Pyrrolizidine Alkaloids
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chemistry Department 32.Pdf (10.36Mb)
THE FABRICATION OF NANOMETRIC METAL SULFIDES FROM XANTHATE PRECURSORS By ALAN PIQUETTE Bachelor of Arts Western State College of Colorado Gunnison, Colorado 2002 Submitted to the Faculty of the Graduate College of the Oklahoma State University In partial fulfillment of The requirements for The Degree of DOCTOR OF PHILOSOPHY December, 2007 THE FABRICATION OF NANOMETRIC METAL SULFIDES FROM XANTHATE PRECURSORS Thesis Approved: _______________ __Allen Apblett___ ______________ Thesis Advisor ________________ Nicholas Materer_____ __________ _____________ __LeGrande Slaughter___ __________ _______________ ____Jim Smay___ _______________ _____________ __A. Gordon Emslie___ ____________ Dean of the Graduate College ACKNOWLEDGEMENTS It is with my utmost sincere appreciation that I acknowledge my thesis advisor, Dr. Allen W. Apblett, for his support, guidance, and motivation. He provided a research environment that was both friendly and challenging, which made my years in his group enjoyable and rewarding. His broad range of knowledge was something of which I was happy to take advantage. His dedication to teaching and research is something that will be a positive influence on me for the rest of my scientific career. I would like to express gratitude to my committee members: Dr. Nicholas Materer, Dr. LeGrande Slaughter, and Dr. Jim Smay, for their assistance, advice, guidance, and support throughout the years. I am deeply grateful to all my colleagues and friends in the chemistry department. I would specifically like to thank Sulaiman Al-Fadul, Mohammed Al-Hazmi, Zeid Al- Othmann, Mohamed Chehbouni, Satish Kuriyavar, and Tarek Trad for showing me the ropes, for their valuable discussions, continuous encouragement, and for all the help they extended during the course of my stay in the Apblett Group. -
I the Synthesis of Papyracillic Acids: Application of the Tandem Chain
University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Winter 2011 I The synthesis of papyracillic acids: Application of the tandem chain extension-acylation reaction II Diastereoselective synthesis of beta-methyl-gamma-keto esters through the utility of an L- serine auxiliary Jennifer R. Mazzone University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation Mazzone, Jennifer R., "I The synthesis of papyracillic acids: Application of the tandem chain extension- acylation reaction II Diastereoselective synthesis of beta-methyl-gamma-keto esters through the utility of an L-serine auxiliary" (2011). Doctoral Dissertations. 644. https://scholars.unh.edu/dissertation/644 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. I. THE SYNTHESES OF PAPYRACILLIC ACIDS: APPLICATION OF THE TANDEM CHAIN EXTENSION-ACYLATION REACTION II. DIASTEREOSELECTIVE SYNTHESIS OF p-METHYL-y-KETO ESTERS THROUGH THE UTILITY OF AN L-SERINE AUXILIARY BY Jennifer R. Mazzone B.A., Assumption College, 2006 DISSERTATION Submitted to the University of New Hampshire in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Chemistry December, 2011 UMI Number: 3500790 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. -
Catalytic Asymmetric Di Hydroxylation
Chem. Rev. 1994, 94, 2483-2547 2483 Catalytic Asymmetric Dihydroxylation Hartmuth C. Kolb,t Michael S. VanNieuwenhze,* and K. Barry Sharpless* Department of Chemistry, The Scripps Research Institute, 10666 North Torfey Pines Road, La Jolla, California 92037 Received Ju/y 28, 1994 (Revised Manuscript Received September 14, 1994) Contents 3.1.4. Differentiation of the Hydroxyl Groups by 2524 Selective, Intramolecular Trapping 1. Introduction and General Principles 2483 3.1.5. Miscellaneous Transformations 2525 2. Enantioselective Preparation of Chiral 1,2-Diols 2489 3.2. Preparation of Chiral Building Blocks 2527 from Olefins 3.2.1. Electrophilic Building Blocks 2527 2.1. Preparation of Ligands, Choice of Ligand, 2489 Scope, and Limitations 3.2.2. Chiral Diol and Polyol Building Blocks 2529 2.1.1. Preparation of the Ligands 2490 3.2.3. Chiral Monohydroxy Compounds Derived 2529 from Diols 2.1 -2. Ligand Choice and Enantioselectivity Data 2490 3.2.4. 