This Article Appeared in a Journal Published by Elsevier. the Attached
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Variety of Antimicrobial Peptides in the Bombina Maxima Toad and Evidence of Their Rapid Diversification
http://www.paper.edu.cn 1220 Wen-Hui Lee et al. Eur. J. Immunol. 2005. 35: 1220–1229 Variety of antimicrobial peptides in the Bombina maxima toad and evidence of their rapid diversification Wen-Hui Lee1, Yan Li2,3, Ren Lai1, Sha Li2,4, Yun Zhang1 and Wen Wang2 1 Department of Animal Toxinology, Kunming Institute of Zoology, The Chinese Academy of Sciences (CAS), Kunming, P. R. China 2 CAS-Max Planck Junior Scientist Group, Key Laboratory of Cellular and Molecular Evolution, Kunming Institute of Zoology, The Chinese Academy of Sciences (CAS), Kunming, P. R. China 3 Graduate School of the Chinese Academy of Sciences, Beijing, P. R. China 4 Department of Pathology, University of Chicago, Chicago, USA Antimicrobial peptides secreted by the skin of many amphibians play an important role Received 30/8/04 in innate immunity. From two skin cDNA libraries of two individuals of the Chinese red Revised 4/2/05 belly toad (Bombina maxima), we identified 56 different antimicrobial peptide cDNA Accepted 14/2/05 sequences, each of which encodes a precursor peptide that can give rise to two kinds of [DOI 10.1002/eji.200425615] antimicrobial peptides, maximin and maximin H. Among these cDNA, we found that the mean number of nucleotide substitution per non-synonymous site in both the maximin and maximin H domains significantly exceed the mean number of nucleotide substitution per synonymous site, whereas the same pattern was not observed in other structural regions, such as the signal and propiece peptide regions, suggesting that these antimicrobial peptide genes have been experiencing rapid diversification driven by Darwinian selection. -
Ecol 483/583 – Herpetology Lab 3: Amphibian Diversity 2: Anura Spring 2010
Ecol 483/583 – Herpetology Lab 3: Amphibian Diversity 2: Anura Spring 2010 P.J. Bergmann & S. Foldi (Modified from Bonine & Foldi 2008) Lab objectives The objectives of today’s lab are to: 1. Familiarize yourself with Anuran diversity. 2. Learn to identify local frogs and toads. 3. Learn to use a taxonomic key. Today’s lab is the second in which you will learn about amphibian diversity. We will cover the Anura, or frogs and toads, the third and final clade of Lissamphibia. Tips for learning the material Continue what you have been doing in previous weeks. Examine all of the specimens on display, taking notes, drawings and photos of what you see. Attempt to identify the local species to species and the others to their higher clades. Quiz each other to see which taxa are easy for you and which ones give you troubles, and then revisit the difficult ones. Although the Anura has a conserved body plan – all are rather short and rigid bodied, with well- developed limbs, there is an incredible amount of diversity. Pay close attention to some of the special external anatomical traits that characterize the groups of frogs you see today. You will also learn to use a taxonomic key today. This is an important tool for correctly identifying species, especially when they are very difficult to distinguish from other species. 1 Ecol 483/583 – Lab 3: Anura 2010 Exercise 1: Anura diversity General Information Frogs are a monophyletic group comprising the order Anura. Salientia includes both extant and extinct frogs. Frogs have been around since the Triassic (~230 ma). -
A Comparative Study of the Thermal Tolerance of Tadpoles of Iberian Anurans
Universidade de Lisboa Faculdade de Ciências Departamento de Biologia Animal A comparative study of the thermal tolerance of tadpoles of Iberian anurans Helder Santos Duarte Mestrado em Biologia da Conservação 2011 Universidade de Lisboa Faculdade de Ciências Departamento de Biologia Animal A comparative study of the thermal tolerance of tadpoles of Iberian anurans Helder Santos Duarte Mestrado em Biologia da Conservação 2011 Dissertação orientada por Prof. Dr. José Pedro Sousa do Amaral e Prof. Dr. Rui Rebelo Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa i ABSTRACT The study of climate change and its impacts on biodiversity is essential for a correct and responsible assessment of population declines and potential extinction risks. Being the most threatened group of vertebrates, amphibians are being put on the edge mainly by habitat destruction and emerging infectious