Points, Lines, and Triangles in Hyperbolic Geometry

Total Page:16

File Type:pdf, Size:1020Kb

Points, Lines, and Triangles in Hyperbolic Geometry Name: _______________________________ Date: ______________ Class: ____________ Points, Lines, and Triangles in Hyperbolic Geometry. The following postulates will be examined: 1. There exists a unique line through any two points. 2. If A, B, and C are three distinct points lying on the same line, then one and only one of the points is between the other two. 3. If two lines intersect then their intersection is exactly one point. 4. A line can be extended infinitely. 5. A circle can be drawn with any center and any radius. 6. The Parallel Postulate: If there is a line and a point not on the line, then there is exactly one line through the point parallel to the given line. 7. The Perpendicular Postulate: If there is a line and a point not on the line, then there is exactly one line through the point perpendicular to the given line. 8. Corresponding Angles Postulate: If two parallel lines are cut by a transversal, then the pairs of corresponding angles are congruent. 9. Corresponding Angles Converse: If two lines are cut by a transversal so that corresponding angles are congruent, then the lines are parallel. 10. SAS Congruence Postulate: If two sides and the included angle of one triangle are congruent respectively to two sides and the included angle of another triangle, then the two triangles are congruent. The following theorems will be explored: 1. Vertical Angles Theorem: Vertical angles are congruent. 2. Alternate Interior Angles Theorem: If two parallel lines are cut by a transversal, then the pairs of alternate interior angles are congruent. 3. Consecutive Interior Angles Theorem: If two parallel lines are cut by a transversal, then the pairs of consecutive interior angles are supplementary. 4. Perpendicular Transversal Theorem: If a transversal is perpendicular to one of two parallel lines, then it is perpendicular to the other. 5. Theorem: If two lines are parallel to the same line, then they are parallel to each other. 6. Theorem: If two lines are perpendicular to the same line, then they are parallel to each other. 7. Triangle Sum Theorem: The sum of the measures of the interior angles of a triangle is 180o. 8. Exterior Angle Theorem: The measure of an exterior angle of a triangle is equal to the sum of the measures of the two nonadjacent interior angles. 9. Third Angles Theorem: If two angles of one triangle are congruent to two angles of another triangle, then the third angles must also be congruent. 10. Angle-Angle Similarity Theorem: If two triangles have their corresponding angles congruent, then their corresponding sides are in proportion and they are similar. 11. Side-Side-Side (SSS) Congruence Theorem: If three sides of one triangle are congruent to three sides of a second triangle, then the two triangles are congruent. 12. Angle-Side-Angle (ASA) Congruence Theorem: If two angles and the included side of one triangle are congruent to two angles and the included side of a second triangle, then the two triangles are congruent. 13. Theorem of Pythagoras: In a right triangle, the square on the hypotenuse is equal to the sum of the squares of the legs. 14. Base Angles Theorem: If two sides of a triangle are congruent, then the angles opposite the sides are congruent. 15. Converse of the Base Angles Theorem: If two angles of a triangle are congruent, then the sides opposite them are congruent. 16. Equilateral Triangle Theorem: If a triangle is equilateral, then it is also equiangular. 2 Points, Lines, and Triangles in Hyperbolic Geometry Models are useful for visualizing and exploring the properties of geometry. A number of models exist for exploring the geometric properties of the hyperbolic plane. These models do not “look like” the hyperbolic plane. The models merely serve as a means of exploring the properties of the geometry. The Beltrami-Klein Model (or Klein Model) for Studying Hyperbolic Geometry In this model, a circle is fixed with center O and fixed radius. All points in the interior of the circle are part of the hyperbolic plane. Points on the circumference of the circle are not part of the plane itself. Lines are therefore open chords, with the endpoints of the chords on the circumference of the circle but not part of the plane. n m l The Poincaré Half Plane Model for Studying Hyperbolic Geometry In this model, the Euclidean plane is divided by a Euclidean line into two half planes. It is customary to choose the x-axis as the line that divides the plane. The hyperbolic plane is the plane on one side of this Euclidean line, normally the upper half of the plane where y > 0. In this model, lines are either the intersection of points lying on a line drawn vertical to the x-axis and the half plane, or points lying on the circumference of a semicircle drawn with its center on the x-axis. l m P n Lines in the Poincaré Half Plane model 3 Angles are measured in the normal Euclidean way. The angle between two lines is equal to the Euclidean angle between the tangents drawn to the lines at their points of intersection. A A C C B B x x Finding angle measure in the Poincaré Half Plane model The Poincaré Disk Model for Studying Hyperbolic Geometry In this model, lines are not straight as you are used to seeing them on the Euclidean plane. Instead, lines are represented by arcs of circles that are orthogonal (perpendicular) to the circle defining the disk. In this model, the only lines that appear to be straight in the Euclidean sense are diameters of the disk. In addition, the boundary of the circle does not really exist, and distances become distorted in this model. All the points in the interior of the circle are part of the hyperbolic plane. In this plane, two points lie on a “line” if the “line” forms an arc of a circle orthogonal to C. C A B m Lines in the Poincaré model Constructing the angle between two lines in the Poincaré model. The angle between two lines is the measure of the Euclidean angle between the tangents drawn to the lines at their points of intersection. 