Ubiquitination of Aquaporin-2 in the Kidney
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Activity-Dependent Modulation of Neuronal Sodium Channel Expression Joshua Peter Klein Yale University
Yale University EliScholar – A Digital Platform for Scholarly Publishing at Yale Yale Medicine Thesis Digital Library School of Medicine 5-2004 Activity-dependent modulation of neuronal sodium channel expression Joshua Peter Klein Yale University. Follow this and additional works at: http://elischolar.library.yale.edu/ymtdl Part of the Medicine and Health Sciences Commons Recommended Citation Klein, Joshua Peter, "Activity-dependent modulation of neuronal sodium channel expression" (2004). Yale Medicine Thesis Digital Library. 2198. http://elischolar.library.yale.edu/ymtdl/2198 This Open Access Dissertation is brought to you for free and open access by the School of Medicine at EliScholar – A Digital Platform for Scholarly Publishing at Yale. It has been accepted for inclusion in Yale Medicine Thesis Digital Library by an authorized administrator of EliScholar – A Digital Platform for Scholarly Publishing at Yale. For more information, please contact [email protected]. ACTIVITY-DEPENDENT MODULATION OF NEURONAL SODIUM CHANNEL EXPRESSION A Dissertation Presented to the Faculty of the Graduate School of Yale University in Candidacy for the Degree of Doctor of Philosophy by Joshua Peter Klein Dissertation Director: Stephen G. Waxman, M.D.,Ph.D. May, 2004 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. ACTiViTY-DEPENDENT MODULATION OF NEURONAL SODIUM CHANNEL EXPRESSION Joshua Peter Klein 2004 ABSTRACT Action potentials initiate via the voltage-dependent opening of plasma membrane-associated sodium channels. The number and type of sodium channels in a neuronal membrane determine the quantity of sodium current that results from a given stimulus. The expression of sodium channels in neurons is plastic, and is not only altered by injury and disease, but also by subtle changes in physiologic environment. -
Entrez Symbols Name Termid Termdesc 117553 Uba3,Ube1c
Entrez Symbols Name TermID TermDesc 117553 Uba3,Ube1c ubiquitin-like modifier activating enzyme 3 GO:0016881 acid-amino acid ligase activity 299002 G2e3,RGD1310263 G2/M-phase specific E3 ubiquitin ligase GO:0016881 acid-amino acid ligase activity 303614 RGD1310067,Smurf2 SMAD specific E3 ubiquitin protein ligase 2 GO:0016881 acid-amino acid ligase activity 308669 Herc2 hect domain and RLD 2 GO:0016881 acid-amino acid ligase activity 309331 Uhrf2 ubiquitin-like with PHD and ring finger domains 2 GO:0016881 acid-amino acid ligase activity 316395 Hecw2 HECT, C2 and WW domain containing E3 ubiquitin protein ligase 2 GO:0016881 acid-amino acid ligase activity 361866 Hace1 HECT domain and ankyrin repeat containing, E3 ubiquitin protein ligase 1 GO:0016881 acid-amino acid ligase activity 117029 Ccr5,Ckr5,Cmkbr5 chemokine (C-C motif) receptor 5 GO:0003779 actin binding 117538 Waspip,Wip,Wipf1 WAS/WASL interacting protein family, member 1 GO:0003779 actin binding 117557 TM30nm,Tpm3,Tpm5 tropomyosin 3, gamma GO:0003779 actin binding 24779 MGC93554,Slc4a1 solute carrier family 4 (anion exchanger), member 1 GO:0003779 actin binding 24851 Alpha-tm,Tma2,Tmsa,Tpm1 tropomyosin 1, alpha GO:0003779 actin binding 25132 Myo5b,Myr6 myosin Vb GO:0003779 actin binding 25152 Map1a,Mtap1a microtubule-associated protein 1A GO:0003779 actin binding 25230 Add3 adducin 3 (gamma) GO:0003779 actin binding 25386 AQP-2,Aqp2,MGC156502,aquaporin-2aquaporin 2 (collecting duct) GO:0003779 actin binding 25484 MYR5,Myo1e,Myr3 myosin IE GO:0003779 actin binding 25576 14-3-3e1,MGC93547,Ywhah -
Aquaporin Channels in the Heart—Physiology and Pathophysiology
