Chapter 14 Hyperbolic Geometry Math 4520, Fall 2017
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Analytic Geometry
Guide Study Georgia End-Of-Course Tests Georgia ANALYTIC GEOMETRY TABLE OF CONTENTS INTRODUCTION ...........................................................................................................5 HOW TO USE THE STUDY GUIDE ................................................................................6 OVERVIEW OF THE EOCT .........................................................................................8 PREPARING FOR THE EOCT ......................................................................................9 Study Skills ........................................................................................................9 Time Management .....................................................................................10 Organization ...............................................................................................10 Active Participation ...................................................................................11 Test-Taking Strategies .....................................................................................11 Suggested Strategies to Prepare for the EOCT ..........................................12 Suggested Strategies the Day before the EOCT ........................................13 Suggested Strategies the Morning of the EOCT ........................................13 Top 10 Suggested Strategies during the EOCT .........................................14 TEST CONTENT ........................................................................................................15 -
Lesson 3: Rectangles Inscribed in Circles
NYS COMMON CORE MATHEMATICS CURRICULUM Lesson 3 M5 GEOMETRY Lesson 3: Rectangles Inscribed in Circles Student Outcomes . Inscribe a rectangle in a circle. Understand the symmetries of inscribed rectangles across a diameter. Lesson Notes Have students use a compass and straightedge to locate the center of the circle provided. If necessary, remind students of their work in Module 1 on constructing a perpendicular to a segment and of their work in Lesson 1 in this module on Thales’ theorem. Standards addressed with this lesson are G-C.A.2 and G-C.A.3. Students should be made aware that figures are not drawn to scale. Classwork Scaffolding: Opening Exercise (9 minutes) Display steps to construct a perpendicular line at a point. Students follow the steps provided and use a compass and straightedge to find the center of a circle. This exercise reminds students about constructions previously . Draw a segment through the studied that are needed in this lesson and later in this module. point, and, using a compass, mark a point equidistant on Opening Exercise each side of the point. Using only a compass and straightedge, find the location of the center of the circle below. Label the endpoints of the Follow the steps provided. segment 퐴 and 퐵. Draw chord 푨푩̅̅̅̅. Draw circle 퐴 with center 퐴 . Construct a chord perpendicular to 푨푩̅̅̅̅ at and radius ̅퐴퐵̅̅̅. endpoint 푩. Draw circle 퐵 with center 퐵 . Mark the point of intersection of the perpendicular chord and the circle as point and radius ̅퐵퐴̅̅̅. 푪. Label the points of intersection . -
Squaring the Circle a Case Study in the History of Mathematics the Problem
Squaring the Circle A Case Study in the History of Mathematics The Problem Using only a compass and straightedge, construct for any given circle, a square with the same area as the circle. The general problem of constructing a square with the same area as a given figure is known as the Quadrature of that figure. So, we seek a quadrature of the circle. The Answer It has been known since 1822 that the quadrature of a circle with straightedge and compass is impossible. Notes: First of all we are not saying that a square of equal area does not exist. If the circle has area A, then a square with side √A clearly has the same area. Secondly, we are not saying that a quadrature of a circle is impossible, since it is possible, but not under the restriction of using only a straightedge and compass. Precursors It has been written, in many places, that the quadrature problem appears in one of the earliest extant mathematical sources, the Rhind Papyrus (~ 1650 B.C.). This is not really an accurate statement. If one means by the “quadrature of the circle” simply a quadrature by any means, then one is just asking for the determination of the area of a circle. This problem does appear in the Rhind Papyrus, but I consider it as just a precursor to the construction problem we are examining. The Rhind Papyrus The papyrus was found in Thebes (Luxor) in the ruins of a small building near the Ramesseum.1 It was purchased in 1858 in Egypt by the Scottish Egyptologist A. -
