Floral Associations of Cyclocephaline Scarab Beetles Matthew Robert Moore Wichita State University

Total Page:16

File Type:pdf, Size:1020Kb

Floral Associations of Cyclocephaline Scarab Beetles Matthew Robert Moore Wichita State University University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Papers in Entomology Museum, University of Nebraska State 2013 Floral associations of cyclocephaline scarab beetles Matthew Robert Moore Wichita State University Mary Liz Jameson Wichita State University, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/entomologypapers Part of the Entomology Commons Moore, Matthew Robert and Jameson, Mary Liz, "Floral associations of cyclocephaline scarab beetles" (2013). Papers in Entomology. 151. http://digitalcommons.unl.edu/entomologypapers/151 This Article is brought to you for free and open access by the Museum, University of Nebraska State at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in Entomology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Journal of Insect Science: Vol. 13 | Article 100 Moore and Jameson Floral associations of cyclocephaline scarab beetles Matthew Robert Moorea* and Mary Liz Jamesonb Wichita State University, Department of Biological Sciences, 1845 Fairmount, Wichita, KS, USA 67260-0026 Abstract The scarab beetle tribe Cyclocephalini (Coleoptera: Scarabaeidae: Dynastinae) is the second larg- est tribe of rhinoceros beetles, with nearly 500 described species. This diverse group is most closely associated with early diverging angiosperm groups (the family Nymphaeaceae, magnoliid clade, and monocots), where they feed, mate, and receive the benefit of thermal rewards from the host plant. Cyclocephaline floral association data have never been synthesized, and a comprehen- sive review of this ecological interaction was necessary to promote research by updating nomenclature, identifying inconsistencies in the data, and reporting previously unpublished data. Based on the most specific data, at least 97 cyclocephaline beetle species have been reported from the flowers of 58 plant genera representing 17 families and 15 orders. Thirteen new cy- clocephaline floral associations are reported herein. Six cyclocephaline and 25 plant synonyms were reported in the literature and on beetle voucher specimen labels, and these were updated to reflect current nomenclature. The valid names of three unavailable plant host names were identi- fied. We review the cyclocephaline floral associations with respect to inferred relationships of angiosperm orders. Ten genera of cyclocephaline beetles have been recorded from flowers of ear- ly diverging angiosperm groups. In contrast, only one genus, Cyclocephala, has been recorded from dicot flowers. Cyclocephaline visitation of dicot flowers is limited to the New World, and it is unknown whether this is evolutionary meaningful or the result of sampling bias and incomplete data. The most important areas for future research include: 1) elucidating the factors that attract cyclocephalines to flowers including floral scent chemistry and thermogenesis, 2) determining whether cyclocephaline dicot visitation is truly limited to the New World, and 3) inferring evolu- tionary relationships within the Cyclocephalini to rigorously test vicarance hypotheses, host plant shifts, and mutualisms with angiosperms. Journal of Insect Science | http://www.insectscience.org 1 Journal of Insect Science: Vol. 13 | Article 100 Moore and Jameson Keywords: Cantharophily, Scarabaeidae, Dynastinae, Araceae, Arecaceae, Annonaceae, Nymphaceae Correspondence: a [email protected], b [email protected], *Corresponding author. Editor: Daniela Takiya and Inon Scharf were editor of this paper. Received: 8 July 2012 Accepted: 13 November 2012 Published 1 October 2013 Copyright: This is an open access paper. We use the Creative Commons Attribution 