Amphibian Reproductive Strategies
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Amphibians in Zootaxa: 20 Years Documenting the Global Diversity of Frogs, Salamanders, and Caecilians
Zootaxa 4979 (1): 057–069 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Review ZOOTAXA Copyright © 2021 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4979.1.9 http://zoobank.org/urn:lsid:zoobank.org:pub:972DCE44-4345-42E8-A3BC-9B8FD7F61E88 Amphibians in Zootaxa: 20 years documenting the global diversity of frogs, salamanders, and caecilians MAURICIO RIVERA-CORREA1*+, DIEGO BALDO2*+, FLORENCIA VERA CANDIOTI3, VICTOR GOYANNES DILL ORRICO4, DAVID C. BLACKBURN5, SANTIAGO CASTROVIEJO-FISHER6, KIN ONN CHAN7, PRISCILLA GAMBALE8, DAVID J. GOWER9, EVAN S.H. QUAH10, JODI J. L. ROWLEY11, EVAN TWOMEY12 & MIGUEL VENCES13 1Grupo Herpetológico de Antioquia - GHA and Semillero de Investigación en Biodiversidad - BIO, Universidad de Antioquia, Antioquia, Colombia [email protected]; https://orcid.org/0000-0001-5033-5480 2Laboratorio de Genética Evolutiva, Instituto de Biología Subtropical (CONICET-UNaM), Facultad de Ciencias Exactas Químicas y Naturales, Universidad Nacional de Misiones, Posadas, Misiones, Argentina [email protected]; https://orcid.org/0000-0003-2382-0872 3Unidad Ejecutora Lillo, Consejo Nacional de Investigaciones Científicas y Técnicas - Fundación Miguel Lillo, 4000 San Miguel de Tucumán, Argentina [email protected]; http://orcid.org/0000-0002-6133-9951 4Laboratório de Herpetologia Tropical, Universidade Estadual de Santa Cruz, Departamento de Ciências Biológicas, Rodovia Jorge Amado Km 16 45662-900 Ilhéus, Bahia, Brasil [email protected]; https://orcid.org/0000-0002-4560-4006 5Florida Museum of Natural History, University of Florida, 1659 Museum Road, Gainesville, Florida, 32611, USA [email protected]; https://orcid.org/0000-0002-1810-9886 6Laboratório de Sistemática de Vertebrados, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av. -
Global Patterns of Ranavirus Detections
NOTE Global patterns of ranavirus detections Jesse L. Brunnera*, Deanna H. Olsonb, Matthew J. Grayc, Debra L. Millerd, and Amanda L.J. Duffuse aSchool of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA; bUSDA Forest Service, Pacific Northwest Research Station, Corvallis, OR 97331-8550, USA; cDepartment of Forestry, Wildlife and Fisheries, University of Tennessee Institute of Agriculture, Knoxville, TN 37996-4563, USA; dCollege of Veterinary Medicine, University of Tennessee Institute of Agriculture, Knoxville, TN 37996-4563, USA; eDepartment of Natural Sciences, Gordon State College, Barnesville, GA 30204, USA *[email protected] Abstract Ranaviruses are emerging pathogens of poikilothermic vertebrates. In 2015 the Global Ranavirus Reporting System (GRRS) was established as a centralized, open access, online database for reports of the presence (and absence) of ranavirus around the globe. The GRRS has multiple data layers (e.g., location, date, host(s) species, and methods of detection) of use to those studying the epidemiol- ogy, ecology, and evolution of this group of viruses. Here we summarize the temporal, spatial, diag- nostic, and host-taxonomic patterns of ranavirus reports in the GRRS. The number, distribution, and host diversity of ranavirus reports have increased dramatically since the mid 1990s, presumably in response to increased interest in ranaviruses and the conservation of their hosts, and also the availability of molecular diagnostics. Yet there are clear geographic and taxonomic biases among the OPEN ACCESS reports. We encourage ranavirus researchers to add their studies to the portal because such collation can provide collaborative opportunities and unique insights to our developing knowledge of this For personal use only. -
Catalogue of the Amphibians of Venezuela: Illustrated and Annotated Species List, Distribution, and Conservation 1,2César L