International Journal of Molecular Sciences Review Aquaporin Channels in the Heart—Physiology and Pathophysiology Arie O. Verkerk 1,2,* , Elisabeth M. Lodder 2 and Ronald Wilders 1 1 Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; [email protected] 2 Department of Experimental Cardiology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; [email protected] * Correspondence: [email protected]; Tel.: +31-20-5664670 Received: 29 March 2019; Accepted: 23 April 2019; Published: 25 April 2019 Abstract: Mammalian aquaporins (AQPs) are transmembrane channels expressed in a large variety of cells and tissues throughout the body. They are known as water channels, but they also facilitate the transport of small solutes, gasses, and monovalent cations. To date, 13 different AQPs, encoded by the genes AQP0–AQP12, have been identified in mammals, which regulate various important biological functions in kidney, brain, lung, digestive system, eye, and skin. Consequently, dysfunction of AQPs is involved in a wide variety of disorders. AQPs are also present in the heart, even with a specific distribution pattern in cardiomyocytes, but whether their presence is essential for proper (electro)physiological cardiac function has not intensively been studied. This review summarizes recent findings and highlights the involvement of AQPs in normal and pathological cardiac function. We conclude that AQPs are at least implicated in proper cardiac water homeostasis and energy balance as well as heart failure and arsenic cardiotoxicity. However, this review also demonstrates that many effects of cardiac AQPs, especially on excitation-contraction coupling processes, are virtually unexplored. -
Combined Pharmacological Administration of AQP1 Ion Channel
www.nature.com/scientificreports OPEN Combined pharmacological administration of AQP1 ion channel blocker AqB011 and water channel Received: 15 November 2018 Accepted: 13 August 2019 blocker Bacopaside II amplifes Published: xx xx xxxx inhibition of colon cancer cell migration Michael L. De Ieso 1, Jinxin V. Pei 1, Saeed Nourmohammadi1, Eric Smith 1,2, Pak Hin Chow1, Mohamad Kourghi1, Jennifer E. Hardingham 1,2 & Andrea J. Yool 1 Aquaporin-1 (AQP1) has been proposed as a dual water and cation channel that when upregulated in cancers enhances cell migration rates; however, the mechanism remains unknown. Previous work identifed AqB011 as an inhibitor of the gated human AQP1 cation conductance, and bacopaside II as a blocker of AQP1 water pores. In two colorectal adenocarcinoma cell lines, high levels of AQP1 transcript were confrmed in HT29, and low levels in SW480 cells, by quantitative PCR (polymerase chain reaction). Comparable diferences in membrane AQP1 protein levels were demonstrated by immunofuorescence imaging. Migration rates were quantifed using circular wound closure assays and live-cell tracking. AqB011 and bacopaside II, applied in combination, produced greater inhibitory efects on cell migration than did either agent alone. The high efcacy of AqB011 alone and in combination with bacopaside II in slowing HT29 cell motility correlated with abundant membrane localization of AQP1 protein. In SW480, neither agent alone was efective in blocking cell motility; however, combined application did cause inhibition of motility, consistent with low levels of membrane AQP1 expression. Bacopaside alone or combined with AqB011 also signifcantly impaired lamellipodial formation in both cell lines. Knockdown of AQP1 with siRNA (confrmed by quantitative PCR) reduced the efectiveness of the combined inhibitors, confrming AQP1 as a target of action. -
Hereditary Kidney Disorders
A. Stavljenić-Rukavina Hereditary kidney disorders How to Cite this article: Hereditary Kidney Disorders- eJIFCC 20/01 2009 http://www.ifcc.org 5. HEREDITARY KIDNEY DISORDERS Ana Stavljenić-Rukavina 5.1 Introduction Hereditary kidney disorders represent significant risk for the development of end stage renal desease (ESRD). Most of them are recognized in childhood, or prenataly particularly those phenotypicaly expressed as anomalies on ultrasound examination (US) during pregnancy. They represent almost 50% of all fetal malformations detected by US (1). Furthermore many of urinary tract malformations are associated with renal dysplasia which leeds to renal failure. Recent advances in molecular genetics have made a great impact on better understanding of underlying molecular mechanisms in different kidney and urinary tract disorders found in childhood or adults. Even some of clinical syndromes were not recognized earlier as genetic one. In monogenic kidney diseases gene mutations have been identified for Alport syndrome and thin basement membrane disease, autosomal dominant polycystic kidney disease, and