5- and 6-Membered Heterocycles 2530 2.1.3. Limitations 2491 3.3. Preparation of Chiral Auxiliaries for Other 2530 2.2. Reaction Conditions 2493 Asymmetric Transformations 2.2.1. Asymmetric Dihydroxylation of the 2493 3.3.1. Preparation of 2530 “Standard Substrates” (1 R,2S)-trans-2-phenylcyclohexanol 2.2.2. Asymmetric Dihydroxylation of 2496 3.3.2. Optically Pure Hydrobenzoin (Stilbenediol) 2531 Tetrasubstituted Olefins, Including Enol and Derivatives Ethers 4. Recent Applications: A Case Study 2536 2.2.3. Asymmetric Dihydroxylation of 2496 Electron-Deficient Olefins 5. Conclusion 2538 2.2.4. Chemoselectivity in the AD of Olefins 2497 6. References and Footnotes 2542 Containing Sulfur 2.3. -
Appendix I: Named Reactions Single-Bond Forming Reactions Co
Appendix I: Named Reactions 235 / 335 432 / 533 synthesis / / synthesis Covered in Covered Featured in problem set problem Single-bond forming reactions Grignard reaction various Radical couplings hirstutene Conjugate addition / Michael reaction strychnine Stork enamine additions Aldol-type reactions (incl. Mukaiyama aldol) various (aldol / Claisen / Knoevenagel / Mannich / Henry etc.) Asymmetric aldol reactions: Evans / Carreira etc. saframycin A Organocatalytic asymmetric aldol saframycin A Pseudoephedrine glycinamide alkylation saframycin A Prins reaction Prins-pinacol reaction problem set # 2 Morita-Baylis-Hillman reaction McMurry condensation Gabriel synthesis problem set #3 Double-bond forming reactions Wittig reaction prostaglandin Horner-Wadsworth-Emmons reaction prostaglandin Still-Gennari olefination general discussion Julia olefination and heteroaryl variants within the Corey-Winter olefination prostaglandin Peterson olefination synthesis Barton extrusion reaction Tebbe olefination / other methylene-forming reactions tetrodotoxin hirstutene / Selenoxide elimination tetrodotoxin Burgess dehydration problem set # 3 Electrocyclic reactions and related transformations Diels-Alder reaction problem set # 1 Asymmetric Diels-Alder reaction prostaglandin Ene reaction problem set # 3 1,3-dipolar cycloadditions various [2,3] sigmatropic rearrangement various Cope rearrangement periplanone Claisen rearrangement hirstutene Oxidations – Also See Handout # 1 Swern-type oxidations (Swern / Moffatt / Parikh-Doering etc. N1999A2 Jones oxidation -
Organic Seminar Abstracts
Digitized by the Internet Archive in 2012 with funding from University of Illinois Urbana-Champaign http://archive.org/details/organicsemin1971752univ / a ORGANIC SEMINAR ABSTRACTS 1971-1972 Semester II School of Chemical Sciences Department of Chemistry- University of Illinois Urbana, Illinois 3 SEMINAR TOPICS II Semester 1971-72 Reactions of Alkyl Ethers Involving n- Complexes on a Reaction Pathway 125 Jerome T. Adams New Syntheses of Helicenes 127 Alan Morrice Recent Advances in Drug Detection and Analysis I36 Ronald J. Convers The Structure of Carbonium Ions with Multiple Neighboring Groups 138 William J. Work Recent Reactions of the DMSO-DCC Reagent ll+O James A. Franz Nucleophilic Acylation 1^2 Janet Ollinger The Chemistry of Camptothecin lU^ Dale Pigott Stereoselective Syntheses and Absolute Configuration of Cecropia Juvenile Horomone 1U6 John C. Greenfield Uleine and Related Aspidosperma Alkaloids 155 Glen Tolman Strategies in Oligonucleotide Synthesis 162 Graham Walker Stable Carbocations: C-13 Nuclear Magnetic Resonance Studies 16U Moses W. McMillan Organic Chlorosulfinates 166 Steven W. Moje Recent Advances in the Chemistry of Penicillins and Cephalosporins 168 Ronald Stroshane Cerium (iv) Oxidations 175 William C. Christopfel A New Total Synthesis of Vitamin D 18 William Graham Ketone Transpositions 190 Ann L. Crumrine - 125 - REACTIONS OF ALKYL ETHERS INVOLVING n-COMPLEXES ON A REACTION PATHWAY Reported by Jerome T. Adams February 2k 1972 The n-complex (l) has been described as an intermediate on the reaction pathway for electrophilic aromatic substitution and acid catalyzed rearrange- ment of alkyl aryl ethers along with sigma (2) and pi (3) type intermediates. 1 ' 2 +xR Physical evidence for the existence of n-complexes of alkyl aryl ethers was found in the observation of methyl phenyl ononium ions by nmr 3 and ir observation of n-complexes of anisole with phenol. -
Elimination Reactions Are Described
