Relating Shapes Via Geometric Symmetries and Regularities

Total Page:16

File Type:pdf, Size:1020Kb

Relating Shapes Via Geometric Symmetries and Regularities Relating Shapes via Geometric Symmetries and Regularities Art Tevs Qixing Huang Michael Wand Hans-Peter Seidel Leonidas Guibas MPI Informatics Stanford University Utrecht University MPI Informatics Stanford University Stanford University Figure 1: Chandeliers data set with matched lamps over several geometrically varying configurations. Abstract A core building block for this task is the ability to establish corre- spondences In this paper we address the problem of finding correspondences [van Kaick et al. 2011]: We need to be able to match between related shapes of widely varying geometry. We propose a objects, and parts of them according to multiple notions of simi- new method based on the observation that symmetry and regularity larity. In other words, correspondence computation means the re- in shapes is often associated with their function. Hence, they pro- covery of a latent equivalence relation that identifies similar pieces vide cues for matching related geometry even under strong shape of shapes. The equivalence classes unveil redundancy in a model variations. Correspondingly, we decomposes shapes into overlap- collection, thereby providing a basic structuring tool. ping regions determined by their regularity properties. Afterwards, As detailed in Section 2, a large body of techniques is available we form a graph that connects these pieces via pairwise relations for estimating correspondences that involve simple transformations that capture geometric relations between rotation axes and reflec- with few degrees of freedom, such as rigid motions or affine maps. tion planes as well as topological or proximity relations. Finally, we More recently, this also comprises intrinsic isometries, which per- perform graph matching to establish correspondences. The method mit matching of objects in varying poses as long as there is no sub- yields certain more abstract but semantically meaningful correspon- stantial intrinsic stretch. dences between man-made shapes that are too difficult to recognize by traditional geometric methods. However, matching semantically related shapes with considerable variation in geometry remains a very difficult problem. Objects CR Categories: I.3.5 [Computing Methodologies]: Computer such as humans in different poses can be matched by smooth Graphics—Computational Geometry and Object Modeling; deformation functions using numerical optimization [Allen et al. 2003], typically requiring manual initialization. Relating collec- Keywords: shape correspondences, symmetry, structural regular- tions of shapes without manual intervention has become feasible if ity, shape understanding the collection forms a dense enough sampling of a smooth shape space [Ovsjanikov et al. 2011; Huang et al. 2012; Kim et al. 2012]. Links: DL PDF However, these assumptions are not always met. In particular, man- made artifacts of related functionality can have very different shape 1 Introduction with non-continuous variability. One of the big challenges in modern computer graphics is to or- We propose a new technique for relating shapes of similar function- ganize, structure, and to some extent “understand” visual data and ality but potentially very different geometry based on shared sym- 3D geometry. We now have large data bases of shape collections, metry properties, complementary to extant approaches. We build public ones such as Trimble 3D WarehouseTM, as well as other aca- upon the observation that symmetry and regularity (we will use demic, commercial, and possibly in-house collections. These pro- these terms interchangeably) are often related to functionality: For vide numerous 3D assets in varying composition, style, and level- example, a windmill is rotationally symmetric but not reflectively of-detail. because it must be driven by wind. The same holds for screws and propellers. However, a windmill is different from a plane or a sub- Being able to explore, structure, and utilize the content in such data marine in that the propeller is attached to a typically rotationally remains one of the key challenges in computer graphics research. symmetric building, joining the rotation axes in a roughly perpen- dicular angle, unlike the other two. The idea of our paper is to systematically extract such regularity properties and pairwise rela- ACM Reference Format tions between their invariant sets (rotation axes, reflection planes) Tevs, A., Huang, Q., Wand, M., Seidel, H., Guibas, L. 2014. Relating Shapes via Geometric Symmetries and in order to characterize shape families at a high level of abstraction. Regularities. ACM Trans. Graph. 