Or 12 Hours in a Stainless Steel Bomb
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chemistry Department 32.Pdf (10.36Mb)
THE FABRICATION OF NANOMETRIC METAL SULFIDES FROM XANTHATE PRECURSORS By ALAN PIQUETTE Bachelor of Arts Western State College of Colorado Gunnison, Colorado 2002 Submitted to the Faculty of the Graduate College of the Oklahoma State University In partial fulfillment of The requirements for The Degree of DOCTOR OF PHILOSOPHY December, 2007 THE FABRICATION OF NANOMETRIC METAL SULFIDES FROM XANTHATE PRECURSORS Thesis Approved: _______________ __Allen Apblett___ ______________ Thesis Advisor ________________ Nicholas Materer_____ __________ _____________ __LeGrande Slaughter___ __________ _______________ ____Jim Smay___ _______________ _____________ __A. Gordon Emslie___ ____________ Dean of the Graduate College ACKNOWLEDGEMENTS It is with my utmost sincere appreciation that I acknowledge my thesis advisor, Dr. Allen W. Apblett, for his support, guidance, and motivation. He provided a research environment that was both friendly and challenging, which made my years in his group enjoyable and rewarding. His broad range of knowledge was something of which I was happy to take advantage. His dedication to teaching and research is something that will be a positive influence on me for the rest of my scientific career. I would like to express gratitude to my committee members: Dr. Nicholas Materer, Dr. LeGrande Slaughter, and Dr. Jim Smay, for their assistance, advice, guidance, and support throughout the years. I am deeply grateful to all my colleagues and friends in the chemistry department. I would specifically like to thank Sulaiman Al-Fadul, Mohammed Al-Hazmi, Zeid Al- Othmann, Mohamed Chehbouni, Satish Kuriyavar, and Tarek Trad for showing me the ropes, for their valuable discussions, continuous encouragement, and for all the help they extended during the course of my stay in the Apblett Group. -
I the Synthesis of Papyracillic Acids: Application of the Tandem Chain
University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Winter 2011 I The synthesis of papyracillic acids: Application of the tandem chain extension-acylation reaction II Diastereoselective synthesis of beta-methyl-gamma-keto esters through the utility of an L- serine auxiliary Jennifer R. Mazzone University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation Mazzone, Jennifer R., "I The synthesis of papyracillic acids: Application of the tandem chain extension- acylation reaction II Diastereoselective synthesis of beta-methyl-gamma-keto esters through the utility of an L-serine auxiliary" (2011). Doctoral Dissertations. 644. https://scholars.unh.edu/dissertation/644 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. I. THE SYNTHESES OF PAPYRACILLIC ACIDS: APPLICATION OF THE TANDEM CHAIN EXTENSION-ACYLATION REACTION II. DIASTEREOSELECTIVE SYNTHESIS OF p-METHYL-y-KETO ESTERS THROUGH THE UTILITY OF AN L-SERINE AUXILIARY BY Jennifer R. Mazzone B.A., Assumption College, 2006 DISSERTATION Submitted to the University of New Hampshire in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Chemistry December, 2011 UMI Number: 3500790 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. -
Aldrich Raman
Aldrich Raman Library Listing – 14,033 spectra This library represents the most comprehensive collection of FT-Raman spectral references available. It contains many common chemicals found in the Aldrich Handbook of Fine Chemicals. To create the Aldrich Raman Condensed Phase Library, 14,033 compounds found in the Aldrich Collection of FT-IR Spectra Edition II Library were excited with an Nd:YVO4 laser (1064 nm) using laser powers between 400 - 600 mW, measured at the sample. A Thermo FT-Raman spectrometer (with a Ge detector) was used to collect the Raman spectra. The spectra were saved in Raman Shift format. Aldrich Raman Index Compound Name Index Compound Name 4803 ((1R)-(ENDO,ANTI))-(+)-3- 4246 (+)-3-ISOPROPYL-7A- BROMOCAMPHOR-8- SULFONIC METHYLTETRAHYDRO- ACID, AMMONIUM