing aquaporin-4 (AQP4) and we test our hypothesis that activation of astroglial RVD depends transient receptor potential vanilloid 4 (TRPV4) is essential for RVD on a molecular interaction between AQP4 and TRPV4. fi in astrocytes. Astrocytes from AQP4-KO mice and astrocytes treated Our hypothesis rests on our recent nding that TRPV4 is with TRPV4 siRNA fail to respond to hypotonic stress by increased strongly expressed in astrocytic endfeet membranes abutting the – intracellular Ca2+ and RVD. Coimmunoprecipitation and immunohis- pia (including the extension of the pia that lines the Virchow tochemistry analyses show that AQP4 and TRPV4 interact and coloc- Robin spaces) and in endfeet underlying ependyma of the ven- alize.
    [Show full text]
  • Aquaporin 0 Modulates Lens Gap Junctions in the Presence of Lens-Specific Beaded Filament Proteins
    Lens Aquaporin 0 Modulates Lens Gap Junctions in the Presence of Lens-Specific Beaded Filament Proteins Sindhu Kumari,1 Junyuan Gao,1 Richard T. Mathias,1,2 Xiurong Sun,1 Amizhdini Eswaramoorthy,1 Nicholas Browne,1 Nigel Zhang,1 and Kulandaiappan Varadaraj1,2 1Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York, United States 2SUNY Eye Institute, Syracuse, New York, United States Correspondence: Kulandaiappan PURPOSE. The objective of this study was to understand the molecular and physiologic Varadaraj, Department of Physiology mechanisms behind the lens cataract differences in Aquaporin 0-knockout-Heterozygous and Biophysics, BST-6, Room # 165A, (AQP0-Htz) mice developed in C57 and FVB (lacks beaded filaments [BFs]) strains. School of Medicine, Stony Brook University, NY 11794-8661, USA; METHODS. Lens transparency was studied using dark field light microscopy. Water permeability kulandaiappan.varadaraj@ (Pf) was measured in fiber cell membrane vesicles. Western blotting/immunostaining was stonybrook.edu. performed to verify expression of BF proteins and connexins. Microelectrode-based intact Submitted: May 2, 2017 lens intracellular impedance was measured to determine gap junction (GJ) coupling Accepted: October 23, 2017 resistance. Lens intracellular hydrostatic pressure (HP) was determined using a microelec- trode/manometer system. Citation: Kumari S, Gao J, Mathias RT, et al. Aquaporin 0 modulates lens gap RESULTS. Lens opacity and spherical aberration were more distinct in AQP0-Htz lenses from junctions in the presence of lens- FVB than C57 strains. In either background, compared to wild type (WT), AQP0-Htz lenses specific beaded filament proteins. showed decreased Pf (approximately 50%), which was restored by transgenic expression of Invest Ophthalmol Vis Sci.
    [Show full text]
  • Gadolinium Chloride Restores the Function of the Gap Junctional Intercellular Communication Between Hepatocytes in a Liver Injury
    Article Gadolinium Chloride Restores the Function of the Gap Junctional Intercellular Communication between Hepatocytes in a Liver Injury Le Yang, Chengbin Dong, Lei Tian, Xiaofang Ji, Lin Yang and Liying Li * Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China * Correspondence: [email protected]; Tel.: +0086-10-83950468; Fax: +0086-10-83950468; Received: 3 July 2019; Accepted: 30 July 2019; Published: 31 July 2019 Abstract: Background: Gadolinium chloride (GdCl3) has been reported to attenuate liver injury caused by a variety of toxicants. Gap junctional intercellular communication (GJIC) is thought to be essential in controlling liver homeostasis and pathology. Here we evaluate the effects of GdCl3 on functional GJIC and connexin expression in mouse models and primary hepatocytes. Methods: Mice were administered GdCl3 intraperitoneally the day before a carbon tetrachloride (CCl4) injection or bile duct ligation (BDL) operation. Primary hepatocytes were treated with CCl4 or lipopolysaccharides (LPS), with or without GdCl3. A scrape loading/dye transfer assay was performed to assess the GJIC function. The expression of connexins was examined by real-time reverse transcription polymerase chain reaction (RT-PCR), western blot and immunofluorescent staining. Results: CCl4 treatment or the BDL operation led to the dysfunction of GJIC and a down-regulation of Cx32 and Cx26 in injured liver. GdCl3 administration restored GJIC function between hepatocytes by facilitating the transfer of fluorescent dye from one cell into adjacent cells via GJIC, and markedly prevented the decrease of Cx32 and Cx26 in injured liver. In primary hepatocytes, CCl4 or LPS treatment induced an obvious decline of Cx32 and Cx26, whereas GdCl3 pretreatment prevented the down-regulation of connexins.
    [Show full text]
  • Receptor-Mediated Endocytosis and Endosomal Acidification Is Impaired
    Receptor-mediated endocytosis and endosomal acidification is impaired in proximal tubule epithelial cells of Dent disease patients Caroline M. Gorvina, Martijn J. Wilmerb, Sian E. Pireta, Brian Hardinga, Lambertus P. van den Heuvelc,d, Oliver Wronge, Parmjit S. Jatf, Jonathan D. Lippiatg, Elena N. Levtchenkoc,d, and Rajesh V. Thakkera,1 aAcademic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology, and Metabolism, Nuffield Department of Clinical Medicine, University of Oxford, Churchill Hospital, Oxford OX3 7LJ, United Kingdom; bDepartment of Pharmacology and Toxicology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Sciences, 6500 HB, Nijmegen, The Netherlands; cLaboratory of Genetic, Endocrine and Metabolic Disorders, Department of Paediatric Nephrology, Radboud University Nijmegen Medical Centre, 6500 HB, Nijmegen, The Netherlands; dDepartment of Development and Regeneration, Catholic University, 3000 Leuven, Belgium; eDepartment of Medicine, University College London, London WC1E 6AU, United Kingdom; fDepartment of Neurodegenerative Disease, Institute of Neurology, University College London, London WC1N 3BG, United Kingdom; and gInstitute of Membrane and Systems Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom Edited by Andrew Rees, Medical University of Vienna, Vienna, Austria, and accepted by the Editorial Board March 12, 2013 (received for review January 31, 2013) Receptor-mediated endocytosis, involving megalin and cubilin, through this pathway requires endosomal luminal acidification that mediates renal proximal-tubular reabsorption and is decreased in facilitates ligand-receptor dissociation, ligand processing, receptor Dent disease because of mutations of the chloride/proton antiporter, recycling or degradation, vesicular trafficking, and fusion to late chloride channel-5 (CLC-5), resulting in low-molecular-weight pro- endosomes and lysosomes (5).
    [Show full text]