33, 4, Article 119 (July 2014), 12 pages. DOI = 10.1145/2601097.2601220 http://doi.acm.org/10.1145/2601097.2601220. We detect regularity in the form of Euclidean symmetry groups act- Copyright Notice Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted ing on the shape geometry. We describe the symmetry structure without fee provided that copies are not made or distributed for profi t or commercial advantage and that copies bear this notice and the full citation on the fi rst page. Copyrights for components of this work owned of shapes by a pairwise structure graphs on pieces of geometry. by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or re- The nodes are symmetries and edges are pairwise relations between publish, to post on servers or to redistribute to lists, requires prior specifi c permission and/or a fee. Request permissions from [email protected]. symmetries, such as angles or topological relations, such as set in- 2014 Copyright held by the Owner/Author. Publication rights licensed to ACM. 0730-0301/14/07-ART119 $15.00. clusion and adjacency. Afterwards, we employ graph matching to DOI: http://dx.doi.org/10.1145/2601097.2601220 find correspondences between shapes in this more abstract and in- ACM Transactions on Graphics, Vol. 33, No. 4, Article 119, Publication Date: July 2014 119:2 • A. Tevs et al. (a) Cn (b) Cnv (c) S2n (d) Dnh (e) Oh(cube) (f) L2 with D4h single rotation axis dihedral platonic solid lattice with compatible point symmetry groups point group Figure 2: Examples of Euclidean symmetry groups. Point-symmetries combine rotations and reflections and differ in the number of rotation axes and reflection planes, and their mutual relation. The remaining cases combine infinite translational lattices with optional point groups. variant representation. Our method is complementary to traditional been employed by Cullen et al. [2011] for relating shapes and cre- geometric methods. It does not require training data or collections ating shape variations, as well as by Simary et al. [2009] for shape to co-analyze but can directly match pairs of shapes. segmentation; the method incorporates relations such as perpendic- ularity of symmetry planes between adjacent segments. Our approach is essentially a second-order shape comparator, com- paring shapes not by traditional geometry-matching between the Our method is different in two important aspects: First, we aim at shapes, but by comparing the geometry matches (symmetries) correspondence estimation and develop the necessary tools (struc- within each shape to each other. Such symmetries and self-relations ture model, graph decomposition, comparison functions) for this capture aspects of the shape that are important both to its func- task. Second, our technical approach is different: Hierarchies are tion and to our perceptual understanding of it. While earlier work usually not unique, requiring non-canonical choices. We therefore has addressed the estimation of such shape self-structure, this pa- build graphs that reflect algebraic symmetry properties and topolog- per provides a canonical way of encoding these relations in a graph ical aspects of the shape. This does include relations of hierarchi- and for comparing such symmetry graphs even when the symme- cal containment. However, our representation does not compress tries present are not exactly the same, effectively exploiting a novel detected hierarchies. This maintains a richer set of structural re- metric structure in the space of symmetries. lations, making it better suited for correspondence problems. Van Kaik et al. [2013] obtain information from optimizing hierarchies for shape collections; our paper restricts itself to pairwise match- 2 Related Work ing, where this is not possible. Graph-based matching has previ- ously been studied by Fisher et al. [2011] with restriction to local Correspondence in 3D geometry has received a lot of attention in spatial proximity relations while we use non-local invariants. Liu et recent years; van Kaik et al. [2011] provide a good survey. There al. [2012] also use symmetries to aid correspondence computation; are mature solutions for matching geometry under the action of a (single) dominant intrinsic involution is computed [Xu et al. 2009] groups of transformations with few degrees of freedom such as rigid as reference for dense correspondences; our method obtains coarse matching. Matching objects that are semantically related but have correspondences from a large set of different extrinsic symmetries. widely varying geometry is very much an open problem; only a few specialized solutions exist. One possibility is to use machine Symmetry groups have been used for matching in the image domain learning to associate semantic categories with geometry [Kaloger- by [Hauagge and Snavely 2012; Henderson et al. 2012], but the ap- akis et al. 2010]. This
Recommended publications
  • Symmetry and Tensors Rotations and Tensors
    Symmetry and tensors Rotations and tensors A rotation of a 3-vector is accomplished by an orthogonal transformation. Represented as a matrix, A, we replace each vector, v, by a rotated vector, v0, given by multiplying by A, 0 v = Av In index notation, 0 X vm = Amnvn n Since a rotation must preserve lengths of vectors, we require 02 X 0 0 X 2 v = vmvm = vmvm = v m m Therefore, X X 0 0 vmvm = vmvm m m ! ! X X X = Amnvn Amkvk m n k ! X X = AmnAmk vnvk k;n m Since xn is arbitrary, this is true if and only if X AmnAmk = δnk m t which we can rewrite using the transpose, Amn = Anm, as X t AnmAmk = δnk m In matrix notation, this is t A A = I where I is the identity matrix. This is equivalent to At = A−1. Multi-index objects such as matrices, Mmn, or the Levi-Civita tensor, "ijk, have definite transformation properties under rotations. We call an object a (rotational) tensor if each index transforms in the same way as a vector. An object with no indices, that is, a function, does not transform at all and is called a scalar. 0 A matrix Mmn is a (second rank) tensor if and only if, when we rotate vectors v to v , its new components are given by 0 X Mmn = AmjAnkMjk jk This is what we expect if we imagine Mmn to be built out of vectors as Mmn = umvn, for example. In the same way, we see that the Levi-Civita tensor transforms as 0 X "ijk = AilAjmAkn"lmn lmn 1 Recall that "ijk, because it is totally antisymmetric, is completely determined by only one of its components, say, "123.