And Are Congruent Chords, So the Corresponding Arcs RS and ST Are Congruent
9-3 Arcs and Chords ALGEBRA Find the value of x. 3. SOLUTION: 1. In the same circle or in congruent circles, two minor SOLUTION: arcs are congruent if and only if their corresponding Arc ST is a minor arc, so m(arc ST) is equal to the chords are congruent. Since m(arc AB) = m(arc CD) measure of its related central angle or 93. = 127, arc AB arc CD and . and are congruent chords, so the corresponding arcs RS and ST are congruent. m(arc RS) = m(arc ST) and by substitution, x = 93. ANSWER: 93 ANSWER: 3 In , JK = 10 and . Find each measure. Round to the nearest hundredth. 2. SOLUTION: Since HG = 4 and FG = 4, and are 4. congruent chords and the corresponding arcs HG and FG are congruent. SOLUTION: m(arc HG) = m(arc FG) = x Radius is perpendicular to chord . So, by Arc HG, arc GF, and arc FH are adjacent arcs that Theorem 10.3, bisects arc JKL. Therefore, m(arc form the circle, so the sum of their measures is 360. JL) = m(arc LK). By substitution, m(arc JL) = or 67. ANSWER: 67 ANSWER: 70 eSolutions Manual - Powered by Cognero Page 1 9-3 Arcs and Chords 5. PQ ALGEBRA Find the value of x. SOLUTION: Draw radius and create right triangle PJQ. PM = 6 and since all radii of a circle are congruent, PJ = 6. Since the radius is perpendicular to , bisects by Theorem 10.3. So, JQ = (10) or 5. 7. Use the Pythagorean Theorem to find PQ. -
Squaring the Circle in Elliptic Geometry
Rose-Hulman Undergraduate Mathematics Journal Volume 18 Issue 2 Article 1 Squaring the Circle in Elliptic Geometry Noah Davis Aquinas College Kyle Jansens Aquinas College, [email protected] Follow this and additional works at: https://scholar.rose-hulman.edu/rhumj Recommended Citation Davis, Noah and Jansens, Kyle (2017) "Squaring the Circle in Elliptic Geometry," Rose-Hulman Undergraduate Mathematics Journal: Vol. 18 : Iss. 2 , Article 1. Available at: https://scholar.rose-hulman.edu/rhumj/vol18/iss2/1 Rose- Hulman Undergraduate Mathematics Journal squaring the circle in elliptic geometry Noah Davis a Kyle Jansensb Volume 18, No. 2, Fall 2017 Sponsored by Rose-Hulman Institute of Technology Department of Mathematics Terre Haute, IN 47803 a [email protected] Aquinas College b scholar.rose-hulman.edu/rhumj Aquinas College Rose-Hulman Undergraduate Mathematics Journal Volume 18, No. 2, Fall 2017 squaring the circle in elliptic geometry Noah Davis Kyle Jansens Abstract. Constructing a regular quadrilateral (square) and circle of equal area was proved impossible in Euclidean geometry in 1882. Hyperbolic geometry, however, allows this construction. In this article, we complete the story, providing and proving a construction for squaring the circle in elliptic geometry. We also find the same additional requirements as the hyperbolic case: only certain angle sizes work for the squares and only certain radius sizes work for the circles; and the square and circle constructions do not rely on each other. Acknowledgements: We thank the Mohler-Thompson Program for supporting our work in summer 2014. Page 2 RHIT Undergrad. Math. J., Vol. 18, No. 2 1 Introduction In the Rose-Hulman Undergraduate Math Journal, 15 1 2014, Noah Davis demonstrated the construction of a hyperbolic circle and hyperbolic square in the Poincar´edisk [1]. -
10-1 Study Guide and Intervention Circles and Circumference
NAME _____________________________________________ DATE ____________________________ PERIOD _____________ 10-1 Study Guide and Intervention Circles and Circumference Segments in Circles A circle consists of all points in a plane that are a given distance, called the radius, from a given point called the center. A segment or line can intersect a circle in several ways. • A segment with endpoints that are at the center and on the circle is a radius. • A segment with endpoints on the circle is a chord. • A chord that passes through the circle’s center and made up of collinear radii is a diameter. chord: 퐴퐸̅̅̅̅, 퐵퐷̅̅̅̅ radius: 퐹퐵̅̅̅̅, 퐹퐶̅̅̅̅, 퐹퐷̅̅̅̅ For a circle that has radius r and diameter d, the following are true diameter: 퐵퐷̅̅̅̅ 푑 1 r = r = d d = 2r 2 2 Example a. Name the circle. The name of the circle is ⨀O. b. Name radii of the circle. 퐴푂̅̅̅̅, 퐵푂̅̅̅̅, 퐶푂̅̅̅̅, and 퐷푂̅̅̅̅ are radii. c. Name chords of the circle. 퐴퐵̅̅̅̅ and 퐶퐷̅̅̅̅ are chords. Exercises For Exercises 1-7, refer to 1. Name the circle. ⨀R 2. Name radii of the circle. 푹푨̅̅̅̅, 푹푩̅̅̅̅, 푹풀̅̅̅̅, and 푹푿̅̅̅̅ 3. Name chords of the circle. ̅푩풀̅̅̅, 푨푿̅̅̅̅, 푨푩̅̅̅̅, and 푿풀̅̅̅̅ 4. Name diameters of the circle. 푨푩̅̅̅̅, and 푿풀̅̅̅̅ 5. If AB = 18 millimeters, find AR. 9 mm 6. If RY = 10 inches, find AR and AB . AR = 10 in.; AB = 20 in. 7. Is 퐴퐵̅̅̅̅ ≅ 푋푌̅̅̅̅? Explain. Yes; all diameters of the same circle are congruent. Chapter 10 5 Glencoe Geometry NAME _____________________________________________ DATE ____________________________ PERIOD _____________ 10-1 Study Guide and Intervention (continued) Circles and Circumference Circumference The circumference of a circle is the distance around the circle. -