3.0 license that permits unrestricted use, provided that the paper is properly attributed. ISSN: 1536-2442 | Vol. 13, Number 100 Cite this paper as: Moore MR, Jameson ML. 2013. Floral associations of cyclocephaline scarab beetles. Journal of Insect Science 13:100. Available online: http://www.insectscience.org/13.100 clocephaline visitation of dicot flowers is Introduction poorly known and little studied. The Cyclocephalini (Coleoptera: Scarabae- Cyclocephaline floral associations have been idae: Dynastinae) is the second largest reported in journals, books, and monographs rhinoceros beetle tribe, currently containing since the late 18th century. However, the prev- 15 genera and nearly 500 described beetle alence, geographic scope, and biological species (Jameson et al. 2002; Ratcliffe 2003; importance of these records are difficult to Smith 2006). Cyclocephalines have a pan- gauge because publications summarizing cy- tropical distribution, though the majority of clocephaline floral visitation are somewhat the group’s generic and species diversity is dated and report floral visitation only for spe- concentrated in the New World (Ratcliffe cific plant families, geographic areas, or 2003; Ratcliffe and Cave 2006). Most genera vegetation types (Henderson 1986; Gibernau are sexually dimorphic, with males having 2003; Gottsberger and Silberbauer- enlarged protarsal claws and females having Gottsberger 2006; Gibernau 2011). The frag- expanded elytral epipleura (Moore 2012). Cy- mentary nature of these data and the citation clocephalines are important economically and of unpublished observations have hampered ecologically as root pests (larvae) and pollina- the ability to identify floral association trends tors (adults) (Ratcliffe 2003; Ratcliffe and within cyclocephaline genera and species. Paulsen 2008). Adult cyclocephaline beetles can be found within the inflorescences of ear- The phylogeny of the Cyclocephalini was in- ly diverging angiosperm groups (the family vestigated for the first time by Clark (2011), Nymphaeaceae, magnoliid clade, and mono- and the generic-level relationships within the cots; Figure 1) and have been shown to tribe remain an area of active research by M. contribute to pollination in the Annonaceae, R. Moore. Tribal circumscription of the Cy- Araceae, Arecaceae, Cyclanthaceae, Magnoli- clocephalini is subject to change based on aceae, and Nymphaeaceae (Cramer et al. ongoing phylogenetic analyses. This research 1975; Beach 1982; Beach 1984; Young 1986; will provide an evolutionary framework for Young 1988b; Gottsberger 1989; Dieringer et interpreting patterns of floral visitation. Com- al. 1999; Hirthe and Porembski 2003; Maia et pilation and synthesis of a checklist of floral al. 2012). Studies of these interactions indi- associations is needed in order to understand cate that some early diverging angiosperm the ecology of the Cyclocephalini within a groups offer rewards to cyclocephalines in the phylogenetic context. form of mating sites, food, and metabolic boosts associated with floral thermogenicity in This checklist synthesizes data (plant and bee- return for pollination services (Gottsberger tle species, geographic locality, and original 1986; Young 1986; Seymour et al. 2009). Cy- citation) for the floral associations of adult Journal of Insect Science | http://www.insectscience.org 2 Journal of Insect Science: Vol. 13 | Article 100 Moore and Jameson cyclocephaline beetles. Invalid nomenclature unverified plant names were reported accord- in the surveyed literature is identified and cor- ing to the original citation for the floral rected; conflicting data, sources of error, and association, and the name was noted as unre- uncertainty in the data are identified; and un- solved. Occasionally, host plant and beetle published floral association data from species were not assigned