4 We will use the Geometry software NonEuclid to investigate Hyperbolic Geometry. Begin by downloading the software: http://www.cs.unm.edu/~joel/NonEuclid/NonEuclid.html. Run the software and select File > New to reset the hyperbolic plane. 1. What is the shortest path between two points in the Euclidean plane? 2. Use the Constructions > Plot Point tool to locate two points A and B in the hyperbolic plane. Use the Constructions > Draw Line Segment tool to construct segment AB. Use the Edit > Move Point tool to drag points A and B around the hyperbolic plane. Describe line segment AB in the hyperbolic plane (using the disc model) as compared to the Euclidean line segment AB. 3. Use File > New to reset the hyperbolic plane. Construct a fixed point A. Use the Construction > Draw Line tool to construct different lines which pass through this point and another point on the disk. A a. Describe line l in the hyperbolic plane (using the disc model) as compared to the Euclidean line l. Are lines in the hyperbolic plane infinite in length? 5 b. Use the Edit > Move Point tool to move point A. Describe how the appearance of the lines changes as A moves closer to the center of the disc. Describe how the appearance of the lines changes as point A moves closer to the edge of the disc. 4. Euclid’s first postulate states that for every point P and for every point Q where P Q, a unique line passes through P and Q. Is this postulate valid in hyperbolic geometry? Q P 5. Locate three points A, B, and C on a line on the Euclidean plane. The Betweenness Axiom states that if A, B, and C are points on the Euclidean plane, then one and only one point is between the other two. Does the Betweenness Axiom hold on the hyperbolic plane? A C B P Q R Q P R 6 6. Draw two lines on the Euclidean plane. In how many points do these lines intersect? 7. Draw two lines on the hyperbolic plane. In how many points do the lines intersect? 8. Euclid’s parallel postulate states that if l is a line and P is a point not on l, then exactly one line can be drawn through P that is parallel to l. Can you re-word this postulate so that it is true for spherical geometry? Explain. P m 7 9. Euclid’s second postulate states that a line segment can be extended infinitely from each side. Is this postulate valid in hyperbolic geometry? Justify your answer. PQ = 1.94 PR = 2.56 PS = 3.18 PT = 5.33 ST = 3.38 Q R P S T 10. Euclid’s third postulate states that a circle can be drawn with any center and any radius. Use the Constructions > Draw Circle tool to construct several circles with centers located at different points in the hyperbolic plane. a. What appears to happen to the circle as the center gets nearer the edge of the disk? b. Does this mean that the center of a circle near the edge of the disk is not located equidistant from the points on its circumference? Explain. 8 11. Draw two intersecting lines on the Euclidean plane. Use a protractor to measure the vertical angles. Confirm that the vertical angles are congruent.
Recommended publications
  • Geometry Notes G.2 Parallel Lines, Transversals, Angles Mrs. Grieser Name: Date
    Geometry Notes G.2 Parallel Lines, Transversals, Angles Mrs. Grieser Name: ________________________________________ Date: ______________ Block: ________ Identifying Pairs of Lines and Angles Lines that intersect are coplanar Lines that do not intersect o are parallel (coplanar) OR o are skew (not coplanar) In the figure, name: o intersecting lines:___________ o parallel lines:_______________ o skew lines:________________ o parallel planes:_____________ Example: Think of each segment in the figure as part of a line. Find: Line(s) parallel to CD and containing point A _________ Line(s) skew to and containing point A _________ Line(s) perpendicular to and containing point A _________ Plane(s) parallel to plane EFG and containing point A _________ Parallel and Perpendicular Lines If two lines are in the same plane, then they are either parallel or intersect a point. There exist how many lines through a point not on a line? __________ Only __________ of them is parallel to the line. Parallel Postulate If there is a line and a point not on a line, then there is exactly one line through the point parallel to the given line. Perpendicular Postulate If there is a line and a point not on a line, then there is exactly one line through the point parallel to the given line. Angles and Transversals Interior angles are on the INSIDE of the two lines Exterior angles are on the OUTSIDE of the two lines Alternate angles are on EITHER SIDE of the transversal Consecutive angles are on the SAME SIDE of the transversal Corresponding angles are in the same position on each of the two lines Alternate interior angles lie on either side of the transversal inside the two lines Alternate exterior angles lie on either side of the transversal outside the two lines Consecutive interior angles lie on the same side of the transversal inside the two lines (same side interior) Geometry Notes G.2 Parallel Lines, Transversals, Angles Mrs.