tubular transporter disorders. There is evident progress in studies of polygenic renal disorders as glomerulopathies and diabetic nephropathy. The expanded knowledge on renal physiology and pathophysiology by analyzing the phenotypes caused by defected genes might gain to earlier diagnosis and provide new diagnostic and prognostic tool. The global increasing number of patients with ESRD urges the identification of molecular pathways involved in renal pathophysiology in order to serve as targets for either prevention or intervention. Molecular genetics nowadays possess significant tools that can be used to identify genes involved in renal disease including gene expression arrays, linkage analysis and association studies. -
Variants in the KCNE1 Or KCNE3 Gene and Risk of Ménière’S Disease: a Meta-Analysis
Journal of Vestibular Research 25 (2015) 211–218 211 DOI 10.3233/VES-160569 IOS Press Variants in the KCNE1 or KCNE3 gene and risk of Ménière’s disease: A meta-analysis Yuan-Jun Li, Zhan-Guo Jin and Xian-Rong Xu∗ The Center of Clinical Aviation Medicine, General Hospital of Air Force, Beijing, China Received 1 August 2015 Accepted 8 December 2015 Abstract. BACKGROUND: Ménière’s disease (MD) is defined as an idiopathic disorder of the inner ear characterized by the triad of tinnitus, vertigo, and sensorineural hearing loss. Although many studies have evaluated the association between variants in the KCNE1 or KCNE3 gene and MD risk, debates still exist. OBJECTIVE: Our aim is to evaluate the association between KCNE gene variants, including KCNE1 rs1805127 and KCNE3 rs2270676, and the risk of MD by a systematic review. METHODS: We searched the literature in PubMed, SCOPUS and EMBASE through May 2015. We calculated pooled odds ra- tios (OR) and 95% confidence intervals (CIs) using a fixed-effects model or a random-effects model for the risk to MD associated with different KCNE gene variants. The heterogeneity assumption decided the effect model. RESULTS: A total of three relevant studies, with 302 MD cases and 515 controls, were included in this meta-analysis. The results indicated that neither the KCNE1 rs1805127 variant (for G vs. A: OR = 0.724, 95%CI 0.320, 1.638, P = 0.438), nor the KCNE3 rs2270676 variant (for T vs. C: OR = 0.714, 95%CI 0.327, 1.559, P = 0.398) was associated with MD risk. -
Inherited Renal Tubulopathies—Challenges and Controversies
G C A T T A C G G C A T genes Review Inherited Renal Tubulopathies—Challenges and Controversies Daniela Iancu 1,* and Emma Ashton 2 1 UCL-Centre for Nephrology, Royal Free Campus, University College London, Rowland Hill Street, London NW3 2PF, UK 2 Rare & Inherited Disease Laboratory, London North Genomic Laboratory Hub, Great Ormond Street Hospital for Children National Health Service Foundation Trust, Levels 4-6 Barclay House 37, Queen Square, London WC1N 3BH, UK; [email protected] * Correspondence: [email protected]; Tel.: +44-2381204172; Fax: +44-020-74726476 Received: 11 February 2020; Accepted: 29 February 2020; Published: 5 March 2020 Abstract: Electrolyte homeostasis is maintained by the kidney through a complex transport function mostly performed by specialized proteins distributed along the renal tubules. Pathogenic variants in the genes encoding these proteins impair this function and have consequences on the whole organism. Establishing a genetic diagnosis in patients with renal tubular dysfunction is a challenging task given the genetic and phenotypic heterogeneity, functional characteristics of the genes involved and the number of yet unknown causes. Part of these difficulties can be overcome by gathering large patient cohorts and applying high-throughput sequencing techniques combined with experimental work to prove functional impact. This approach has led to the identification of a number of genes but also generated controversies about proper interpretation of variants. In this article, we will highlight these challenges and controversies. Keywords: inherited tubulopathies; next generation sequencing; genetic heterogeneity; variant classification. 1. Introduction Mutations in genes that encode transporter proteins in the renal tubule alter kidney capacity to maintain homeostasis and cause diseases recognized under the generic name of inherited tubulopathies. -