    [Show full text]
  • Properties of the Single and Double D4d Groups and Their Isomorphisms with D8 and C8v Groups A
    Properties of the single and double D4d groups and their isomorphisms with D8 and C8v groups A. Le Paillier-Malécot, L. Couture To cite this version: A. Le Paillier-Malécot, L. Couture. Properties of the single and double D4d groups and their isomorphisms with D8 and C8v groups. Journal de Physique, 1981, 42 (11), pp.1545-1552. 10.1051/jphys:0198100420110154500. jpa-00209347 HAL Id: jpa-00209347 https://hal.archives-ouvertes.fr/jpa-00209347 Submitted on 1 Jan 1981 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. J. Physique 42 (1981) 1545-1552 NOVEMBRE 1981, 1545 Classification Physics Abstracts 75.10D Properties of the single and double D4d groups and their isomorphisms with D8 and C8v groups A. Le Paillier-Malécot Laboratoire de Magnétisme et d’Optique des Solides, 1, place A.-Briand, 92190 Meudon Bellevue, France and Université de Paris-Sud XI, Centre d’Orsay, 91405 Orsay Cedex, France and L. Couture Laboratoire Aimé-Cotton (*), C.N.R.S., Campus d’Orsay, 91405 Orsay Cedex, France and Laboratoire d’Optique et de Spectroscopie Cristalline, Université Pierre-et-Marie-Curie, Paris VI, 75230 Paris Cedex 05, France (Reçu le 15 mai 1981, accepté le 9 juillet 1981) Résumé.
    [Show full text]
  • Crystal Symmetry Groups
    X-Ray and Neutron Crystallography rational numbers is a group under Crystal Symmetry Groups multiplication, and both it and the integer group already discussed are examples of infinite groups because they each contain an infinite number of elements. ymmetry plays an important role between the integers obey the rules of In the case of a symmetry group, in crystallography. The ways in group theory: an element is the operation needed to which atoms and molecules are ● There must be defined a procedure for produce one object from another. For arrangeds within a unit cell and unit cells example, a mirror operation takes an combining two elements of the group repeat within a crystal are governed by to form a third. For the integers one object in one location and produces symmetry rules. In ordinary life our can choose the addition operation so another of the opposite hand located first perception of symmetry is what that a + b = c is the operation to be such that the mirror doing the operation is known as mirror symmetry. Our performed and u, b, and c are always is equidistant between them (Fig. 1). bodies have, to a good approximation, elements of the group. These manipulations are usually called mirror symmetry in which our right side ● There exists an element of the group, symmetry operations. They are com- is matched by our left as if a mirror called the identity element and de- bined by applying them to an object se- passed along the central axis of our noted f, that combines with any other bodies.
    [Show full text]
  • Molecular Symmetry
    Molecular Symmetry Symmetry helps us understand molecular structure, some chemical properties, and characteristics of physical properties (spectroscopy) – used with group theory to predict vibrational spectra for the identification of molecular shape, and as a tool for understanding electronic structure and bonding. Symmetrical : implies the species possesses a number of indistinguishable configurations. 1 Group Theory : mathematical treatment of symmetry. symmetry operation – an operation performed on an object which leaves it in a configuration that is indistinguishable from, and superimposable on, the original configuration. symmetry elements – the points, lines, or planes to which a symmetry operation is carried out. Element Operation Symbol Identity Identity E Symmetry plane Reflection in the plane σ Inversion center Inversion of a point x,y,z to -x,-y,-z i Proper axis Rotation by (360/n)° Cn 1. Rotation by (360/n)° Improper axis S 2. Reflection in plane perpendicular to rotation axis n Proper axes of rotation (C n) Rotation with respect to a line (axis of rotation). •Cn is a rotation of (360/n)°. •C2 = 180° rotation, C 3 = 120° rotation, C 4 = 90° rotation, C 5 = 72° rotation, C 6 = 60° rotation… •Each rotation brings you to an indistinguishable state from the original. However, rotation by 90° about the same axis does not give back the identical molecule. XeF 4 is square planar. Therefore H 2O does NOT possess It has four different C 2 axes. a C 4 symmetry axis. A C 4 axis out of the page is called the principle axis because it has the largest n . By convention, the principle axis is in the z-direction 2 3 Reflection through a planes of symmetry (mirror plane) If reflection of all parts of a molecule through a plane produced an indistinguishable configuration, the symmetry element is called a mirror plane or plane of symmetry .