    [Show full text]
  • Proofs with Perpendicular Lines
    3.4 Proofs with Perpendicular Lines EEssentialssential QQuestionuestion What conjectures can you make about perpendicular lines? Writing Conjectures Work with a partner. Fold a piece of paper D in half twice. Label points on the two creases, as shown. a. Write a conjecture about AB— and CD — . Justify your conjecture. b. Write a conjecture about AO— and OB — . AOB Justify your conjecture. C Exploring a Segment Bisector Work with a partner. Fold and crease a piece A of paper, as shown. Label the ends of the crease as A and B. a. Fold the paper again so that point A coincides with point B. Crease the paper on that fold. b. Unfold the paper and examine the four angles formed by the two creases. What can you conclude about the four angles? B Writing a Conjecture CONSTRUCTING Work with a partner. VIABLE a. Draw AB — , as shown. A ARGUMENTS b. Draw an arc with center A on each To be prof cient in math, side of AB — . Using the same compass you need to make setting, draw an arc with center B conjectures and build a on each side of AB— . Label the C O D logical progression of intersections of the arcs C and D. statements to explore the c. Draw CD — . Label its intersection truth of your conjectures. — with AB as O. Write a conjecture B about the resulting diagram. Justify your conjecture. CCommunicateommunicate YourYour AnswerAnswer 4. What conjectures can you make about perpendicular lines? 5. In Exploration 3, f nd AO and OB when AB = 4 units.
    [Show full text]
  • Parallel Lines and Transversals
    5.5 Parallel Lines and Transversals How can you use STATES properties of parallel lines to solve real-life problems? STANDARDS MA.8.G.2.2 1 ACTIVITY: A Property of Parallel Lines Work with a partner. ● Talk about what it means for two lines 12 1 cm 56789 to be parallel. Decide on a strategy for 1234 drawing two parallel lines. 01 91 8 9 9 9 9 10 11 12 13 10 10 10 10 ● Use your strategy to carefully draw 7 67 two lines that are parallel. 14 15 5 16 17 18 19 20 3421 22 23 2 24 25 26 1 ● Now, draw a third line 27 28 in. parallel that intersects the two 29 30 lines parallel lines. This line is called a transversal. 2 1 3 4 6 ● The two parallel lines and 5 7 8 the transversal form eight angles. Which of these angles have equal measures? transversal Explain your reasoning. 2 ACTIVITY: Creating Parallel Lines Work with a partner. a. If you were building the house in the photograph, how could you make sure that the studs are parallel to each other? b. Identify sets of parallel lines and transversals in the Studs photograph. 212 Chapter 5 Angles and Similarity 3 ACTIVITY: Indirect Measurement Work with a partner. F a. Use the fact that two rays from the Sun are parallel to explain why △ABC and △DEF are similar. b. Explain how to use similar triangles to fi nd the height of the fl agpole. x ft Sun’s ray C Sun’s ray 5 ft AB3 ft DE36 ft 4.
    [Show full text]
  • Triangles and Transversals Triangles
    Triangles and Transversals Triangles A three-sided polygon. Symbol → ▵ You name it ▵ ABC. Total Angle Sum of a Triangle The interior angles of a triangle add up to 180 degrees. Symbol = Acute Triangle A triangle that contains only angles that are less than 90 degrees. Obtuse Triangle A triangle with one angle greater than 90 degrees (an obtuse angle). Right Triangle A triangle with one right angle (90 degrees). Vertex The common endpoint of two or more rays or line segments. Complementary Angles Two angles whose measures have a sum of 90 degrees. Supplementary Angles Two angles whose measures have a sum of 180 degrees. Perpendicular Lines Lines that intersect to form a right angle (90 degrees). Symbol = Parallel Lines Lines that never intersect. Arrows are used to indicate lines are parallel. Symbol = || Transversal Lines A line that cuts across two or more (usually parallel) lines. Intersect The point where two lines meet or cross. Vertical Angles Angles opposite one another at the intersection of two lines. Vertical angles have the same angle measurements. Interior Angles An angle inside a shape. Exterior Angles Angles outside of a shape. Alternate Interior Angles The pairs of angles on opposite sides of the transversal but inside the two lines. Alternate Exterior Angles Each pair of these angles are outside the lines, and on opposite sides of the transversal. Corresponding Angles The angles in matching corners. Reflexive Angles An angle whose measure is greater than 180 degrees and less that 360 degrees. Straight Angles An angle that measures exactly 180 degrees. Adjacent Angles Angles with common side and common vertex without overlapping.