an author in the ref- examined voucher specimens are added. The erence for an association. This caused aim of this work is to promote future research problems due to the prevalence of synonyms of these ecological interactions by providing a and homonyms in the plant and insect litera- comprehensive data set of the taxonomic and ture. Resulting ambiguities were rectified to geographic scope of floral visitation for cy- the extent possible and explained in the re- clocephaline beetles. marks column (Appendix 1). Materials and Methods Borrowed specimens of cyclocephaline spe- cies allowed for direct evaluation of species- Literature was surveyed from 1758 (Linnaeus) level identifications that were reported by to 2012. Keyword searches for all cyclocepha- several authors. Particularly, this included line genera (sensu Ratcliffe and Cave 2006; specimens of Cyclocephala sexpunctata Clark 2011) were conducted in the following Laporte (1840) and C. brevis Höhne (1847) databases: BioOne® (www.bioone.org), collected by George Schatz, Helen Young (La BIOSIS Previews® Selva Biological Station, Costa Rica), Alberto (http://apps.webofknowledge.com/), JSTOR Seres, and Nelson Ramirez (Henri Pittier Na- (www.jstor.org), and Biodiversity Heritage tional Park, Venezuela), with floral Library (www.biodiversitylibrary.org). Every association data that were subsequently pub- host plant reference from Pike et al. (1976) lished or unpublished. Identifications of these was checked for floral association data. specimens (or specimen vouchers) were criti- cally examined (Moore 2011). Exemplar All reported cyclocephaline species names material borrowed from the University of Ne- from the literature were verified by referenc- braska State Museum (authoritatively ing the original species description and identified by B. C. Ratcliffe) and monograph- monographic treatments of the Dynastinae ic treatments (Ratcliffe 2003; Ratcliffe and (Endrödi 1985;
Recommended publications
  • Two Additional Invasive Scarabaeoid Beetles (Coleoptera: Scarabaeidae: Dynastinae) in Hawaii
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Papers in Entomology Museum, University of Nebraska State 12-2009 Two Additional Invasive Scarabaeoid Beetles (Coleoptera: Scarabaeidae: Dynastinae) in Hawaii Mary Liz Jameson Wichita State University, [email protected] Darcy E. Oishi 2Hawaii Department of Agriculture, Plant Pest Control Branch, Honolulu, [email protected] Brett C. Ratcliffe University of Nebraska-Lincoln, [email protected] Grant T. McQuate USDA-ARS-PBARC, U.S. Pacific Basin Agricultural Research Center, Hilo, HI, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/entomologypapers Part of the Entomology Commons Jameson, Mary Liz; Oishi, Darcy E.; Ratcliffe, Brett C.; and McQuate, Grant T., "Two Additional Invasive Scarabaeoid Beetles (Coleoptera: Scarabaeidae: Dynastinae) in Hawaii" (2009). Papers in Entomology. 147. https://digitalcommons.unl.edu/entomologypapers/147 This Article is brought to you for free and open access by the Museum, University of Nebraska State at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in Entomology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. AProcddition. HawaiianAl inv AEsiventomol scA.r SAocbs. in(2009) HAwA 41:25–30ii 25 Two Additional Invasive Scarabaeoid Beetles (Coleoptera: Scarabaeidae: Dynastinae) in Hawaii Mary Liz Jameson1, Darcy E. Oishi2, Brett C. Ratcliffe3, and Grant T. McQuate4 1Wichita State University, Department of Biological Sciences, 537 Hubbard Hall, Wichita, Kansas 67260 [email protected]; 2Hawaii Department of Agriculture, Plant Pest Control Branch, 1428 South King St., Honolulu, HI 96814 [email protected]; 3University of Nebraska State Museum, Systematics Research Collections, W436 Nebraska Hall, University of Nebraska, Lincoln, Nebraska 68588 [email protected]; 4USDA-ARS-PBARC, U.S.