diseases, and possibly even more so with the added effects of global warming. We suggested that populations of anurans on latitudinal extremes of their Iberian geographic distribution would have differential responses to heat stress, whether by phylogenetic inertia or by physiological adaptation of individuals. We tested for this prediction by measuring the Critical Thermal maxima (CTmax) of 15 anuran species from the Iberian Peninsula. In seven of these species, we studied populations from the northern and southern extremes of their distributions. CTmax of Iberian anurans defined thermally distinct groups that reflect their thermal ecology and breeding phenologies. CTmax ranges show an association to geographic distribution range in the majority of species. Upper thermal tolerances did not exhibit a phylogenetic pattern and revealed to be a conservative character within species. -
Morphometric Study on Tadpoles of Bombina Variegata (Linnaeus, 1758) (Anura; Bombinatoridae)
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Firenze University Press: E-Journals Acta Herpetologica 5(2): 223-231, 2010 Morphometric study on tadpoles of Bombina variegata (Linnaeus, 1758) (Anura; Bombinatoridae) Anna Rita Di Cerbo*, Carlo M. Biancardi Centro Studi Faunistica dei Vertebrati, Società Italiana di Scienze Naturali, C.so Venezia 55, I-20121, Milano, Italy. *Correspondig author. E.mail: [email protected] Submitted on: 2009, 23th November; revised on 2010, 10th October; accepted on 2010, 12th November. Abstract. The tadpoles of Yellow-bellied toad (Bombina variegata) can be easily rec- ognized from other Italian anuran species, except those of B. pachypus (though the two congeneric species are allopatric). In this paper we report morphometric data on B. variegata tadpoles from a Lombard population living near a torrent at 450 m a.s.l. On a sample of 264 tadpoles (stages 19-44, according to Gosner, 1960) we meas- ured the following five variables: snout-vent length, tail length, maximum tail height, total length and weight. We found a slight allometric relationship between snout-vent length and tail length, while, as expected, the weight is nearly proportional to the cube of linear measures. According to literature data, our results point to highly constant proportions during the development phases up to prometamorphic stages. The ratio between snout-vent length and tail length was about 0.75 during the whole growing phase, while from stage 42 the proportion increases as the resorption of the tail starts. Keywords. Tadpole morphology, Yellow-bellied toad, Bombina variegata. -
Herpetological Journal FULL PAPER
Volume 23 (July 2013), 153–160 FULL PAPER Herpetological Journal Published by the British Integrating mtDNA analyses and ecological niche Herpetological Society modelling to infer the evolutionary history of Alytes maurus (Amphibia; Alytidae) from Morocco Philip de Pous1, 2, 3, Margarita Metallinou2, David Donaire-Barroso4, Salvador Carranza2 & Delfi Sanuy1 1Faculty of Life Sciences and Engineering, Departament de Producció Animal (Fauna Silvestre), Universitat de Lleida, E-125198, Lleida, Spain, 2Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Maritim de la Barceloneta 37-49, 08003 Barcelona, Spain, 3Society for the Preservation of Herpetological Diversity, Oude Molstraat 2E, 2513 BB, Den Haag, the Netherlands, 4Calle Mar Egeo 7, 11407 Jerez de la Frontera, Cadiz, Spain We aimed at determining the effects of past climatic conditions on contemporary intraspecific genetic structuring of the endemic Moroccan midwife toad Alytes maurus using mitochondrial DNA (12S, 16S and cytochrome b) analysis and ecological niche modelling. Unexpectedly, our genetic analyses show thatA. maurus presents a low level of variability in the mitochondrial genes with no clear geographical structuring. The low genetic variation in mtDNA can be explained by a much broader climatic suitability during the Last Glacial Maximum that allowed the connection among populations and subsequent homogenization as a consequence of gene flow. Key words: biogeography, haplotype network, Köppen-Geiger, Maghreb, Maxent, midwife toad, Pleistocene glaciations INTRODUCTION knowledge and geographic distribution. The specific status of A. maurus was later confirmed by osteological, he Moroccan midwife toad (Alytes maurus Pasteur mitochondrial DNA and nuclear DNA evidence T& Bons, 1962), endemic to northern Morocco, is the (Fromhage et al., 2004; Martínez-Solano et al., 2004; only African representative of the family Alytidae which Gonçalves et al., 2007). -