Introduction In this module, different types of elimination reactions are described. From a practical standpoint, elimination reactions widely used for the generation of double and triple bonds in compounds from a saturated precursor molecule. The presence of a good leaving group is a prerequisite in most elimination reactions. Traditional classification of elimination reactions, in terms of the molecularity of the reaction is employed. How the changes in the nature of the substrate as well as reaction conditions affect the mechanism of elimination are subsequently discussed. The stereochemical requirements for elimination in a given substrate and its consequence in the product stereochemistry is emphasized. ELIMINATION REACTIONS Objective and Outline beta-eliminations E1, E2 and E1cB mechanisms Stereochemical considerations of these reactions Examples of E1, E2 and E1cB reactions Alpha eliminations and generation of carbene I. Basics Elimination reactions involve the loss of fragments or groups from a molecule to generate multiple bonds. A generalized equation is shown below for 1,2-elimination wherein the X and Y from two adjacent carbon atoms are removed, elimination C C C C -XY X Y Three major types of elimination reactions are: α-elimination: two atoms or groups are removed from the same atom. It is also known as 1,1-elimination. H R R C X C + HX R Both H and X are removed from carbon atom here R Carbene β-elimination: loss of atoms or groups on adjacent atoms. It is also H H known as 1,2- elimination. R C C R R HC CH R X H γ-elimination: loss of atoms or groups from the 1st and 3rd positions as shown below. -
M.Sc. Chemistry Syllabus
SYLLABUS FOR MASTERS PROGRAMME (M.Sc.) IN CHEMISTRY (BATCH-2016 and BATCH-2017) UNDER CHOICE BASED CREDIT SYSTEM (CBCS) DEPARTMENT OF CHEMISTRY ISLAMIC UNIVERSITY OF SCIENCE AND TECHNOLOGY, AWANTIPORA, PULWAMA, KASHMIR, J&K, INDIA, 192122. Department of Chemistry Islamic University of Science and Technology Master’s Programme A Master’s Programme consists of a set of Core Courses and Optional Course. The entire course carries choice based credit system. A Master’s degree in Chemistry course is divided in to 04 semesters comprising 02 odd semesters and 02 even semesters. Credits The term credit is used to describe the quantum of syllabus for various programmes in terms and hours of study. It indicates differential weightage given according to the contents and duration of the courses in the curriculum design. Courses Each course may consist of Lectures/ Tutorials/ Laboratory work/ Seminar/ Project work/ Practical training report/ Viva voce etc. Subject Code Fixation The following code system (5 characters) is adopted for Post graduate course in chemistry PXX PG code for department X Course Type X Specification of that course Example PCH CC 101 PCH-CC-101 PG Code Core Course Specification of that course CC– Core Courses: Theory & Practical DCE – Discipline Centric OE-Open Electives Department of Chemistry Islamic University of Science and Technology Total Credit and Marks Distribution for the Four Semesters Course Type No of Papers Credits per Paper Total Credits Marks per Paper Total Marks Core Course 14 4 56 100 1400 (Theory) Core Course -
Application of Complex Aldol Reactions to the Total Synthesis of Phorboxazole B
J. Am. Chem. Soc. 2000, 122, 10033-10046 10033 Application of Complex Aldol Reactions to the Total Synthesis of Phorboxazole B David A. Evans,* Duke M. Fitch,1 Thomas E. Smith, and Victor J. Cee Contribution from the Department of Chemistry and Chemical Biology, HarVard UniVersity, Cambridge, Massachusetts 02138 ReceiVed June 29, 2000 Abstract: The synthesis of phorboxazole B has been accomplished in 27 linear steps and an overall yield of 12.6%. The absolute stereochemistry of the C4-C12,C33-C38, and C13-C19 fragments was established utilizing catalytic asymmetric aldol methodology, while the absolute stereochemistry of the C20-C32 fragment was derived from an auxiliary-based asymmetric aldol reaction. All remaining chirality was incorporated through internal asymmetric induction, with the exception of the C43 stereocenter which was derived from (R)-trityl glycidol. Key fragment couplings include a stereoselective double