    [Show full text]
  • Chapter 1 – Symmetry of Molecules – P. 1
    Chapter 1 – Symmetry of Molecules – p. 1 - 1. Symmetry of Molecules 1.1 Symmetry Elements · Symmetry operation: Operation that transforms a molecule to an equivalent position and orientation, i.e. after the operation every point of the molecule is coincident with an equivalent point. · Symmetry element: Geometrical entity (line, plane or point) which respect to which one or more symmetry operations can be carried out. In molecules there are only four types of symmetry elements or operations: · Mirror planes: reflection with respect to plane; notation: s · Center of inversion: inversion of all atom positions with respect to inversion center, notation i · Proper axis: Rotation by 2p/n with respect to the axis, notation Cn · Improper axis: Rotation by 2p/n with respect to the axis, followed by reflection with respect to plane, perpendicular to axis, notation Sn Formally, this classification can be further simplified by expressing the inversion i as an improper rotation S2 and the reflection s as an improper rotation S1. Thus, the only symmetry elements in molecules are Cn and Sn. Important: Successive execution of two symmetry operation corresponds to another symmetry operation of the molecule. In order to make this statement a general rule, we require one more symmetry operation, the identity E. (1.1: Symmetry elements in CH4, successive execution of symmetry operations) 1.2. Systematic classification by symmetry groups According to their inherent symmetry elements, molecules can be classified systematically in so called symmetry groups. We use the so-called Schönfliess notation to name the groups, Chapter 1 – Symmetry of Molecules – p. 2 - which is the usual notation for molecules.
    [Show full text]
  • 20. Geometry of the Circle (SC)
    20. GEOMETRY OF THE CIRCLE PARTS OF THE CIRCLE Segments When we speak of a circle we may be referring to the plane figure itself or the boundary of the shape, called the circumference. In solving problems involving the circle, we must be familiar with several theorems. In order to understand these theorems, we review the names given to parts of a circle. Diameter and chord The region that is encompassed between an arc and a chord is called a segment. The region between the chord and the minor arc is called the minor segment. The region between the chord and the major arc is called the major segment. If the chord is a diameter, then both segments are equal and are called semi-circles. The straight line joining any two points on the circle is called a chord. Sectors A diameter is a chord that passes through the center of the circle. It is, therefore, the longest possible chord of a circle. In the diagram, O is the center of the circle, AB is a diameter and PQ is also a chord. Arcs The region that is enclosed by any two radii and an arc is called a sector. If the region is bounded by the two radii and a minor arc, then it is called the minor sector. www.faspassmaths.comIf the region is bounded by two radii and the major arc, it is called the major sector. An arc of a circle is the part of the circumference of the circle that is cut off by a chord.