Effects of Aquaporin 4 and Inward Rectifier
9-Experimental Surgery Effects of aquaporin 4 and inward rectifier potassium channel 4.1 on medullospinal edema after methylprednisolone treatment to suppress acute spinal cord injury in rats1 Ye LiI, Haifeng HuII, Jingchen LiuIII, Qingsan ZhuIV, Rui GuV IAssociate Professor, Department of Orthopaedics, China-Japan Union Hospital, Jilin University, Changchun, China. Conception, design, intellectual and scientific content of the study; acquisition of data; manuscript writing; critical revision. IIAttending Doctor, Department of Orthopaedics, China-Japan Union Hospital, Jilin University, Changchun, China. Acquisition of data, manuscript writing. IIIProfessor, Department of Orthopaedics, China-Japan Union Hospital, Jilin University, Changchun, China. Scientific content of the study, acquisition of data, manuscript writing. IVProfessor, Department of Orthopaedics, China-Japan Union Hospital, Jilin University, Changchun, China. Acquisition of data. VProfessor, Department of Orthopaedics, China-Japan Union Hospital, Jilin University, Changchun, China. Intellectual, scientific, conception and design of the study; critical revision. Abstract Purpose: To investigate the effects of aquaporin 4 (AQP4) and inward rectifier potassium channel 4.1 (Kir4.1) on medullospinal edema after treatment with methylprednisolone (MP) to suppress acute spinal cord injury (ASCI) in rats. Methods: Sprague Dawley rats were randomly divided into control, sham, ASCI, and MP- treated ASCI groups. After the induction of ASCI, we injected 30 mg/kg MP via the tail vein at various time points. The Tarlov scoring method was applied to evaluate neurological symptoms, and the wet–dry weights method was applied to measure the water content of the spinal cord. Results: The motor function score of the ASCI group was significantly lower than that of the sham group, and the spinal water content was significantly increased. -
Molecular Mechanism of Water Channel Aquaporin-2 Trafficking Yumi Noda1,* and Sei Sasaki1
J Pharmacol Sci 96, 249 – 254 (2004) Journal of Pharmacological Sciences ©2004 The Japanese Pharmacological Society Forum Minireview Molecular Mechanisms and Drug Development in Aquaporin Water Channel Diseases: Molecular Mechanism of Water Channel Aquaporin-2 Trafficking Yumi Noda1,* and Sei Sasaki1 1Department of Nephrology, Graduate School, Tokyo Medical and Dental University, Tokyo 113-8519, Japan Received September 29, 2004; Accepted October 13, 2004 Abstract. Targeted positioning of water channel aquaporin-2 (AQP2) strictly regulates body water homeostasis. Trafficking of AQP2 to the apical membrane is critical for the reabsorption of water in renal collecting ducts. Besides the cAMP-mediated effect of vasopressin on AQP2 trafficking to the apical membrane, other signaling cascades also induce this sorting. Recently, AQP2-binding proteins that directly regulate this trafficking have been uncovered: SPA-1, a GTPase-activating protein (GAP) for Rap1, and cytoskeletal protein actin. This review summarizes recent advances related to the trafficking mechanism of AQP2 and its defect causing nephrogenic diabetes insipidus (NDI). Keywords: aquaporin-2, PKA phosphorylation, missorting, Rho, cytoskeleton Introduction receptors located in the hypothalamus are activated and stimulate the secretion of antidiuretic hormone arginine Body water homeostasis is essential for survival of vasopressin (AVP) from the posterior pituitary (22, 23). mammals. Water transport occurs through a specialized After it is released systemically, vasopressin binds to channel called aquaporin (AQP) (1 – 4). AQPs play an vasopressin type 2 receptor (V2R) located on the baso- important role in reabsorption of water and in concentra- lateral membrane of the renal collecting duct principal tion of urine in the kidney. Out of 13 aquaporin iso- cells (24). -
Renal Aquaporins