SALT PYRROLO(2,1-B)OXAZOL-5(6H)- 2207 ((1R)-ENDO)-(+)-3- ONE, BROMOCAMPHOR, 98% 12568 (+)-4-CHOLESTEN-3-ONE, 98% 4804 ((1S)-(ENDO,ANTI))-(-)-3- 3774 (+)-5,6-O-CYCLOHEXYLIDENE-L- BROMOCAMPHOR-8- SULFONIC ASCORBIC ACID, 98% ACID, AMMONIUM SALT 11632 (+)-5-BROMO-2'-DEOXYURIDINE, 2208 ((1S)-ENDO)-(-)-3- 97% BROMOCAMPHOR, 98% 11634 (+)-5-FLUORODEOXYURIDINE, 769 ((1S)-ENDO)-(-)-BORNEOL, 99% 98+% 13454 ((2S,3S)-(+)- 11633 (+)-5-IODO-2'-DEOXYURIDINE, 98% BIS(DIPHENYLPHOSPHINO)- 4228 (+)-6-AMINOPENICILLANIC ACID, BUTANE)(N3-ALLYL)PD(II) CL04, 96% 97 8167 (+)-6-METHOXY-ALPHA-METHYL- 10297 ((3- 2- NAPHTHALENEACETIC ACID, DIMETHYLAMINO)PROPYL)TRIPH 98% ENYL- PHOSPHONIUM BROMIDE, 12586 (+)-ANDROSTA-1,4-DIENE-3,17- 99% DIONE, 98% 13458 ((R)-(+)-2,2'- 963 (+)-ARABINOGALACTAN BIS(DIPHENYLPHOSPHINO)-1,1'- -
1 Abietic Acid R Abrasive Silica for Polishing DR Acenaphthene M (LC
1 abietic acid R abrasive silica for polishing DR acenaphthene M (LC) acenaphthene quinone R acenaphthylene R acetal (see 1,1-diethoxyethane) acetaldehyde M (FC) acetaldehyde-d (CH3CDO) R acetaldehyde dimethyl acetal CH acetaldoxime R acetamide M (LC) acetamidinium chloride R acetamidoacrylic acid 2- NB acetamidobenzaldehyde p- R acetamidobenzenesulfonyl chloride 4- R acetamidodeoxythioglucopyranose triacetate 2- -2- -1- -β-D- 3,4,6- AB acetamidomethylthiazole 2- -4- PB acetanilide M (LC) acetazolamide R acetdimethylamide see dimethylacetamide, N,N- acethydrazide R acetic acid M (solv) acetic anhydride M (FC) acetmethylamide see methylacetamide, N- acetoacetamide R acetoacetanilide R acetoacetic acid, lithium salt R acetobromoglucose -α-D- NB acetohydroxamic acid R acetoin R acetol (hydroxyacetone) R acetonaphthalide (α)R acetone M (solv) acetone ,A.R. M (solv) acetone-d6 RM acetone cyanohydrin R acetonedicarboxylic acid ,dimethyl ester R acetonedicarboxylic acid -1,3- R acetone dimethyl acetal see dimethoxypropane 2,2- acetonitrile M (solv) acetonitrile-d3 RM acetonylacetone see hexanedione 2,5- acetonylbenzylhydroxycoumarin (3-(α- -4- R acetophenone M (LC) acetophenone oxime R acetophenone trimethylsilyl enol ether see phenyltrimethylsilyl... acetoxyacetone (oxopropyl acetate 2-) R acetoxybenzoic acid 4- DS acetoxynaphthoic acid 6- -2- R 2 acetylacetaldehyde dimethylacetal R acetylacetone (pentanedione -2,4-) M (C) acetylbenzonitrile p- R acetylbiphenyl 4- see phenylacetophenone, p- acetyl bromide M (FC) acetylbromothiophene 2- -5- -
Biomedical Applications of Polymeric Cryogels
applied sciences Review Biomedical Applications of Polymeric Cryogels Monireh Bakhshpour 1, Neslihan Idil 2, I¸sıkPerçin 2 and Adil Denizli 1,* 1 Department of Chemistry, Faculty of Science, Hacettepe University, Ankara 06800, Turkey; [email protected] 2 Department of Biology, Faculty of Science, Hacettepe University, Ankara 06800, Turkey; [email protected] (N.I.); [email protected] (I.P.) * Correspondence: [email protected]; Tel.: +90-312-297-7983 Received: 31 December 2018; Accepted: 4 February 2019; Published: 7 February 2019 Featured Application: This study presents the comprehensive applications of polymeric cryogels in the field of biomedicine. To the best of our knowledge, this review is one of the most pioneering paper comparatively explains the biomedical applications of cryogels in detail. Abstract: The application of interconnected supermacroporous cryogels as support matrices for the purification, separation and immobilization of whole cells and different biological macromolecules has been well reported in literature. Cryogels have advantages over traditional gel carriers in the field of biochromatography and related biomedical applications. These matrices nearly mimic the three-dimensional structure of native tissue extracellular matrix. In addition, mechanical, osmotic and chemical stability of cryogels make them attractive polymeric materials for the construction of scaffolds in tissue engineering applications and in vitro cell culture, separation materials for many different processes such as immobilization of biomolecules, capturing of target molecules, and controlled drug delivery. The low mass transfer resistance of cryogel matrices makes them useful in chromatographic applications with the immobilization of different affinity ligands to these materials. Cryogels have been introduced as gel matrices prepared using partially frozen monomer or polymer solutions at temperature below zero. -