A.11 Western Spadefoot Toad (Spea Hammondii) A.11.1 Legal and Other Status the Western Spadefoot Toad Is a California Designated Species of Special Concern
Appendix A. Species Account Butte County Association of Governments Western Spadefoot Toad A.11 Western Spadefoot Toad (Spea hammondii) A.11.1 Legal and Other Status The western spadefoot toad is a California designated Species of Special Concern. This species currently does not have any federal listing status. Although this species is not federally listed, it is addressed in the Recovery Plan for Vernal Pool Ecosystems of California and Southern Oregon (USFWS 2005). A.11.2 Species Distribution and Status A.11.2.1 Range and Status The western spadefoot toad historically ranged from Redding in Shasta County, California, to northwestern Baja California, Mexico (Stebbins 1985). This species was known to occur throughout the Central Valley and the Coast Ranges and along the coastal lowlands from San Francisco Bay to Mexico (Jennings and Hayes 1994). The western spadefoot toad has been extirpated throughout most southern California lowlands (Stebbins 1985) and from many historical locations within the Central Valley (Jennings and Hayes 1994, Fisher and Shaffer 1996). It has severely declined in the Sacramento Valley, and their density has been reduced in eastern San Joaquin Valley (Fisher and Shaffer 1996). While the species has declined in the Coast Range, they appear healthier and more resilient than those in the valleys. The population status and trends of the western spadefoot toad outside of California (i.e., Baja California, Mexico) are not well known. This species occurs mostly below 900 meters (3,000 feet) in elevation (Stebbins 1985). The average elevation of sites where the species still occurs is significantly higher than the average elevation for historical sites, suggesting that declines have been more pronounced in lowlands (USFWS 2005). -
High Abundance of Invasive African Clawed Frog Xenopus Laevis in Chile: Challenges for Their Control and Updated Invasive Distribution
Management of Biological Invasions (2019) Volume 10, Issue 2: 377–388 CORRECTED PROOF Research Article High abundance of invasive African clawed frog Xenopus laevis in Chile: challenges for their control and updated invasive distribution Marta Mora1, Daniel J. Pons2,3, Alexandra Peñafiel-Ricaurte2, Mario Alvarado-Rybak2, Saulo Lebuy2 and Claudio Soto-Azat2,* 1Vida Nativa NGO, Santiago, Chile 2Centro de Investigación para la Sustentabilidad & Programa de Doctorado en Medicina de la Conservación, Facultad de Ciencias de la Vida, Universidad Andres Bello, Republica 440, Santiago, Chile 3Facultad de Ciencias Exactas, Departamento de Matemáticas, Universidad Andres Bello, Santiago, Republica 470, Santiago, Chile Author e-mails: [email protected] (CSA), [email protected] (MM), [email protected] (DJP), [email protected] (APR), [email protected] (MAR), [email protected] (SL) *Corresponding author Citation: Mora M, Pons DJ, Peñafiel- Ricaurte A, Alvarado-Rybak M, Lebuy S, Abstract Soto-Azat C (2019) High abundance of invasive African clawed frog Xenopus Invasive African clawed frog Xenopus laevis (Daudin, 1802) are considered a major laevis in Chile: challenges for their control threat to aquatic environments. Beginning in the early 1970s, invasive populations and updated invasive distribution. have now been established throughout much of central Chile. Between September Management of Biological Invasions 10(2): and December 2015, we studied a population of X. laevis from a small pond in 377–388, https://doi.org/10.3391/mbi.2019. 10.2.11 Viña del Mar, where we estimated the population size and evaluated the use of hand nets as a method of control. First, by means of a non-linear extrapolation Received: 26 October 2018 model using the data from a single capture session of 200 min, a population size of Accepted: 7 March 2019 1,182 post-metamorphic frogs (range: 1,168–1,195 [quadratic error]) and a density Published: 16 May 2019 of 13.7 frogs/m2 (range: 13.6–13.9) of surface water were estimated. -
Pre-Incursion Plan PIP003 Toads and Frogs
