Arxiv:2006.10084V3 [Quant-Ph] 7 Mar 2021
Quantum time dilation in atomic spectra Piotr T. Grochowski ,1, ∗ Alexander R. H. Smith ,2, 3, y Andrzej Dragan ,4, 5, z and Kacper Dębski 4, x 1Center for Theoretical Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warsaw, Poland 2Department of Physics, Saint Anselm College, Manchester, New Hampshire 03102, USA 3Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755, USA 4Institute of Theoretical Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland 5Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, 117543 Singapore, Singapore (Dated: March 9, 2021) Quantum time dilation occurs when a clock moves in a superposition of relativistic momentum wave packets. The lifetime of an excited hydrogen-like atom can be used as a clock, which we use to demonstrate how quantum time dilation manifests in a spontaneous emission process. The resulting emission rate differs when compared to the emission rate of an atom prepared in a mixture of momentum wave packets at order v2=c2. This effect is accompanied by a quantum correction to the Doppler shift due to the coherence between momentum wave packets. This quantum Doppler shift affects the spectral line shape at order v=c. However, its effect on the decay rate is suppressed when compared to the effect of quantum time dilation. We argue that spectroscopic experiments offer a technologically feasible platform to explore the effects of quantum time dilation. I. INTRODUCTION The purpose of the present work is to provide evi- dence in support of the conjecture that quantum time The quintessential feature of quantum mechanics is dilation is universal.
[Show full text]