20. Geometry of the Circle (SC)
20. GEOMETRY OF THE CIRCLE PARTS OF THE CIRCLE Segments When we speak of a circle we may be referring to the plane figure itself or the boundary of the shape, called the circumference. In solving problems involving the circle, we must be familiar with several theorems. In order to understand these theorems, we review the names given to parts of a circle. Diameter and chord The region that is encompassed between an arc and a chord is called a segment. The region between the chord and the minor arc is called the minor segment. The region between the chord and the major arc is called the major segment. If the chord is a diameter, then both segments are equal and are called semi-circles. The straight line joining any two points on the circle is called a chord. Sectors A diameter is a chord that passes through the center of the circle. It is, therefore, the longest possible chord of a circle. In the diagram, O is the center of the circle, AB is a diameter and PQ is also a chord. Arcs The region that is enclosed by any two radii and an arc is called a sector. If the region is bounded by the two radii and a minor arc, then it is called the minor sector. www.faspassmaths.comIf the region is bounded by two radii and the major arc, it is called the major sector. An arc of a circle is the part of the circumference of the circle that is cut off by a chord. -
Understand the Principles and Properties of Axiomatic (Synthetic
Michael Bonomi Understand the principles and properties of axiomatic (synthetic) geometries (0016) Euclidean Geometry: To understand this part of the CST I decided to start off with the geometry we know the most and that is Euclidean: − Euclidean geometry is a geometry that is based on axioms and postulates − Axioms are accepted assumptions without proofs − In Euclidean geometry there are 5 axioms which the rest of geometry is based on − Everybody had no problems with them except for the 5 axiom the parallel postulate − This axiom was that there is only one unique line through a point that is parallel to another line − Most of the geometry can be proven without the parallel postulate − If you do not assume this postulate, then you can only prove that the angle measurements of right triangle are ≤ 180° Hyperbolic Geometry: − We will look at the Poincare model − This model consists of points on the interior of a circle with a radius of one − The lines consist of arcs and intersect our circle at 90° − Angles are defined by angles between the tangent lines drawn between the curves at the point of intersection − If two lines do not intersect within the circle, then they are parallel − Two points on a line in hyperbolic geometry is a line segment − The angle measure of a triangle in hyperbolic geometry < 180° Projective Geometry: − This is the geometry that deals with projecting images from one plane to another this can be like projecting a shadow − This picture shows the basics of Projective geometry − The geometry does not preserve length -
Geometry Course Outline
GEOMETRY COURSE OUTLINE Content Area Formative Assessment # of Lessons Days G0 INTRO AND CONSTRUCTION 12 G-CO Congruence 12, 13 G1 BASIC DEFINITIONS AND RIGID MOTION Representing and 20 G-CO Congruence 1, 2, 3, 4, 5, 6, 7, 8 Combining Transformations Analyzing Congruency Proofs G2 GEOMETRIC RELATIONSHIPS AND PROPERTIES Evaluating Statements 15 G-CO Congruence 9, 10, 11 About Length and Area G-C Circles 3 Inscribing and Circumscribing Right Triangles G3 SIMILARITY Geometry Problems: 20 G-SRT Similarity, Right Triangles, and Trigonometry 1, 2, 3, Circles and Triangles 4, 5 Proofs of the Pythagorean Theorem M1 GEOMETRIC MODELING 1 Solving Geometry 7 G-MG Modeling with Geometry 1, 2, 3 Problems: Floodlights G4 COORDINATE GEOMETRY Finding Equations of 15 G-GPE Expressing Geometric Properties with Equations 4, 5, Parallel and 6, 7 Perpendicular Lines G5 CIRCLES AND CONICS Equations of Circles 1 15 G-C Circles 1, 2, 5 Equations of Circles 2 G-GPE Expressing Geometric Properties with Equations 1, 2 Sectors of Circles G6 GEOMETRIC MEASUREMENTS AND DIMENSIONS Evaluating Statements 15 G-GMD 1, 3, 4 About Enlargements (2D & 3D) 2D Representations of 3D Objects G7 TRIONOMETRIC RATIOS Calculating Volumes of 15 G-SRT Similarity, Right Triangles, and Trigonometry 6, 7, 8 Compound Objects M2 GEOMETRIC MODELING 2 Modeling: Rolling Cups 10 G-MG Modeling with Geometry 1, 2, 3 TOTAL: 144 HIGH SCHOOL OVERVIEW Algebra 1 Geometry Algebra 2 A0 Introduction G0 Introduction and A0 Introduction Construction A1 Modeling With Functions G1 Basic Definitions and Rigid -