    [Show full text]
  • Chapter 1 – Symmetry of Molecules – P. 1
    Chapter 1 – Symmetry of Molecules – p. 1 - 1. Symmetry of Molecules 1.1 Symmetry Elements · Symmetry operation: Operation that transforms a molecule to an equivalent position and orientation, i.e. after the operation every point of the molecule is coincident with an equivalent point. · Symmetry element: Geometrical entity (line, plane or point) which respect to which one or more symmetry operations can be carried out. In molecules there are only four types of symmetry elements or operations: · Mirror planes: reflection with respect to plane; notation: s · Center of inversion: inversion of all atom positions with respect to inversion center, notation i · Proper axis: Rotation by 2p/n with respect to the axis, notation Cn · Improper axis: Rotation by 2p/n with respect to the axis, followed by reflection with respect to plane, perpendicular to axis, notation Sn Formally, this classification can be further simplified by expressing the inversion i as an improper rotation S2 and the reflection s as an improper rotation S1. Thus, the only symmetry elements in molecules are Cn and Sn. Important: Successive execution of two symmetry operation corresponds to another symmetry operation of the molecule. In order to make this statement a general rule, we require one more symmetry operation, the identity E. (1.1: Symmetry elements in CH4, successive execution of symmetry operations) 1.2. Systematic classification by symmetry groups According to their inherent symmetry elements, molecules can be classified systematically in so called symmetry groups. We use the so-called Schönfliess notation to name the groups, Chapter 1 – Symmetry of Molecules – p. 2 - which is the usual notation for molecules.
    [Show full text]
  • Molecular Symmetry
    Molecular Symmetry 1 I. WHAT IS SYMMETRY AND WHY IT IS IMPORTANT? Some object are ”more symmetrical” than others. A sphere is more symmetrical than a cube because it looks the same after rotation through any angle about the diameter. A cube looks the same only if it is rotated through certain angels about specific axes, such as 90o, 180o, or 270o about an axis passing through the centers of any of its opposite faces, or by 120o or 240o about an axis passing through any of the opposite corners. Here are also examples of different molecules which remain the same after certain symme- try operations: NH3, H2O, C6H6, CBrClF . In general, an action which leaves the object looking the same after a transformation is called a symmetry operation. Typical symme- try operations include rotations, reflections, and inversions. There is a corresponding symmetry element for each symmetry operation, which is the point, line, or plane with respect to which the symmetry operation is performed. For instance, a rotation is carried out around an axis, a reflection is carried out in a plane, while an inversion is carried our in a point. We shall see that we can classify molecules that possess the same set of symmetry ele- ments, and grouping together molecules that possess the same set of symmetry elements. This classification is very important, because it allows to make some general conclusions about molecular properties without calculation. Particularly, we will be able to decide if a molecule has a dipole moment, or not and to know in advance the degeneracy of molecular states.
    [Show full text]
  • Symmetry in Chemistry
    SYMMETRY IN CHEMISTRY Professor MANOJ K. MISHRA CHEMISTRY DEPARTMENT IIT BOMBAY ACKNOWLEGDEMENT: Professor David A. Micha Professor F. A. Cotton 1 An introduction to symmetry analysis WHY SYMMETRY ? Hψ = Eψ For H – atom: Each member of the CSCO labels, For molecules: Symmetry operation R CSCO H is INVARIANT under R ( by definition too) 2 An introduction to symmetry analysis Hψ = Eψ gives NH3 normal modes = NH3 rotation or translation MUST be A1, A2 or E ! NO ESCAPING SYMMETRY! 3 Molecular Symmetry An introduction to symmetry analysis (Ref.: Inorganic chemistry by Shirver, Atkins & Longford, ELBS) One aspect of the shape of a molecule is its symmetry (we define technical meaning of this term in a moment) and the systematic treatment and symmetry uses group theory. This is a rich and powerful subject, by will confine our use of it at this stage to classifying molecules and draw some general conclusions about their properties. An introduction to symmetry analysis Our initial aim is to define the symmetry of molecules much more precisely than we have done so far, and to provide a notational scheme that confirms their symmetry. In subsequent chapters we extend the material present here to applications in bonding and spectroscopy, and it will become that symmetry analysis is one of the most pervasive techniques in inorganic chemistry. Symmetry operations and elements A fundamental concept of group theory is the symmetry operation. It is an action, such as a rotation through a certain angle, that leave molecules apparently unchanged. An example is the rotation of H2O molecule by 180 ° (but not any smaller angle) around the bisector of HOH angle.