    [Show full text]
  • Nitrogen Containing Volatile Organic Compounds
    DIPLOMARBEIT Titel der Diplomarbeit Nitrogen containing Volatile Organic Compounds Verfasserin Olena Bigler angestrebter akademischer Grad Magistra der Pharmazie (Mag.pharm.) Wien, 2012 Studienkennzahl lt. Studienblatt: A 996 Studienrichtung lt. Studienblatt: Pharmazie Betreuer: Univ. Prof. Mag. Dr. Gerhard Buchbauer Danksagung Vor allem lieben herzlichen Dank an meinen gütigen, optimistischen, nicht-aus-der-Ruhe-zu-bringenden Betreuer Herrn Univ. Prof. Mag. Dr. Gerhard Buchbauer ohne dessen freundlichen, fundierten Hinweisen und Ratschlägen diese Arbeit wohl niemals in der vorliegenden Form zustande gekommen wäre. Nochmals Danke, Danke, Danke. Weiteres danke ich meinen Eltern, die sich alles vom Munde abgespart haben, um mir dieses Studium der Pharmazie erst zu ermöglichen, und deren unerschütterlicher Glaube an die Fähigkeiten ihrer Tochter, mich auch dann weitermachen ließ, wenn ich mal alles hinschmeissen wollte. Auch meiner Schwester Ira gebührt Dank, auch sie war mir immer eine Stütze und Hilfe, und immer war sie da, für einen guten Rat und ein offenes Ohr. Dank auch an meinen Sohn Igor, der mit viel Verständnis akzeptierte, dass in dieser Zeit meine Prioritäten an meiner Diplomarbeit waren, und mein Zeitbudget auch für ihn eingeschränkt war. Schliesslich last, but not least - Dank auch an meinen Mann Joseph, der mich auch dann ertragen hat, wenn ich eigentlich unerträglich war. 2 Abstract This review presents a general analysis of the scienthr information about nitrogen containing volatile organic compounds (N-VOC’s) in plants.
    [Show full text]
  • Toward a Phylogenetic-Based Generic Classification of Neotropical Lecythidaceae— I
    Phytotaxa 203 (2): 085–121 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2015 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.203.2.1 Toward a phylogenetic-based Generic Classification of Neotropical Lecythidaceae— I. Status of Bertholletia, Corythophora, Eschweilera and Lecythis YA-YI HUANG1, SCOTT A. MORI2 & LAWRENCE M. KELLY3 1Institute of Plant and Microbial Biology, Academia Sinica, 128 Sec. 2, Academia Road, Taipei 11529, Taiwan; [email protected] 2Author for correspondence: Institute of Systematic Botany, The New York Botanical Garden, Bronx, New York, USA 10458-5126; [email protected] 3The New York Botanical Garden, Bronx, New York, USA 10458-5126; [email protected] Abstract Lecythidaceae subfam. Lecythidoideae is limited to the Neotropics and is the only naturally occurring subfamily of Le- cythidaceae in the New World. A subset of genera with zygomorphic flowers—Bertholletia, Corythophora, Eschweilera and Lecythis—comprises a group of about 125 species called the Bertholletia clade. A previous study based on plastid ndhF and trnL-F genes supported the monophyly of Corythophora but suggested that Eschweilera and Lecythis are not mono- phyletic. Using this study as a baseline, we sampled more taxa and sequenced more loci to address the taxonomic problems of the ambiguous genera and to determine relationships within the Bertholletia clade. Our results support the monophyly of the Bertholletia clade as previously circumscribed. In addition, Corythophora is monophyletic, and the two accessions of Bertholletia excelsa come out together on the tree. Results of the simultaneous analysis do not support the monophyly of Lecythis or Eschweilera.