Phytochem Referenzsubstanzen
High pure reference substances Phytochem Hochreine Standardsubstanzen for research and quality für Forschung und management Referenzsubstanzen Qualitätssicherung Nummer Name Synonym CAS FW Formel Literatur 01.286. ABIETIC ACID Sylvic acid [514-10-3] 302.46 C20H30O2 01.030. L-ABRINE N-a-Methyl-L-tryptophan [526-31-8] 218.26 C12H14N2O2 Merck Index 11,5 01.031. (+)-ABSCISIC ACID [21293-29-8] 264.33 C15H20O4 Merck Index 11,6 01.032. (+/-)-ABSCISIC ACID ABA; Dormin [14375-45-2] 264.33 C15H20O4 Merck Index 11,6 01.002. ABSINTHIN Absinthiin, Absynthin [1362-42-1] 496,64 C30H40O6 Merck Index 12,8 01.033. ACACETIN 5,7-Dihydroxy-4'-methoxyflavone; Linarigenin [480-44-4] 284.28 C16H12O5 Merck Index 11,9 01.287. ACACETIN Apigenin-4´methylester [480-44-4] 284.28 C16H12O5 01.034. ACACETIN-7-NEOHESPERIDOSIDE Fortunellin [20633-93-6] 610.60 C28H32O14 01.035. ACACETIN-7-RUTINOSIDE Linarin [480-36-4] 592.57 C28H32O14 Merck Index 11,5376 01.036. 2-ACETAMIDO-2-DEOXY-1,3,4,6-TETRA-O- a-D-Glucosamine pentaacetate 389.37 C16H23NO10 ACETYL-a-D-GLUCOPYRANOSE 01.037. 2-ACETAMIDO-2-DEOXY-1,3,4,6-TETRA-O- b-D-Glucosamine pentaacetate [7772-79-4] 389.37 C16H23NO10 ACETYL-b-D-GLUCOPYRANOSE> 01.038. 2-ACETAMIDO-2-DEOXY-3,4,6-TRI-O-ACETYL- Acetochloro-a-D-glucosamine [3068-34-6] 365.77 C14H20ClNO8 a-D-GLUCOPYRANOSYLCHLORIDE - 1 - High pure reference substances Phytochem Hochreine Standardsubstanzen for research and quality für Forschung und management Referenzsubstanzen Qualitätssicherung Nummer Name Synonym CAS FW Formel Literatur 01.039. -
Protein Modification and Catabolic Fates of Lipid
PROTEIN MODIFICATION AND CATABOLIC FATES OF LIPID PEROXIDATION PRODUCTS by CHUAN SHI Submitted in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Dissertation Advisor: Gregory P. Tochtrop, Ph.D. Department of Chemistry CASE WESTERN RESERVE UNIVERSITY January 2017 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the dissertation of ______________________________________________________Chuan Shi candidate for the Doctor of Philosophy degree *. Rajesh Viswanathan (signed)_______________________________________________ (chair of the committee) Anthony Pearson ________________________________________________ Michael Zagorski ________________________________________________ Henri Brunengraber ________________________________________________ Gregory Tochtrop ________________________________________________ ________________________________________________ (date) _______________________Dec. 8, 2016 *We also certify that written approval has been obtained for any proprietary material contained therein. This thesis is dedicated to my parents in the deepest appreciation and gratitude for their unconditional love, endless support and continuous encouragement throughout every step in my life TABLE OF CONTENTS Table of Contents ................................................................................................................. i List of Figures ......................................................................................................................v List of Schemes ................................................................................................................ -
M.Sc. Chemistry Syllabus