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Kidney International, Vol. 49 (1996), pp.1712—1717 Renal aquaporins MARK A. KNEPPER, JAMES B. WADE, JAMES TERRIS, CAROLYN A. ECELBARGER, DAVID MARPLES, BEATRICE MANDON, CHUNG-LIN CHOU, B.K. KISHORE, and SØREN NIELSEN Laborato,y of Kidney and Electrolyte Metabolism, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Matyland, USA; Department of Cell Biology, Institute of Anatomy, University of Aarhus, Aarhus, Denmark; and Department of Physiology, University of Maiyland College of Medicine, Baltimore, and Department of Physiology, Unifornied Services University of the Health Sciences, Bethesda, Maiyland, USA Renal aquaporins. Aquaporins (AQPs) are a newly recognized family of gate the localization and regulation of the four renal aquaporins transmembrane proteins that function as molecular water channels. At (AQP1, AQP2, AQP3 and AQP4). least four aquaporins are expressed in the kidney where they mediate Urine is concentrated as a result of the combined function of rapid water transport across water-permeable epithelia and play critical roles in urinary concentrating and diluting processes. AQP1 is constitu- the loop of Henle, which generates a high osmolality in the renal tively expressed at extremely high levels in the proximal tubule and medulla by countercurrent multiplication, and the collecting duct, descending limb of Henle's loop. AQP2, -3 and -4 are expressed predom- which, in the presence of the antidiuretic hormone vasopressin, inantly in the collecting duct system. AQP2 is the predominant water permits osmotic equilibration between the urine and the hyper- channel in the apical plasma membrane and AQP3 and -4arefound in the basolateral plasma membrane. -
Microarray Analysis Reveals the Inhibition of Intestinal Expression Of
www.nature.com/scientificreports OPEN Microarray analysis reveals the inhibition of intestinal expression of nutrient transporters in piglets infected with porcine epidemic diarrhea virus Junmei Zhang1,3, Di Zhao1,3, Dan Yi1,3, Mengjun Wu1, Hongbo Chen1, Tao Wu1, Jia Zhou1, Peng Li1, Yongqing Hou1* & Guoyao Wu2 Porcine epidemic diarrhea virus (PEDV) infection can induce intestinal dysfunction, resulting in severe diarrhea and even death, but the mode of action underlying these viral efects remains unclear. This study determined the efects of PEDV infection on intestinal absorption and the expression of genes for nutrient transporters via biochemical tests and microarray analysis. Sixteen 7-day-old healthy piglets fed a milk replacer were randomly allocated to one of two groups. After 5-day adaption, piglets (n = 8/ group) were orally administrated with either sterile saline or PEDV (the strain from Yunnan province) 4.5 at 10 TCID50 (50% tissue culture infectious dose) per pig. All pigs were orally infused D-xylose (0.1 g/ kg BW) on day 5 post PEDV or saline administration. One hour later, jugular vein blood samples as well as intestinal samples were collected for further analysis. In comparison with the control group, PEDV infection increased diarrhea incidence, blood diamine oxidase activity, and iFABP level, while reducing growth and plasma D-xylose concentration in piglets. Moreover, PEDV infection altered plasma and jejunal amino acid profles, and decreased the expression of aquaporins and amino acid transporters (L-type amino acid -
Modulation of Voltage-Gated Potassium Channels by Phosphatidylinositol-4,5-Bisphosphate Marina Kasimova
Modulation of voltage-gated potassium channels by phosphatidylinositol-4,5-bisphosphate Marina Kasimova To cite this version: Marina Kasimova. Modulation of voltage-gated potassium channels by phosphatidylinositol-4,5- bisphosphate. Other. Université de Lorraine, 2014. English. NNT : 2014LORR0204. tel-01751176 HAL Id: tel-01751176 https://hal.univ-lorraine.fr/tel-01751176 Submitted on 29 Mar 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. AVERTISSEMENT Ce document est le fruit d'un long travail approuvé par le jury de soutenance et mis à disposition de l'ensemble de la communauté universitaire élargie. Il est soumis à la propriété intellectuelle de l'auteur. Ceci implique une obligation de citation et de référencement lors de l’utilisation de ce document. D'autre part, toute contrefaçon, plagiat, reproduction illicite encourt une poursuite pénale. Contact : [email protected] LIENS Code de la Propriété Intellectuelle. articles L 122. 4 Code de la Propriété Intellectuelle. articles L 335.2- L 335.10 http://www.cfcopies.com/V2/leg/leg_droi.php