    [Show full text]
  • Coleoptera: Scarabaeidae* ) in Agroecological Systems of Northern Cauca, Colombia
    Pardo-Locarno et al.: White Grub Complex in Agroecological Systems 355 STRUCTURE AND COMPOSITION OF THE WHITE GRUB COMPLEX (COLEOPTERA: SCARABAEIDAE* ) IN AGROECOLOGICAL SYSTEMS OF NORTHERN CAUCA, COLOMBIA LUIS CARLOS PARDO-LOCARNO1, JAMES MONTOYA-LERMA2, ANTHONY C. BELLOTTI3 AND AART VAN SCHOONHOVEN3 1Vegetales Orgánicos C.T.A. 2Departmento de Biología, Universidad del Valle, Apartado Aéreo 25360, Cali, Colombia 3Parque Científico Agronatura, CIAT, Centro Internacional de Agricultura Tropical Apartado Aéreo, 6713 Cali, Colombia ABSTRACT The larvae of some species of Scarabaeidae, known locally as “chisas” (whitegrubs), are impor- tant pests in agricultural areas of the Cauca, Colombia. They form a complex consisting of many species belonging to several genera that affect the roots of commercial crops. The objec- tive of the present study was to identify the members of the complex present in two localities (Caldono and Buenos Aires) and collect basic information on their biology, economic impor- tance, and larval morphology. The first of two types of sampling involved sampling adults in light traps installed weekly throughout one year. The second method involved larval collec- tions in plots of cassava, pasture, coffee, and woodland. Each locality was visited once per month and 10 samples per plot were collected on each occasion, with each sample from a quad- rants 1 m2 by 15 cm deep, during 1999-2000. Light traps collected 12,512 adults belonging to 45 species and 21 genera of Scarabaeidae within the subfamilies Dynastinae, Melolonthinae, and Rutelinae. Members of the subfamily Dynastinae predominated with 48% of the species (mostly Cyclocephala), followed in decreasing order by Melolonthinae (35%) and Rutelinae (15%, principally Anomala).
    [Show full text]
  • GENOME EVOLUTION in MONOCOTS a Dissertation
    GENOME EVOLUTION IN MONOCOTS A Dissertation Presented to The Faculty of the Graduate School At the University of Missouri In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy By Kate L. Hertweck Dr. J. Chris Pires, Dissertation Advisor JULY 2011 The undersigned, appointed by the dean of the Graduate School, have examined the dissertation entitled GENOME EVOLUTION IN MONOCOTS Presented by Kate L. Hertweck A candidate for the degree of Doctor of Philosophy And hereby certify that, in their opinion, it is worthy of acceptance. Dr. J. Chris Pires Dr. Lori Eggert Dr. Candace Galen Dr. Rose‐Marie Muzika ACKNOWLEDGEMENTS I am indebted to many people for their assistance during the course of my graduate education. I would not have derived such a keen understanding of the learning process without the tutelage of Dr. Sandi Abell. Members of the Pires lab provided prolific support in improving lab techniques, computational analysis, greenhouse maintenance, and writing support. Team Monocot, including Dr. Mike Kinney, Dr. Roxi Steele, and Erica Wheeler were particularly helpful, but other lab members working on Brassicaceae (Dr. Zhiyong Xiong, Dr. Maqsood Rehman, Pat Edger, Tatiana Arias, Dustin Mayfield) all provided vital support as well. I am also grateful for the support of a high school student, Cady Anderson, and an undergraduate, Tori Docktor, for their assistance in laboratory procedures. Many people, scientist and otherwise, helped with field collections: Dr. Travis Columbus, Hester Bell, Doug and Judy McGoon, Julie Ketner, Katy Klymus, and William Alexander. Many thanks to Barb Sonderman for taking care of my greenhouse collection of many odd plants brought back from the field.
    [Show full text]
  • Of Peru: a Survey of the Families
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications: Department of Entomology Entomology, Department of 2015 Beetles (Coleoptera) of Peru: A Survey of the Families. Scarabaeoidea Brett .C Ratcliffe University of Nebraska-Lincoln, [email protected] M. L. Jameson Wichita State University, [email protected] L. Figueroa Museo de Historia Natural de la UNMSM, [email protected] R. D. Cave University of Florida, [email protected] M. J. Paulsen University of Nebraska State Museum, [email protected] See next page for additional authors Follow this and additional works at: http://digitalcommons.unl.edu/entomologyfacpub Part of the Entomology Commons Ratcliffe, Brett .;C Jameson, M. L.; Figueroa, L.; Cave, R. D.; Paulsen, M. J.; Cano, Enio B.; Beza-Beza, C.; Jimenez-Ferbans, L.; and Reyes-Castillo, P., "Beetles (Coleoptera) of Peru: A Survey of the Families. Scarabaeoidea" (2015). Faculty Publications: Department of Entomology. 483. http://digitalcommons.unl.edu/entomologyfacpub/483 This Article is brought to you for free and open access by the Entomology, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications: Department of Entomology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Brett .C Ratcliffe, M. L. Jameson, L. Figueroa, R. D. Cave, M. J. Paulsen, Enio B. Cano, C. Beza-Beza, L. Jimenez-Ferbans, and P. Reyes-Castillo This article is available at DigitalCommons@University of Nebraska - Lincoln: http://digitalcommons.unl.edu/entomologyfacpub/ 483 JOURNAL OF THE KANSAS ENTOMOLOGICAL SOCIETY 88(2), 2015, pp. 186–207 Beetles (Coleoptera) of Peru: A Survey of the Families.