Mannophryne vulcano, Male carrying tadpoles. El Ávila (Parque Nacional Guairarepano), Distrito Federal. Photo: Jose Vieira. We want to dedicate this work to some outstanding individuals who encouraged us, directly or indirectly, and are no longer with us. They were colleagues and close friends, and their friendship will remain for years to come. César Molina Rodríguez (1960–2015) Erik Arrieta Márquez (1978–2008) Jose Ayarzagüena Sanz (1952–2011) Saúl Gutiérrez Eljuri (1960–2012) Juan Rivero (1923–2014) Luis Scott (1948–2011) Marco Natera Mumaw (1972–2010) Official journal website: Amphibian & Reptile Conservation amphibian-reptile-conservation.org 13(1) [Special Section]: 1–198 (e180). Catalogue of the amphibians of Venezuela: Illustrated and annotated species list, distribution, and conservation 1,2César L. Barrio-Amorós, 3,4Fernando J. M. Rojas-Runjaic, and 5J. Celsa Señaris 1Fundación AndígenA, Apartado Postal 210, Mérida, VENEZUELA 2Current address: Doc Frog Expeditions, Uvita de Osa, COSTA RICA 3Fundación La Salle de Ciencias Naturales, Museo de Historia Natural La Salle, Apartado Postal 1930, Caracas 1010-A, VENEZUELA 4Current address: Pontifícia Universidade Católica do Río Grande do Sul (PUCRS), Laboratório de Sistemática de Vertebrados, Av. Ipiranga 6681, Porto Alegre, RS 90619–900, BRAZIL 5Instituto Venezolano de Investigaciones Científicas, Altos de Pipe, apartado 20632, Caracas 1020, VENEZUELA Abstract.—Presented is an annotated checklist of the amphibians of Venezuela, current as of December 2018. The last comprehensive list (Barrio-Amorós 2009c) included a total of 333 species, while the current catalogue lists 387 species (370 anurans, 10 caecilians, and seven salamanders), including 28 species not yet described or properly identified. Fifty species and four genera are added to the previous list, 25 species are deleted, and 47 experienced nomenclatural changes. -
Diptera: Sarcophagidae) in Anuran of Leptodactylidae (Amphibia)
CASO CLÍNICO REVISTA COLOMBIANA DE CIENCIA ANIMAL Rev Colombiana Cienc Anim 2015; 7(2):217-220. FIRST REPORT OF MYIASIS (DIPTERA: SARCOPHAGIDAE) IN ANURAN OF LEPTODACTYLIDAE (AMPHIBIA) PRIMER REGISTRO DE MIASIS (DIPTERA: SARCOPHAGIDAE) EN ANUROS DE LEPTODACTYLIDAE (AMPHIBIA) GERSON AZULIM MÜLLER,1*Dr, CARLOS RODRIGO LEHN,1 M.Sc, ABEL BEMVENUTI,1 M.Sc, CARLOS BRISOLA MARCONDES,2 Dr. 1Instituto Federal de Educação, Ciência e Tecnologia Farroupilha, Campus Panambi, RS, Brasil. 2 Universidade Federal de Santa Catarina, Departamento de Microbiologia e Parasitologia, Centro de Ciências Biológicas, SC, Brasil. Key words: Abstract Anura, This note is the first report of myiasis caused by Sarcophagidae flies in an anuran of Brazil, Leptodactylidae. The frog, identified asLeptodactylus latrans (Steffen, 1815), was Leptodactylus latrans, collected in Atlantic forest bioma, southern Brazil. The frog had extensive muscle parasitism. damage and orifices in the tegument caused by presence of 21 larvae, identified as Sarcophagidae. Ecological interactions between dipterans and anuran are poorly known. The impact of sarcophagid flies in anuran popuilations requires further study. Palabras Clave: Resumen Anura, Esta nota es el primer registro de ocurrencia de miasis generada por moscas Brasil, Sarcophagidae en anuro de la familia Leptodactylidae. El anfibio, identificado Leptodactylus latrans, como Leptodactylus latrans (Steffen, 1815), fue recolectado en el bioma Mata parasitismo. Atlântica, en el sur de Brasil. La rana presentaba extensas lesiones musculares y orificios en el tegumento generados por la presencia de 21 larvas, identificadas como Sarcophagidae. Las interacciones ecológicas entre insectos dípteros y anuros son poco conocidas. El impacto de las moscas Sarcophagidae en las poblaciones de anuros requiere más estudio. -
A New Species of the Genus Nasikabatrachus (Anura, Nasikabatrachidae) from the Eastern Slopes of the Western Ghats, India