    [Show full text]
  • Rotation Matrix - Wikipedia, the Free Encyclopedia Page 1 of 22
    Rotation matrix - Wikipedia, the free encyclopedia Page 1 of 22 Rotation matrix From Wikipedia, the free encyclopedia In linear algebra, a rotation matrix is a matrix that is used to perform a rotation in Euclidean space. For example the matrix rotates points in the xy -Cartesian plane counterclockwise through an angle θ about the origin of the Cartesian coordinate system. To perform the rotation, the position of each point must be represented by a column vector v, containing the coordinates of the point. A rotated vector is obtained by using the matrix multiplication Rv (see below for details). In two and three dimensions, rotation matrices are among the simplest algebraic descriptions of rotations, and are used extensively for computations in geometry, physics, and computer graphics. Though most applications involve rotations in two or three dimensions, rotation matrices can be defined for n-dimensional space. Rotation matrices are always square, with real entries. Algebraically, a rotation matrix in n-dimensions is a n × n special orthogonal matrix, i.e. an orthogonal matrix whose determinant is 1: . The set of all rotation matrices forms a group, known as the rotation group or the special orthogonal group. It is a subset of the orthogonal group, which includes reflections and consists of all orthogonal matrices with determinant 1 or -1, and of the special linear group, which includes all volume-preserving transformations and consists of matrices with determinant 1. Contents 1 Rotations in two dimensions 1.1 Non-standard orientation
    [Show full text]
  • Special Unitary Group - Wikipedia
    Special unitary group - Wikipedia https://en.wikipedia.org/wiki/Special_unitary_group Special unitary group In mathematics, the special unitary group of degree n, denoted SU( n), is the Lie group of n×n unitary matrices with determinant 1. (More general unitary matrices may have complex determinants with absolute value 1, rather than real 1 in the special case.) The group operation is matrix multiplication. The special unitary group is a subgroup of the unitary group U( n), consisting of all n×n unitary matrices. As a compact classical group, U( n) is the group that preserves the standard inner product on Cn.[nb 1] It is itself a subgroup of the general linear group, SU( n) ⊂ U( n) ⊂ GL( n, C). The SU( n) groups find wide application in the Standard Model of particle physics, especially SU(2) in the electroweak interaction and SU(3) in quantum chromodynamics.[1] The simplest case, SU(1) , is the trivial group, having only a single element. The group SU(2) is isomorphic to the group of quaternions of norm 1, and is thus diffeomorphic to the 3-sphere. Since unit quaternions can be used to represent rotations in 3-dimensional space (up to sign), there is a surjective homomorphism from SU(2) to the rotation group SO(3) whose kernel is {+ I, − I}. [nb 2] SU(2) is also identical to one of the symmetry groups of spinors, Spin(3), that enables a spinor presentation of rotations. Contents Properties Lie algebra Fundamental representation Adjoint representation The group SU(2) Diffeomorphism with S 3 Isomorphism with unit quaternions Lie Algebra The group SU(3) Topology Representation theory Lie algebra Lie algebra structure Generalized special unitary group Example Important subgroups See also 1 of 10 2/22/2018, 8:54 PM Special unitary group - Wikipedia https://en.wikipedia.org/wiki/Special_unitary_group Remarks Notes References Properties The special unitary group SU( n) is a real Lie group (though not a complex Lie group).