    [Show full text]
  • Quick Guide for the Identification Of
    Quick Guide for the Identification of Maryland Scarabaeoidea Mallory Hagadorn Dr. Dana L. Price Department of Biological Sciences Salisbury University This document is a pictorial reference of Maryland Scarabaeoidea genera (and sometimes species) that was created to expedite the identification of Maryland Scarabs. Our current understanding of Maryland Scarabs comes from “An Annotated Checklist of the Scarabaeoidea (Coleoptera) of Maryland” (Staines 1984). Staines reported 266 species and subspecies using literature and review of several Maryland Museums. Dr. Price and her research students are currently conducting a bioinventory of Maryland Scarabs that will be used to create a “Taxonomic Guide to the Scarabaeoidea of Maryland”. This will include dichotomous keys to family and species based on historical reports and collections from all 23 counties in Maryland. This document should be cited as: Hagadorn, M.A. and D.L. Price. 2012. Quick Guide for the Identification of Maryland Scarabaeoidea. Salisbury University. Pp. 54. Questions regarding this document should be sent to: Dr. Dana L. Price - [email protected] **All pictures within are linked to their copyright holder. Table of Contents Families of Scarabaeoidea of Maryland……………………………………... 6 Geotrupidae……………………………………………………………………. 7 Subfamily Bolboceratinae……………………………………………… 7 Genus Bolbocerosoma………………………………………… 7 Genus Eucanthus………………………………………………. 7 Subfamily Geotrupinae………………………………………………… 8 Genus Geotrupes………………………………………………. 8 Genus Odonteus...……………………………………………… 9 Glaphyridae..............................................................................................
    [Show full text]
  • Plants and Gall Hosts of the Tirimbina Biological Reserve
    DOI 10.15517/RBT.V67I2SUPL.37233 Artículo Plants and gall hosts of the Tirimbina Biological Reserve, Sarapiqui, Costa Rica: Combining field sampling with herbarium records Plantas y hospederos de agallas de la Reserva Biológica Tirimbina, Sarapiquí, Costa Rica: combinando muestras del campo con registros del herbario Juan Manuel Ley-López1 José González2 Paul E. Hanson3* 1 Departamento Académico, Reserva Biológica Tirimbina. Sarapiquí, Heredia, Costa Rica; [email protected] 2 Independent consultant, Costa Rica; [email protected] 3 Escuela de Biología, Universidad de Costa Rica; San Pedro, 11501-2060 San José, Costa Rica; [email protected] * Correspondence Received 03-X-2018 Corrected 10-I-2018 Accepted 24-I-2019 Abstract There has been an increasing number of inventories of gall-inducing arthropods in the Neotropics. Nonetheless, very few inventories have been carried out in areas where the flora is well documented, and records of galls from herbaria and sites outside the study area have seldom been utilized. In this study we provide a checklist of the native vascular plants of a 345 ha forest reserve in the Caribbean lowlands of Costa Rica and document which of these plants were found to harbor galls. The gall surveys were carried out between November 2013 and December 2016. We also cross-checked our plant list with the previous gall records from elsewhere in the country and searched for galls on herbarium specimens of dicots reported from the reserve. In total, we recorded 143 families and 1174 plant species, of which 401 were hosts of galls. Plant hosts of galls were found in the following non-mutually exclusive categories: 209 in our field sampling, 257 from previous records, and 158 in herbarium specimens.