Alytes, 2017, 34 (1¢4): 1¢19. A new species of the genus Nasikabatrachus (Anura, Nasikabatrachidae) from the eastern slopes of the Western Ghats, India S. Jegath Janani1,2, Karthikeyan Vasudevan1, Elizabeth Prendini3, Sushil Kumar Dutta4, Ramesh K. Aggarwal1* 1Centre for Cellular and Molecular Biology (CSIR-CCMB), Uppal Road, Tarnaka, Hyderabad, 500007, India. <[email protected]>, <[email protected]>. 2Current Address: 222A, 5th street, Annamalayar Colony, Sivakasi, 626123, India.<[email protected]>. 3Division of Vertebrate Zoology, Department of Herpetology, American Museum of Natural History, Central Park West at 79th Street, New York NY 10024-5192, USA. <[email protected]>. 4Nature Environment and Wildlife Society (NEWS), Nature House, Gaudasahi, Angul, Odisha. <[email protected]>. * Corresponding Author. We describe a new species of the endemic frog genus Nasikabatrachus,from the eastern slopes of the Western Ghats, in India. The new species is morphologically, acoustically and genetically distinct from N. sahyadrensis. Computed tomography scans of both species revealed diagnostic osteological differences, particularly in the vertebral column. Male advertisement call analysis also showed the two species to be distinct. A phenological difference in breeding season exists between the new species (which breeds during the northeast monsoon season; October to December), and its sister species (which breeds during the southwest monsoon; May to August). The new species shows 6 % genetic divergence (K2P) at mitochondrial 16S rRNA (1330 bp) partial gene from its congener, indicating clear differentiation within Nasikabatra- chus. Speciation within this fossorial lineage is hypothesized to have been caused by phenological shift in breeding during different monsoon seasons—the northeast monsoon in the new species versus southwest monsoon in N. -
(Pyxicephalidae: Nothophryne) for Northern Mozambique Inselbergs
African Journal of Herpetology ISSN: 2156-4574 (Print) 2153-3660 (Online) Journal homepage: http://www.tandfonline.com/loi/ther20 New species of Mongrel Frogs (Pyxicephalidae: Nothophryne) for northern Mozambique inselbergs Werner Conradie, Gabriela B. Bittencourt-Silva, Harith M. Farooq, Simon P. Loader, Michele Menegon & Krystal A. Tolley To cite this article: Werner Conradie, Gabriela B. Bittencourt-Silva, Harith M. Farooq, Simon P. Loader, Michele Menegon & Krystal A. Tolley (2018): New species of Mongrel Frogs (Pyxicephalidae: Nothophryne) for northern Mozambique inselbergs, African Journal of Herpetology, DOI: 10.1080/21564574.2017.1376714 To link to this article: https://doi.org/10.1080/21564574.2017.1376714 View supplementary material Published online: 22 Feb 2018. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=ther20 AFRICAN JOURNAL OF HERPETOLOGY, 2018 https://doi.org/10.1080/21564574.2017.1376714 New species of Mongrel Frogs (Pyxicephalidae: Nothophryne) for northern Mozambique inselbergs Werner Conradie a,b, Gabriela B. Bittencourt-Silva c, Harith M. Farooq d,e,f, Simon P. Loader g, Michele Menegon h and Krystal A. Tolley i,j aPort Elizabeth Museum (Bayworld), Marine Drive, Humewood 6013, South Africa; bSchool of Natural Resource Management, George Campus, Nelson Mandela University, George 6530, South Africa; cDepartment of Environmental Sciences, University of Basel, Basel -
Anura: Hemiphractidae: Gastrotheca)
Accepted Manuscript Short communication Brazilian marsupial frogs are diphyletic (Anura: Hemiphractidae: Gastrotheca) David C. Blackburn, William E. Duellman PII: S1055-7903(13)00179-6 DOI: http://dx.doi.org/10.1016/j.ympev.2013.04.021 Reference: YMPEV 4580 To appear in: Molecular Phylogenetics and Evolution Received Date: 7 January 2013 Revised Date: 2 April 2013 Accepted Date: 22 April 2013 Please cite this article as: Blackburn, D.C., Duellman, W.E., Brazilian marsupial frogs are diphyletic (Anura: Hemiphractidae: Gastrotheca), Molecular Phylogenetics and Evolution (2013), doi: http://dx.doi.org/10.1016/ j.ympev.2013.04.021 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. 1 Short Communication 2 3 Brazilian marsupial frogs are diphyletic (Anura: Hemiphractidae: Gastrotheca) 4 5 David C. Blackburna,*, William E. Duellmanb 6 a Department of Vertebrate Zoology & Anthropology, California Academy of Sciences, 55 7 Music Concourse Drive, San Francisco, CA 94118, USA 8 b Biodiversity Institute, University of Kansas, 1345 Jayhawk Boulevard, Lawrence, KS 9 66045, USA 10 * Corresponding author. E-mail address: [email protected] (D.C. Blackburn) 11 12 Abstract 13 Molecular phylogenetic analyses based on expanded taxonomic and geographic sampling 14 support the monophyly of the marsupial frog genera (family Hemiphractidae), resolve six 15 geographically circumscribed lineages within Gastrotheca, and, for the first time, reveal 16 that two divergent lineages of Gastrotheca inhabit the Atlantic Coastal Forests of Brazil. -