    [Show full text]
  • Chapter 1 Group and Symmetry
    Chapter 1 Group and Symmetry 1.1 Introduction 1. A group (G) is a collection of elements that can ‘multiply’ and ‘di- vide’. The ‘multiplication’ ∗ is a binary operation that is associative but not necessarily commutative. Formally, the defining properties are: (a) if g1, g2 ∈ G, then g1 ∗ g2 ∈ G; (b) there is an identity e ∈ G so that g ∗ e = e ∗ g = g for every g ∈ G. The identity e is sometimes written as 1 or 1; (c) there is a unique inverse g−1 for every g ∈ G so that g ∗ g−1 = g−1 ∗ g = e. The multiplication rules of a group can be listed in a multiplication table, in which every group element occurs once and only once in every row and every column (prove this !) . For example, the following is the multiplication table of a group with four elements named Z4. e g1 g2 g3 e e g1 g2 g3 g1 g1 g2 g3 e g2 g2 g3 e g1 g3 g3 e g1 g2 Table 2.1 Multiplication table of Z4 3 4 CHAPTER 1. GROUP AND SYMMETRY 2. Two groups with identical multiplication tables are usually considered to be the same. We also say that these two groups are isomorphic. Group elements could be familiar mathematical objects, such as numbers, matrices, and differential operators. In that case group multiplication is usually the ordinary multiplication, but it could also be ordinary addition. In the latter case the inverse of g is simply −g, the identity e is simply 0, and the group multiplication is commutative.
    [Show full text]
  • A Short Math Guide
    University of Alabama Department of Physics and Astronomy PH 125 / LeClair Spring 2009 A Short Math Guide Contents 1 Coordinate systems 2 1.1 2D systems . 2 1.2 3D systems . 3 1.3 Rotation of coordinate systems . 3 1.3.1 Two dimensions . 3 1.3.2 Three dimensions . 6 1.3.3 Proper and Improper Rotations: Handedness . 6 2 Vectors 7 2.1 What is a vector? . 7 2.2 Representing vectors . 8 2.3 Adding vectors . 10 2.4 Unit vectors . 12 2.5 Scalar multiplication . 14 2.6 Scalar products . 15 2.7 Scalar Products of Unit Vectors . 16 2.8 Vector products . 17 2.9 Polar and Axial Vectors . 21 2.10 How Vectors Transform under Rotation, Inversion, and Translation . 23 3 Vector Calculus 24 3.1 Derivatives of unit vectors in non-cartesian systems . 24 3.2 Line, surface, and volume elements in different coordinate systems. 24 3.3 Partial Derivatives . 26 3.3.1 Example . 28 3.3.2 Tangents to 3D curves . 30 3.3.3 Equality of second-order partial derivatives . 30 3.3.4 Anti-partial-derivatives . 31 3.3.5 Common Notations . 32 3.4 The Gradient . 33 3.4.1 Vector Functions . 35 1 3.5 Divergence . 36 3.6 Curl . 36 4 Miscellaneous: Solving systems of linear equations 36 1 Coordinate systems Note that we use the convention that the cartesian unit vectors are x^, y^, and ^z, rather than ^{, ^|, and k^, using the substitutions x^ = ^{, y^ = ^|, and ^z = k^. 1.1 2D systems In two dimensions, commonly use two types of coordinate systems: cartesian (x−y) and polar (r−θ).
    [Show full text]
  • A Derivation of the 32 Crystallographic Point Groups Using Elementary
    American Mineralogist, Volwne 61, pages 145-165, 1976 A derivationof the 32 crystallographicpoint groupsusing elementary group theory MoNrn B. Borsnu.Jn., nNn G. V. Gtsss Virginia PolytechnicInstitute and State Uniuersity Blacksburg,Virginia 2406I Abstract A rigorous derivation of the 32 crystallographic point groups is presented.The derivation is designed for scientistswho wish to gain an appreciation of the group theoretical derivation but who do not wish to master the large number of specializedtopics used in other rigorous group theoreticalderivations. Introduction have appealedto a number of interestingalgorithms basedon various geometricand heuristic arguments This paper has two objectives.The first is the very to obtain the 32 crystallographicpoint groups.In this specificgoal of giving a complete and rigorous deri- paper we present a rigorous derivation of the 32 vation of the 32 crystallographicpoint groups with crystallographicpoint groups that usesonly the most emphasisplaced on making this paper as self-con- elementarynotions of group theory while still taking tained as possible.The second is the more general advantageof the power of the theory of groups. objective of presenting several concepts of modern The derivation given here was inspired by the dis- mathematics and their applicability to the study of cussionsgiven in Klein (1884),Weber (1896),Zas- crystallography.Throughout the paper we have at- senhaus(1949), and Weyl (1952).The mathematical tempted to present as much of the mathematical the- approach usedin their discussionsis a blend of group ory as possible,without resortingto long digressions, theory and the theory of the equivalencerelation' so that the reader with only a modest amount of Each of these mathematical concepts is described mathematical knowledge will be able to appreciate herein and is used in the ways suggestedby these the derivation.
    [Show full text]