    [Show full text]
  • (Araceae: Tribe Spathicarpeae). Aroideana 22
    20 AROIDEANA, Vol. 22 The Genus Gearum N. E. Brown (Araceae: Tribe Spathicarpeae) Josef Bogner Menzinger straSe 63 D-80638 Miinchen Germany Eduardo G. Gon~a1ves Universidade de Brasilia, Depto. de Botanica Caixa Postal 04457 CEP 70719-970 Brasilia-DF-Brazil INTRODUCTION construct roughly the route of his journey. The Rio Palma is a river in this area and Gearum brasiliense N. E. Br. was first there is still today a village called Sapo, collected in October 1828 by W. J. Bur­ which could well be Burchell's Sape. Fur­ chell. N. E.Brown(1882) gave a very ac­ thermore, Burchell himself mentioned a curate description of the inflorescence and Rio Palma. Although there was a new flower structure, although Burchell's spec­ bridge under construction over the Rio imen was heavily damaged by insect feed­ Palma during J.B.'s visit in 1996, the ferry ing, but until recently this monotypic ge­ was still there. nus remained incompletely known, due to Although a second collection of Gear­ lack of leaf material definitely attrihutable um was made by Burchell (Burchell to Gearum. 8598-leaves only), around the time ofthe The exact locality of Burchell's collec­ holotype gathering, it was not until 150 tion remained undiscovered until recently. years later that a third collection was made Smith & Smith (1967) in their paper 'Itin­ by Alfeu de Araujo Dias (Vias 41), a Bra­ erary of William John Burchell in Brazil' zilian botanist working for the Projeto RA­ gave the wrong coodinates. When one of DAMBRASIL. This collection, made in the authors (J.B.) was in Brazil ten years 1978, remained unrecognized for several ago it was realized that the locality cited years as Xanthosoma cf.
    [Show full text]
  • Early Inflorescence and Floral Development in Cocos Nucifera L. (Arecaceae: Arecoideae) ⁎ P.I.P
    Available online at www.sciencedirect.com South African Journal of Botany 76 (2010) 482–492 www.elsevier.com/locate/sajb Early inflorescence and floral development in Cocos nucifera L. (Arecaceae: Arecoideae) ⁎ P.I.P. Perera a,d, , V. Hocher b, L.K. Weerakoon a, D.M.D. Yakandawala c,d, S.C. Fernando a, J.-L. Verdeil e a Coconut Research Institute, Tissue Culture Division, 61150 Lunuwila, Sri Lanka b Institute for Research and Development (IRD), UMR 1098 BEPC, IRD, BP 64501-911 Avenue Agropolis, 34394 Montpellier Cedex 1, France c Department of Botany, University of Peradeniya, Sri Lanka d Postgraduate Institute of Science, University of Peradeniya, Sri Lanka e CIRAD, TA40/02 Avenue Agropolis, 34398 Montpellier Cedex 5, France Received 9 September 2009; received in revised form 17 March 2010; accepted 18 March 2010 Abstract Palms are generally characterized by a large structure with a massive crown that creates difficulties in anatomical studies. The flowering behaviour of palm species may be a useful indicator of phylogenetic relationships and therefore evolutionary events. This paper presents a detailed histological study of reproductive development in coconut (Cocos nucifera L.), from initiation up to maturation of staminate and pistillate flowers. Reproductive development in coconut consists of a sequence of individual events that span more than two years. Floral morphogenesis is the longest event, taking about one year, while sex determination is a rapid process that occurs within one month. The inflorescence consists of different ultimate floral structural components. Pistillate flowers are borne in floral triads that are flanked by two functional staminate flowers.