This Article Appeared in a Journal Published by Elsevier. the Attached
(This is a sample cover image for this issue. The actual cover is not yet available at this time.) This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Toxicon 60 (2012) 967–981 Contents lists available at SciVerse ScienceDirect Toxicon journal homepage: www.elsevier.com/locate/toxicon Antimicrobial peptides and alytesin are co-secreted from the venom of the Midwife toad, Alytes maurus (Alytidae, Anura): Implications for the evolution of frog skin defensive secretions Enrico König a,*, Mei Zhou b, Lei Wang b, Tianbao Chen b, Olaf R.P. Bininda-Emonds a, Chris Shaw b a AG Systematik und Evolutionsbiologie, IBU – Fakultät V, Carl von Ossietzky Universität Oldenburg, Carl von Ossietzky Strasse 9-11, 26129 Oldenburg, Germany b Natural Drug Discovery Group, School of Pharmacy, Medical Biology Center, Queen’s University, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, UK article info abstract Article history: The skin secretions of frogs and toads (Anura) have long been a known source of a vast Received 23 March 2012 abundance of bioactive substances. -
Seasonal Distribution and Circadian Activity in the Troglophile Long-Footed Robber Frog, Eleutherodactylus Longipes (Anura: Brac
A. Espino del Castillo, G. Castan˜o-Meneses, M.J. Da´vila-Montes, M. Miranda-Anaya, J.B. Morales-Malacara, and R. Paredes-Leo´n – Seasonal distribution and circadian activity in the troglophile long-footed robber frog, Eleutherodactylus longipes (Anura: Brachycephalidae) at Los Riscos Cave, Quere´taro, Mexico: Field and laboratory studies. Journal of Cave and Karst Studies, v. 71, no. 1, p. 24–31. SEASONAL DISTRIBUTION AND CIRCADIAN ACTIVITY IN THE TROGLOPHILE LONG-FOOTED ROBBER FROG, ELEUTHERODACTYLUS LONGIPES (ANURA: BRACHYCEPHALIDAE) AT LOS RISCOS CAVE, QUERE´ TARO, MEXICO: FIELD AND LABORATORY STUDIES ADRIANA ESPINO DEL CASTILLO1,GABRIELA CASTAN˜ O-MENESES2,4,MAYRA J. DA´ VILA-MONTES1,3, MANUEL MIRANDA-ANAYA3,JUAN B. MORALES-MALACARA1,4,6, AND RICARDO PAREDES-LEO´ N5 Abstract: Los Riscos Cave belongs to the El Abra limestone and its geographical location is in the Sierra Gorda in the State of Quere´taro, Mexico. The cave has a high faunal diversity that includes arthropods and some vertebrates, such as vampire bats and anurans, and includes the robber frog Eleutherodactylus longipes (Baird, 1859). The abundance of the robber frog changes non-randomly between dry and rainy seasons and is related to the search for humid conditions inside the cave. In addition, the robber frog was located in areas where some scattered light may influence its dispersion inside the cave; and therefore, its activity. Frogs displayed spontaneous circadian rhythms of locomotor activity from the first days of the experimental observation in constant darkness. The average period of circadian rhythms was 24.85 6 0.93 h indicating, in isolated conditions, a diurnal activity. -
The IUCN Amphibians Initiative: a Record of the 2001-2008 Amphibian Assessment Efforts for the IUCN Red List
The IUCN Amphibians Initiative: A record of the 2001-2008 amphibian assessment efforts for the IUCN Red List Contents Introduction ..................................................................................................................................... 4 Amphibians on the IUCN Red List - Home Page ................................................................................ 5 Assessment process ......................................................................................................................... 6 Partners ................................................................................................................................................................. 6 The Central Coordinating Team ............................................................................................................................ 