    [Show full text]
  • Understand the Principles and Properties of Axiomatic (Synthetic
    Michael Bonomi Understand the principles and properties of axiomatic (synthetic) geometries (0016) Euclidean Geometry: To understand this part of the CST I decided to start off with the geometry we know the most and that is Euclidean: − Euclidean geometry is a geometry that is based on axioms and postulates − Axioms are accepted assumptions without proofs − In Euclidean geometry there are 5 axioms which the rest of geometry is based on − Everybody had no problems with them except for the 5 axiom the parallel postulate − This axiom was that there is only one unique line through a point that is parallel to another line − Most of the geometry can be proven without the parallel postulate − If you do not assume this postulate, then you can only prove that the angle measurements of right triangle are ≤ 180° Hyperbolic Geometry: − We will look at the Poincare model − This model consists of points on the interior of a circle with a radius of one − The lines consist of arcs and intersect our circle at 90° − Angles are defined by angles between the tangent lines drawn between the curves at the point of intersection − If two lines do not intersect within the circle, then they are parallel − Two points on a line in hyperbolic geometry is a line segment − The angle measure of a triangle in hyperbolic geometry < 180° Projective Geometry: − This is the geometry that deals with projecting images from one plane to another this can be like projecting a shadow − This picture shows the basics of Projective geometry − The geometry does not preserve length
    [Show full text]
  • Geometry Course Outline
    GEOMETRY COURSE OUTLINE Content Area Formative Assessment # of Lessons Days G0 INTRO AND CONSTRUCTION 12 G-CO Congruence 12, 13 G1 BASIC DEFINITIONS AND RIGID MOTION Representing and 20 G-CO Congruence 1, 2, 3, 4, 5, 6, 7, 8 Combining Transformations Analyzing Congruency Proofs G2 GEOMETRIC RELATIONSHIPS AND PROPERTIES Evaluating Statements 15 G-CO Congruence 9, 10, 11 About Length and Area G-C Circles 3 Inscribing and Circumscribing Right Triangles G3 SIMILARITY Geometry Problems: 20 G-SRT Similarity, Right Triangles, and Trigonometry 1, 2, 3, Circles and Triangles 4, 5 Proofs of the Pythagorean Theorem M1 GEOMETRIC MODELING 1 Solving Geometry 7 G-MG Modeling with Geometry 1, 2, 3 Problems: Floodlights G4 COORDINATE GEOMETRY Finding Equations of 15 G-GPE Expressing Geometric Properties with Equations 4, 5, Parallel and 6, 7 Perpendicular Lines G5 CIRCLES AND CONICS Equations of Circles 1 15 G-C Circles 1, 2, 5 Equations of Circles 2 G-GPE Expressing Geometric Properties with Equations 1, 2 Sectors of Circles G6 GEOMETRIC MEASUREMENTS AND DIMENSIONS Evaluating Statements 15 G-GMD 1, 3, 4 About Enlargements (2D & 3D) 2D Representations of 3D Objects G7 TRIONOMETRIC RATIOS Calculating Volumes of 15 G-SRT Similarity, Right Triangles, and Trigonometry 6, 7, 8 Compound Objects M2 GEOMETRIC MODELING 2 Modeling: Rolling Cups 10 G-MG Modeling with Geometry 1, 2, 3 TOTAL: 144 HIGH SCHOOL OVERVIEW Algebra 1 Geometry Algebra 2 A0 Introduction G0 Introduction and A0 Introduction Construction A1 Modeling With Functions G1 Basic Definitions and Rigid
    [Show full text]
  • Hyperbolic Geometry
    Flavors of Geometry MSRI Publications Volume 31,1997 Hyperbolic Geometry JAMES W. CANNON, WILLIAM J. FLOYD, RICHARD KENYON, AND WALTER R. PARRY Contents 1. Introduction 59 2. The Origins of Hyperbolic Geometry 60 3. Why Call it Hyperbolic Geometry? 63 4. Understanding the One-Dimensional Case 65 5. Generalizing to Higher Dimensions 67 6. Rudiments of Riemannian Geometry 68 7. Five Models of Hyperbolic Space 69 8. Stereographic Projection 72 9. Geodesics 77 10. Isometries and Distances in the Hyperboloid Model 80 11. The Space at Infinity 84 12. The Geometric Classification of Isometries 84 13. Curious Facts about Hyperbolic Space 86 14. The Sixth Model 95 15. Why Study Hyperbolic Geometry? 98 16. When Does a Manifold Have a Hyperbolic Structure? 103 17. How to Get Analytic Coordinates at Infinity? 106 References 108 Index 110 1. Introduction Hyperbolic geometry was created in the first half of the nineteenth century in the midst of attempts to understand Euclid’s axiomatic basis for geometry. It is one type of non-Euclidean geometry, that is, a geometry that discards one of Euclid’s axioms. Einstein and Minkowski found in non-Euclidean geometry a This work was supported in part by The Geometry Center, University of Minnesota, an STC funded by NSF, DOE, and Minnesota Technology, Inc., by the Mathematical Sciences Research Institute, and by NSF research grants. 59 60 J. W. CANNON, W. J. FLOYD, R. KENYON, AND W. R. PARRY geometric basis for the understanding of physical time and space. In the early part of the twentieth century every serious student of mathematics and physics studied non-Euclidean geometry.