stereodifferentiating aldol reaction, a metalated oxazole alkylation, an oxazole-stabilized Wittig olefination, and a chelation-controlled addition of the fully elaborated alkenyl metal side chain. Introduction and HT29 (3.31 × 10-10 M), as well as leukemia CCRF-CBM (2.45 × 10-10 M), prostate cancer PC-3 (3.54 × 10-10 M), and Phorboxazoles A (1)andB(2) are marine natural products breast cancer MCF7 cell lines (5.62 × 10-10 M).2b In addition isolated from a recently discovered species of Indian Ocean to this impressive anticancer activity, phorboxazoles A and B sponge (genus Phorbas sp.) near Muiron Island, Western also exhibit potent in vitro antifungal activity against Candida Australia.2 These substances are representative of a new class albicans and Saccharomyces carlsbergensis at 0.1 µg/disk in of macrolides differing only in their C hydroxyl-bearing 13 the agar disk diffusion assay.2a stereocenters. -
JUN I 13998 Scienct LIBRARIES This Doctoral Thesis Has Been Examined by a Committee of the Department of Chemistry As Follows
THE DEVELOPMENT OF ORGANOTIN REAGENTS FOR ORGANIC SYNTHESIS by David Scott Hays B. S. Chemistry, University of Illinois Submitted to the Department of Chemistry in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY IN ORGANIC CHEMISTRY at the Massachusetts Institute of Technology June 1998 © Massachusetts Institute of Technology, 1998 All rights reserved Signature of Author Department of Chemistry May 14, 1998 Certified by Gregory C. Fu t' Thesis Supervisor Accepted by Dietmar Seyferth Chairman, Departmental Committee on Graduate Students JUN I 13998 scienct LIBRARIES This doctoral thesis has been examined by a committee of the Department of Chemistry as follows: Professor Peter H. Seeberger I_ _ /1 Chairman Professor Gregory C. Fu J _J Thesis Supervisor Professor Rick L. Danheiser THE DEVELOPMENT OF ORGANOTIN REAGENTS FOR ORGANIC SYNTHESIS by David Scott Hays Submitted to the Department of Chemistry on May 14, 1998 in partial fulfillment of the requirements for the Degree of Doctor of Philosophy at the Massachusetts Institute of Technology ABSTRACT A method for the intramolecular pinacol coupling of dialdehydes and ketoaldehydes is described. The method was found to be useful for synthesizing 1,2-cyclopentanediols with very high degrees of diastereoselectivity in favor of the cis stereochemistry. 1,2- Cyclohexanediols were generated with lower degrees of stereoselection. This free radical chain process involves as the key steps: 1) an intramolecular addition of a tin ketyl radical to a pendant carbonyl group, followed by 2) a rapid intramolecular homolytic displacement by an oxygen radical at the tin center to liberate an alkyl radical. The development of a Bu 3 SnH-catalyzed carbon-carbon bond forming reaction (the reductive cyclization of enals and enones) is described, followed by a catalytic variant of the Barton-McCombie deoxygenation reaction. -
Bridging Mcmurry and Wittig in One-Pot
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1755 Bridging McMurry and Wittig in One-Pot Olefins from Stereoselective, Reductive Couplings of Two Aldehydes via Phosphaalkenes JURI MAI ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 ISBN 978-91-513-0536-3 UPPSALA urn:nbn:se:uu:diva-368873 2019 Dissertation presented at Uppsala University to be publicly examined in Häggsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, Friday, 15 February 2019 at 10:15 for the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty examiner: Professor Dr. Christian Müller (Freie Universität Berlin, Institute of Chemistry and Biochemistry). Abstract Mai, J. 2019. Bridging McMurry and Wittig in One-Pot. Olefins from Stereoselective, Reductive Couplings of Two Aldehydes via Phosphaalkenes. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1755. 112 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-513-0536-3. The formation of C=C bonds is of great importance for fundamental and industrial synthetic organic chemistry. There are many different methodologies for the construction of C=C bonds in the literature, but currently only the McMurry reaction allows the reductive coupling of two carbonyl compounds to form alkenes. This thesis contributes to the field of carbonyl olefinations and presents the development of a new synthetic protocol for a one-pot reductive coupling of two aldehydes to alkenes based on organophosphorus chemistry. The coupling reagent, a phosphanylphosphonate, reacts with an aldehyde to yield a phosphaalkene intermediate which upon activation with a base undergoes an olefination with a second aldehyde. A general overview of synthetic methods for carbonyl olefinations and the chemistry of phosphaalkenes is given in the background chapter. -