    [Show full text]
  • Disentangling the Phenotypic Variation and Pollination Biology of the Cyclocephala Sexpunctata Species Complex (Coleoptera:Scara
    DISENTANGLING THE PHENOTYPIC VARIATION AND POLLINATION BIOLOGY OF THE CYCLOCEPHALA SEXPUNCTATA SPECIES COMPLEX (COLEOPTERA: SCARABAEIDAE: DYNASTINAE) A Thesis by Matthew Robert Moore Bachelor of Science, University of Nebraska-Lincoln, 2009 Submitted to the Department of Biological Sciences and the faculty of the Graduate School of Wichita State University in partial fulfillment of the requirements for the degree of Master of Science July 2011 © Copyright 2011 by Matthew Robert Moore All Rights Reserved DISENTANGLING THE PHENOTYPIC VARIATION AND POLLINATION BIOLOGY OF THE CYCLOCEPHALA SEXPUNCTATA SPECIES COMPLEX (COLEOPTERA: SCARABAEIDAE: DYNASTINAE) The following faculty members have examined the final copy of this thesis for form and content, and recommend that it be accepted in partial fulfillment of the requirement for the degree of Master of Science with a major in Biological Sciences. ________________________ Mary Jameson, Committee Chair ________________________ Bin Shuai, Committee Member ________________________ Gregory Houseman, Committee Member ________________________ Peer Moore-Jansen, Committee Member iii DEDICATION To my parents and my dearest friends iv "The most beautiful thing we can experience is the mysterious. It is the source of all true art and all science. He to whom this emotion is a stranger, who can no longer pause to wonder and stand rapt in awe, is as good as dead: his eyes are closed." – Albert Einstein v ACKNOWLEDMENTS I would like to thank my academic advisor, Mary Jameson, whose years of guidance, patience and enthusiasm have so positively influenced my development as a scientist and person. I would like to thank Brett Ratcliffe and Matt Paulsen of the University of Nebraska State Museum for their generous help with this project.
    [Show full text]
  • Las Palmeras En El Marco De La Investigacion Para El
    REVISTA PERUANA DE BIOLOGÍA Rev. peru: biol. ISSN 1561-0837 Volumen 15 Noviembre, 2008 Suplemento 1 Las palmeras en el marco de la investigación para el desarrollo en América del Sur Contenido Editorial 3 Las comunidades y sus revistas científicas 1he scienrific cornmuniries and their journals Leonardo Romero Presentación 5 Laspalmeras en el marco de la investigación para el desarrollo en América del Sur 1he palrns within the framework ofresearch for development in South America Francis Kahny CésarArana Trabajos originales 7 Laspalmeras de América del Sur: diversidad, distribución e historia evolutiva 1he palms ofSouth America: diversiry, disrriburíon and evolutionary history Jean-Christopbe Pintaud, Gloria Galeano, Henrik Balslev, Rodrigo Bemal, Fmn Borchseníus, Evandro Ferreira, Jean-Jacques de Gran~e, Kember Mejía, BettyMillán, Mónica Moraes, Larry Noblick, FredW; Staufl'er y Francis Kahn . 31 1he genus Astrocaryum (Arecaceae) El género Astrocaryum (Arecaceae) . Francis Kahn 49 1he genus Hexopetion Burret (Arecaceae) El género Hexopetion Burret (Arecaceae) Jean-Cbristopbe Pintand, Betty MiJJány Francls Kahn 55 An overview ofthe raxonomy ofAttalea (Arecaceae) Una visión general de la taxonomía de Attalea (Arecaceae) Jean-Christopbe Pintaud 65 Novelties in the genus Ceroxylon (Arecaceae) from Peru, with description ofa new species Novedades en el género Ceroxylon (Arecaceae) del Perú, con la descripción de una nueva especie Gloria Galeano, MariaJosé Sanín, Kember Mejía, Jean-Cbristopbe Pintaud and Betty MiJJán '73 Estatus taxonómico
    [Show full text]