    [Show full text]
  • Chapter 14 Hyperbolic Geometry Math 4520, Fall 2017
    Chapter 14 Hyperbolic geometry Math 4520, Fall 2017 So far we have talked mostly about the incidence structure of points, lines and circles. But geometry is concerned about the metric, the way things are measured. We also mentioned in the beginning of the course about Euclid's Fifth Postulate. Can it be proven from the the other Euclidean axioms? This brings up the subject of hyperbolic geometry. In the hyperbolic plane the parallel postulate is false. If a proof in Euclidean geometry could be found that proved the parallel postulate from the others, then the same proof could be applied to the hyperbolic plane to show that the parallel postulate is true, a contradiction. The existence of the hyperbolic plane shows that the Fifth Postulate cannot be proven from the others. Assuming that Mathematics itself (or at least Euclidean geometry) is consistent, then there is no proof of the parallel postulate in Euclidean geometry. Our purpose in this chapter is to show that THE HYPERBOLIC PLANE EXISTS. 14.1 A quick history with commentary In the first half of the nineteenth century people began to realize that that a geometry with the Fifth postulate denied might exist. N. I. Lobachevski and J. Bolyai essentially devoted their lives to the study of hyperbolic geometry. They wrote books about hyperbolic geometry, and showed that there there were many strange properties that held. If you assumed that one of these strange properties did not hold in the geometry, then the Fifth postulate could be proved from the others. But this just amounted to replacing one axiom with another equivalent one.
    [Show full text]
  • 4. Hyperbolic Geometry
    4. Hyperbolic Geometry 4.1 The three geometries Here we will look at the basic ideas of hyperbolic geometry including the ideas of lines, distance, angle, angle sum, area and the isometry group and Þnally the construction of Schwartz triangles. We develop enough formulas for the disc model to be able to understand and calculate in the isometry group and to work with the isometries arising from Schwartz triangles. Some of the derivations are complicated or just brute force symbolic computations, so we illustrate the basic idea with hand calculation and relegate the drudgery to Maple worksheets. None of the major results are proven but rather are given as statements of fact. Refer to the Beardon [10] and Magnus [21] texts for more background on hyperbolic geometry. 4.2 Synthetic and analytic geometry similarities To put hyperbolic geometry in context we compare the three basic geometries. There are three two dimensional geometries classiÞed on the basis of the parallel postulate, or alternatively the angle sum theorem for triangles. Geometry Parallel Postulate Angle sum Models spherical no parallels > 180◦ sphere euclidean unique parallels =180◦ standard plane hyperbolic inÞnitely many parallels < 180◦ disc, upper half plane The three geometries share a lot of common properties familiar from synthetic geom- etry. Each has a collection of lines which are certain curves in the given model as detailed in the table below. Geometry Symbol Model Lines spherical S2, C sphere great circles euclidean C standard plane standard lines b lines and circles perpendicular unit disc D z C : z < 1 { ∈ | | } to the boundary lines and circles perpendicular upper half plane U z C :Im(z) > 0 { ∈ } to the real axis Remark 4.1 If we just want to refer to a model of hyperbolic geometry we will use H to denote it.
    [Show full text]
  • Symmetry in Chemistry - Group Theory
    Symmetry in Chemistry - Group Theory Group Theory is one of the most powerful mathematical tools used in Quantum Chemistry and Spectroscopy. It allows the user to predict, interpret, rationalize, and often simplify complex theory and data. At its heart is the fact that the Set of Operations associated with the Symmetry Elements of a molecule constitute a mathematical set called a Group. This allows the application of the mathematical theorems associated with such groups to the Symmetry Operations. All Symmetry Operations associated with isolated molecules can be characterized as Rotations: k (a) Proper Rotations: Cn ; k = 1,......, n k When k = n, Cn = E, the Identity Operation n indicates a rotation of 360/n where n = 1,.... k (b) Improper Rotations: Sn , k = 1,....., n k When k = 1, n = 1 Sn = , Reflection Operation k When k = 1, n = 2 Sn = i , Inversion Operation In general practice we distinguish Five types of operation: (i) E, Identity Operation k (ii) Cn , Proper Rotation about an axis (iii) , Reflection through a plane (iv) i, Inversion through a center k (v) Sn , Rotation about an an axis followed by reflection through a plane perpendicular to that axis. Each of these Symmetry Operations is associated with a Symmetry Element which is a point, a line, or a plane about which the operation is performed such that the molecule's orientation and position before and after the operation are indistinguishable. The Symmetry Elements associated with a molecule are: (i) A Proper Axis of Rotation: Cn where n = 1,.... This implies n-fold rotational symmetry about the axis.
    [Show full text]