Pre-incursion Plan PIP003 Toads and Frogs Scope This plan is in place to guide prevention and eradication activities and the management of non-indigenous populations of Toads and Frogs (Order Anura) in the wild in Victoria. Version Document Status Date Author Reviewed By Approved for Release 1.0 First Draft 26/07/11 Dana Price M. Corry, S. Wisniewski and A. Woolnough 1.1 Second Draft 21/10/11 Dana Price S. Wisniewski 2.0 Final Draft 11/01/12 Dana Price S.Wisniewski 2.1 Final 27/06/12 Dana Price M.Corry Visual Standard approved by ADP 3.0 New Final 6/10/15 Dana Price A.Kay New DEDJTR template and document revision Acknowledgement and special thanks to Peter Courtenay, Senior Curator, Zoos Victoria, for reviewing this document and providing comments. Published by the Department of Economic Development, Jobs, Transport and Resources, Agriculture Victoria, May 2016 © The State of Victoria 2016. This publication is copyright. No part may be reproduced by any process except in accordance with the provisions of the Copyright Act 1968. Authorised by the Department of Economic Development, Jobs, Transport and Resources, 1 Spring Street, Melbourne 3000. Front cover: Cane Toad (Rhinella marinus) Photo: Image courtesy of Ryan Melville, HRIA Team, DEDJTR For more information about Agriculture Victoria go to www.agriculture.vic.gov.au or phone the Customer Service Centre on 136 186. ISBN 978-1-925532-37-1 (pdf/online) Disclaimer This publication may be of assistance to you but the State of Victoria and its employees do not guarantee that the publication is without flaw of any kind or is wholly appropriate for your particular purposes and therefore disclaims all liability for any error, loss or other consequence which may arise from you relying on any information in this publication. -
Amphibian Identification
Amphibian Identification Common frog Adults 6-7 cm. Smooth skin, which appears moist. Coloration variable, includes brown, yellow and orange. Some females have red markings on lower body. Usually has a dark ‘mask’ marking behind the eye. Breeding male Markings also variable, Grey/pale blue including varying amounts throat. of black spots and stripes. Thick front legs. Dark (nuptial) pad on inner toes of Young froglets look like the front feet. Spawn is laid in gelatinous smaller versions of the clumps. adults. Common toad Adults 5-9 cm. Rough skin. Brown with darker markings. Less commonly, some individuals are very dark, almost black, others are brick-red. Breeding pair Males smaller than females. Breeding males can also be distinguished by dark (nuptial) pads on innermost two toes of the front feet. Toad spawn is laid in gelatinous strings, wrapped around vegetation. Less conspicuous than common frog spawn. Makes small hops rather than jumps of common frog. Toadlets transforming from the Juveniles are tadpole stage are often very dark similar colours in colour. to adults, including brick-red. ARG UK Natterjack toad Strictly protected species, requiring Similar in size and appearance to common toad, a licence to handle but with a pale stripe running along the back. or disturb. This is a rare species, unlikely to be found outside specific dune and heathland habitats. On hatching common frog and toad tadpoles Frog Tadpoles are black. As they develop, common frog tadpoles become mottled with bronze, whereas toad tadpoles remain uniformly dark until the last stages of development. Common frog and toad tadpoles generally complete Toad development in the summer, but development rates are variable; some tadpoles may not transform until later in the year, or they may even remain as tadpoles over winter, becoming much larger than normal. -
Antipredator Mechanisms of Post-Metamorphic Anurans: a Global Database and Classification System
Utah State University DigitalCommons@USU Ecology Center Publications Ecology Center 5-1-2019 Antipredator Mechanisms of Post-Metamorphic Anurans: A Global Database and Classification System Rodrigo B. Ferreira Utah State University Ricardo Lourenço-de-Moraes Universidade Estadual de Maringá Cássio Zocca Universidade Vila Velha Charles Duca Universidade Vila Velha Karen H. Beard Utah State University Edmund D. Brodie Jr. Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/eco_pubs Part of the Ecology and Evolutionary Biology Commons Recommended Citation Ferreira, R.B., Lourenço-de-Moraes, R., Zocca, C. et al. Behav Ecol Sociobiol (2019) 73: 69. https://doi.org/ 10.1007/s00265-019-2680-1 This Article is brought to you for free and open access by the Ecology Center at DigitalCommons@USU. It has been accepted for inclusion in Ecology Center Publications by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. 