Symmetry of Graphs. Circles
Symmetry of graphs. Circles Symmetry of graphs. Circles 1 / 10 Today we will be interested in reflection across the x-axis, reflection across the y-axis and reflection across the origin. Reflection across y reflection across x reflection across (0; 0) Sends (x,y) to (-x,y) Sends (x,y) to (x,-y) Sends (x,y) to (-x,-y) Examples with Symmetry What is Symmetry? Take some geometrical object. It is called symmetric if some geometric move preserves it Symmetry of graphs. Circles 2 / 10 Reflection across y reflection across x reflection across (0; 0) Sends (x,y) to (-x,y) Sends (x,y) to (x,-y) Sends (x,y) to (-x,-y) Examples with Symmetry What is Symmetry? Take some geometrical object. It is called symmetric if some geometric move preserves it Today we will be interested in reflection across the x-axis, reflection across the y-axis and reflection across the origin. Symmetry of graphs. Circles 2 / 10 Sends (x,y) to (-x,y) Sends (x,y) to (x,-y) Sends (x,y) to (-x,-y) Examples with Symmetry What is Symmetry? Take some geometrical object. It is called symmetric if some geometric move preserves it Today we will be interested in reflection across the x-axis, reflection across the y-axis and reflection across the origin. Reflection across y reflection across x reflection across (0; 0) Symmetry of graphs. Circles 2 / 10 Sends (x,y) to (-x,y) Sends (x,y) to (x,-y) Sends (x,y) to (-x,-y) Examples with Symmetry What is Symmetry? Take some geometrical object. -
Find the Radius Or Diameter of the Circle with the Given Dimensions. 2
8-1 Circumference Find the radius or diameter of the circle with the given dimensions. 2. d = 24 ft SOLUTION: The radius is 12 feet. ANSWER: 12 ft Find the circumference of the circle. Use 3.14 or for π. Round to the nearest tenth if necessary. 4. SOLUTION: The circumference of the circle is about 25.1 feet. ANSWER: 3.14 × 8 = 25.1 ft eSolutions Manual - Powered by Cognero Page 1 8-1 Circumference 6. SOLUTION: The circumference of the circle is about 22 miles. ANSWER: 8. The Belknap shield volcano is located in the Cascade Range in Oregon. The volcano is circular and has a diameter of 5 miles. What is the circumference of this volcano to the nearest tenth? SOLUTION: The circumference of the volcano is about 15.7 miles. ANSWER: 15.7 mi eSolutions Manual - Powered by Cognero Page 2 8-1 Circumference Copy and Solve Show your work on a separate piece of paper. Find the diameter given the circumference of the object. Use 3.14 for π. 10. a satellite dish with a circumference of 957.7 meters SOLUTION: The diameter of the satellite dish is 305 meters. ANSWER: 305 m 12. a nickel with a circumference of about 65.94 millimeters SOLUTION: The diameter of the nickel is 21 millimeters. ANSWER: 21 mm eSolutions Manual - Powered by Cognero Page 3 8-1 Circumference Find the distance around the figure. Use 3.14 for π. 14. SOLUTION: The distance around the figure is 5 + 5 or 10 feet plus of the circumference of a circle with a radius of 5 feet. -
3.1 the Robertson-Walker Metric
M. Pettini: Introduction to Cosmology | Lecture 3 RELATIVISTIC COSMOLOGY 3.1 The Robertson-Walker Metric The appearance of objects at cosmological distances is affected by the curvature of spacetime through which light travels on its way to Earth. The most complete description of the geometrical properties of the Universe is provided by Einstein's general theory of relativity. In GR, the fundamental quantity is the metric which describes the geometry of spacetime. Let's look at the definition of a metric: in 3-D space we measure the distance along a curved path P between two points using the differential distance formula, or metric: (d`)2 = (dx)2 + (dy)2 + (dz)2 (3.1) and integrating along the path P (a line integral) to calculate the total distance: Z 2 q Z 2 q ∆` = (d`)2 = (dx)2 + (dy)2 + (dz)2 (3.2) 1 1 Similarly, to measure the interval along a curved wordline, W, connecting two events in spacetime with no mass present, we use the metric for flat spacetime: (ds)2 = (cdt)2 − (dx)2 − (dy)2 − (dz)2 (3.3) Integrating ds gives the total interval along the worldline W: Z B q Z B q ∆s = (ds)2 = (cdt)2 − (dx)2 − (dy)2 − (dz)2 (3.4) A A By definition, the distance measured between two events, A and B, in a reference frame for which they occur simultaneously (tA = tB) is the proper distance: q ∆L = −(∆s)2 (3.5) Our search for a metric that describes the spacetime of a matter-filled universe, is made easier by the cosmological principle.