Olefination Reactions Lecture Notes OTBS OPMB O
Olefination Reactions Lecture Notes OTBS OPMB O Key Reviews: O Me O Me XX Wittig Reaction K. C. Nicolaou and co-workers, Ann. 1997, 1283. Horner-Wadsworth-Emmons and Tebbe Olefinations S. E. Kelly, Comprehensive Org. Synth. 1991, Vol. 1, 729. Peterson Olefination D. J. Ager, Synthesis 1984, 384. Julia (Julia-Lythgoe) Olefination B. M. Trost, Bull. Chem. Soc. Jpn. 1988, 61, 107. Wittig Olefination: Background and Principles R1 n-BuLi, Ph P 3 O X LDA, R R1 LiHMDS PPh + 1 3 X Ph3P + R1 Ph3P pKa = 18-20 ylide when R = alkyl, H Ph Ph Ph Ph Ph R1 P Ph P -[Ph3P=O] O R1 O R strong bond 1 formation drives reaction oxaphosphatane betaine G. Wittig and G. Schollkopf, Chem. Ber. 1954, 87, 1318. Wittig Olefination: Background and Principles Stereoselectivity with non-stabilized ylides Me OMe Me Ph3P Ph3P Ph3P Me Ph3P Ph3P Not stable; must be made in situ and used immediately Wittig Olefination: Background and Principles Stereoselectivity with non-stabilized ylides Me OMe Me Ph3P Ph3P Ph3P Me Ph3P Ph3P Not stable; must be made in situ and used immediately Addition to carbonyl is an irreversible and concerted [2+2] cycloaddition such that the R groups on the aldehyde and the ylide are as far apart as possible PPh3 Ph3P O H H H O + Me Me Ph3P R O R H -[Ph3P=O] As the size of the R groups increases, selectivity for Z-alkene increases Me Nonpolar solvents favor initial addition Polar solvents favor the elimination Z-alkene Wittig Olefination: Background and Principles Stereoselectivity with stabilized ylides Me O O Ph P Ph3P 3 Ph3P Me OEt semistabilized Incredibly stable; not moisture sensitive, can be chromatographed Price for stability is lower reactivity: reacts well with aldehydes, slowly with ketones Wittig Olefination: Background and Principles Stereoselectivity with stabilized ylides Me O O Ph P Ph3P 3 Ph3P Me OEt semistabilized Incredibly stable; not moisture sensitive, can be chromatographed Price for stability is lower reactivity: reacts well with aldehydes, slowly with ketones Initial addition to carbonyl is reversible so the thermodynamic elimination product results. -
University of California
UC Riverside UC Riverside Electronic Theses and Dissertations Title Towards a Catalytic Asymmetric Cope Rearrangement and the Synthesis and Self-Assembly of Metal-Coordinated Hosts Permalink https://escholarship.org/uc/item/4gc654st Author Moehlig, Melissa Padilla Publication Date 2013 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA RIVERSIDE Towards a Catalytic Asymmetric Cope Rearrangement and the Synthesis and Self- Assembly of Metal-Coordinated Hosts A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Chemistry by Melissa Padilla Moehlig December 2013 Dissertation Committee: Dr. Richard J. Hooley, Chairperson Dr. Catharine H. Larsen Dr. Michael C. Pirrung Copyright by Melissa Padilla Moehlig 2013 The Dissertation of Melissa Padilla Moehlig is approved: Committee Chairperson University of California, Riverside ACKNOWLEDGEMENTS Graduate school has been one of the most rewarding and yet the most exhausting and stressful times of my life. It would not have survived without the help of several people. I would like to thank Dr. Courtney Meyet, Dr. Katherine Djernes, and Yoo-Jin Ghang for their friendship and all the laughs that were necessary to keep me sane. I would like to thank Michael Young, Hou Ung, and Jay-Ar Bendo for our morning coffee breaks, they were crucial to get my day started. I would like to thank Prof. Larsen for teaching me to be independent. I would like to thank Prof. Hooley for all his guidance over the past five years. You are truly a great mentor and I don’t think I would have survived graduate school without your help and advice.