6 The IUCN/SSC – CI/CABS Biodiversity Assessment Unit........................................................................................ 6 An Introduction to Amphibians ................................................................................................................................. 7 Assessment methods ................................................................................................................................................ 7 1. Data Collection .................................................................................................................................................. 8 2. Data Review ................................................................................................................................................... -
Male Bufo Bufo (Anura: Bufonidae) Passionately Embracing a Bulge of Mud
Correspondence ISSN 2336-9744 The journal is available on line at www.ecol-mne.com Strange affection: male Bufo bufo (Anura: Bufonidae) passionately embracing a bulge of mud SONJA ĐOR ĐEVI Ć1,2,* and ALEKSANDAR SIMOVI Ć2 1University of Belgrade, Faculty of Biology, Institute of Zoology. Studentski trg 16, 11000 Belgrade, Serbia 2Serbian Herpetological Society “Milutin Radovanovi ć”. Bulevar despota Stefana 142, 11000 Belgrade, Serbia. E- mail: [email protected] *Corresponding author. E-mail: [email protected] Received 13 March 2014 │ Accepted 20 March 2014 │ Published online 21 March 2014. On March 11 th 2014, app. between 10 AM and noon, we visited a pond on the Avala Mt. (44°40.879 ′ N, 20°33.098 ′ E, 230 m a.s.l.). Its north–northeastern portion, overgrown with reeds, was crowded with common toads, Bufo bufo (Linnaeus, 1758). Males were vocalizing, chasing females (and males), struggling to clasp them in firm grip; we observed several “mating balls” – three to ten males were vigorously fighting over a single female. On the margin of that mating frenzy, at the edge of the pond, we observed a silent, lonely male holding on to a bulge of mud (Fig. 1). He was literally motionless in that position for at least half an hour (recorded time). Figure 1. Male common toad firmly grasping a muddy protuberance (Photo: S. Đor đevi ć) Anurans are notorious for making mistakes during mating. Their erroneous amplexuses include conspecific males, dead conspecifics of both sexes, other anuran species, caudates, fish, small tortoises, etc., and even inanimate floating objects (Banta, 1914; Davies & Halliday, 1979; Pearl et al., 2005; Simovi ć et al., 2014; Storm, 1952). -
3Systematics and Diversity of Extant Amphibians
Systematics and Diversity of 3 Extant Amphibians he three extant lissamphibian lineages (hereafter amples of classic systematics papers. We present widely referred to by the more common term amphibians) used common names of groups in addition to scientifi c Tare descendants of a common ancestor that lived names, noting also that herpetologists colloquially refer during (or soon after) the Late Carboniferous. Since the to most clades by their scientifi c name (e.g., ranids, am- three lineages diverged, each has evolved unique fea- bystomatids, typhlonectids). tures that defi ne the group; however, salamanders, frogs, A total of 7,303 species of amphibians are recognized and caecelians also share many traits that are evidence and new species—primarily tropical frogs and salaman- of their common ancestry. Two of the most defi nitive of ders—continue to be described. Frogs are far more di- these traits are: verse than salamanders and caecelians combined; more than 6,400 (~88%) of extant amphibian species are frogs, 1. Nearly all amphibians have complex life histories. almost 25% of which have been described in the past Most species undergo metamorphosis from an 15 years. Salamanders comprise more than 660 species, aquatic larva to a terrestrial adult, and even spe- and there are 200 species of caecilians. Amphibian diver- cies that lay terrestrial eggs require moist nest sity is not evenly distributed within families. For example, sites to prevent desiccation. Thus, regardless of more than 65% of extant salamanders are in the family the habitat of the adult, all species of amphibians Plethodontidae, and more than 50% of all frogs are in just are fundamentally tied to water.