1 Antipredator mechanisms of post-metamorphic anurans: a global database and 2 classification system 3 4 Rodrigo B. Ferreira1,2*, Ricardo Lourenço-de-Moraes3, Cássio Zocca1, Charles Duca1, Karen H. 5 Beard2, Edmund D. Brodie Jr.4 6 7 1 Programa de Pós-Graduação em Ecologia de Ecossistemas, Universidade Vila Velha, Vila Velha, ES, 8 Brazil 9 2 Department of Wildland Resources and the Ecology Center, Utah State University, Logan, UT, United 10 States of America 11 3 Programa de Pós-Graduação em Ecologia de Ambientes Aquáticos Continentais, Universidade Estadual 12 de Maringá, Maringá, PR, Brazil 13 4 Department of Biology and the Ecology Center, Utah State University, Logan, UT, United States of 14 America 15 16 *Corresponding author: Rodrigo B. -
Amphibians and Reptiles of the Mediterranean Basin
Chapter 9 Amphibians and Reptiles of the Mediterranean Basin Kerim Çiçek and Oğzukan Cumhuriyet Kerim Çiçek and Oğzukan Cumhuriyet Additional information is available at the end of the chapter Additional information is available at the end of the chapter http://dx.doi.org/10.5772/intechopen.70357 Abstract The Mediterranean basin is one of the most geologically, biologically, and culturally complex region and the only case of a large sea surrounded by three continents. The chapter is focused on a diversity of Mediterranean amphibians and reptiles, discussing major threats to the species and its conservation status. There are 117 amphibians, of which 80 (68%) are endemic and 398 reptiles, of which 216 (54%) are endemic distributed throughout the Basin. While the species diversity increases in the north and west for amphibians, the reptile diversity increases from north to south and from west to east direction. Amphibians are almost twice as threatened (29%) as reptiles (14%). Habitat loss and degradation, pollution, invasive/alien species, unsustainable use, and persecution are major threats to the species. The important conservation actions should be directed to sustainable management measures and legal protection of endangered species and their habitats, all for the future of Mediterranean biodiversity. Keywords: amphibians, conservation, Mediterranean basin, reptiles, threatened species 1. Introduction The Mediterranean basin is one of the most geologically, biologically, and culturally complex region and the only case of a large sea surrounded by Europe, Asia and Africa. The Basin was shaped by the collision of the northward-moving African-Arabian continental plate with the Eurasian continental plate which occurred on a wide range of scales and time in the course of the past 250 mya [1]. -
Download (Pdf, 1.10
HERPETOLOGICAL JOURNAL, Vol. 8, pp. 23-27 (1998) FERAL XENOPUS LAEVIS IN SOUTH WALES G. JOHN MEASEY AND RICHARD C. TINSLEY School of Biological Sciences, University of Bristol, Bristol ESB JUG, UK Despite its prominence as the "standard laboratory amphibian", the ecology of the African clawed frog, Xenopus laevis, has been neglected. Feral populations have been documented in several countries with Mediterranean climates, but established populations are also known from the UK. Long term studies of individually-marked X. laevis in South Wales reveal large demographic fluctuations and the ability to migrate overland. Maximum longevity recorded from recapture of marked individuals was 14 years. Diet analysis demonstrates a major reliance on benthic invertebrates and zooplankton components of the pond fauna. Skeletochronological studies of growth rings in bone showed that lines of arrested growth are formed annually and allow calculation of age. Data on population age structure indicate successful recruitment is infrequent, with dominant cohorts originating in perhaps only four summers duringthe past 20 years. INTRODUCTION these watercourses are below 100 m a.s.I. and lie within km of the coast, exposed to westerly winds, which The African clawed frog, Xenopus laevis, has been 8 The catch intensively studied in the areas of developmental, cell markedly increase the salinity of the water. ments are well drained; much of the area is either and molecular biology (Gurdon, 1996). However, eco cultivated or pasture. A km length of the river and as logical studies of this principally aquatic amphibian 2 remain scarce. Accidental and deliberate introductions sociated ponds, confined to a steep sided U-shaped valley (hereafter referred to as the "Valley"), was sam of X laevis laevis to alien environments are associated with its use in human pregnancy diagnosis, as a labora pled.