SYLLABUS FOR MASTERS PROGRAMME (M.Sc.) IN CHEMISTRY (BATCH-2016 and BATCH-2017) UNDER CHOICE BASED CREDIT SYSTEM (CBCS) DEPARTMENT OF CHEMISTRY ISLAMIC UNIVERSITY OF SCIENCE AND TECHNOLOGY, AWANTIPORA, PULWAMA, KASHMIR, J&K, INDIA, 192122. Department of Chemistry Islamic University of Science and Technology Master’s Programme A Master’s Programme consists of a set of Core Courses and Optional Course. The entire course carries choice based credit system. A Master’s degree in Chemistry course is divided in to 04 semesters comprising 02 odd semesters and 02 even semesters. Credits The term credit is used to describe the quantum of syllabus for various programmes in terms and hours of study. It indicates differential weightage given according to the contents and duration of the courses in the curriculum design. Courses Each course may consist of Lectures/ Tutorials/ Laboratory work/ Seminar/ Project work/ Practical training report/ Viva voce etc. Subject Code Fixation The following code system (5 characters) is adopted for Post graduate course in chemistry PXX PG code for department X Course Type X Specification of that course Example PCH CC 101 PCH-CC-101 PG Code Core Course Specification of that course CC– Core Courses: Theory & Practical DCE – Discipline Centric OE-Open Electives Department of Chemistry Islamic University of Science and Technology Total Credit and Marks Distribution for the Four Semesters Course Type No of Papers Credits per Paper Total Credits Marks per Paper Total Marks Core Course 14 4 56 100 1400 (Theory) Core Course -
Molecularly Imprinted Polymers Combined with Electrochemical Sensors for Food Contaminants Analysis
molecules Review Molecularly Imprinted Polymers Combined with Electrochemical Sensors for Food Contaminants Analysis Dounia Elfadil 1,2, Abderrahman Lamaoui 2 , Flavio Della Pelle 1 , Aziz Amine 2,* and Dario Compagnone 1,* 1 Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100 Teramo, Italy; [email protected] (D.E.); [email protected] (F.D.P.) 2 Laboratory of Process Engineering and Environment, Faculty of Sciences and Techniques, Hassan II University of Casablanca, Mohammedia 28810, Morocco; [email protected] * Correspondence: [email protected] (A.A.); [email protected] (D.C.) Abstract: Detection of relevant contaminants using screening approaches is a key issue to ensure food safety and respect for the regulatory limits established. Electrochemical sensors present several advantages such as rapidity; ease of use; possibility of on-site analysis and low cost. The lack of selectivity for electrochemical sensors working in complex samples as food may be overcome by coupling them with molecularly imprinted polymers (MIPs). MIPs are synthetic materials that mimic biological receptors and are produced by the polymerization of functional monomers in presence of a target analyte. This paper critically reviews and discusses the recent progress in MIP-based electrochemical sensors for food safety. A brief introduction on MIPs and electrochemical sensors is given; followed by a discussion of the recent achievements for various MIPs-based electrochemical sensors for food contaminants analysis. Both electropolymerization and chemical synthesis of MIP- Citation: Elfadil, D.; Lamaoui, A.; based electrochemical sensing are discussed as well as the relevant applications of MIPs used in Della Pelle, F.; Amine, A.; sample preparation and then coupled to electrochemical analysis. -
Otto-Catalog-2019-20.Pdf
Lab Chemicals & More..... Otto Catalog 2019-20 1 CODE PRODUCT NAME CAS NO. PACKING RATE ` PACKING RATE ` A 1214 ABSCISIC ACID practical grade 10% 14375-45-2 100mg 2007 1gm 13059 A 1215 ABSCISIC ACID for biochemistry 99% 14375-45-2 25mg 1395 100mg 3609 500 mg 17469 A 1217 (7-AMINO CEPHALOSPORANIC ACID) 7-ACA 98% 957-68-6 1gm 2403 5gm 9396 A 1225 ACACIA 9000-01-5 500gm 504 5kg 4392 A 1226 ACACIA spray dried powder 9000-01-5 500gm 684 5kg 6309 A 1227 ACACIA GR 9000-01-5 500gm 828 5kg 7407 A 0855 ACARBOSE, >95% 56180-94-0 1 gm 18099 A 1229 ACENAPHTHENE pract 83-32-9 100gm 306 500gm 1395 5 kg 11907 A 1230 ACENAPHTHENE for synthesis 97% 83-32-9 100gm 450 500gm 1692 A 1231 ACENAPHTHENE GR for HLPC 83-32-9 100gm 1359 500gm 5533 A 1234 ACES BUFFER 99% 7365-82-4 5gm 864 25gm 2385 [N-(2-Acetamido)-2-aminoethane sulfonic acid] 100 gm 8739 A 1233 ACETALDEHYDE 20-30% solution for synthesis 75-07-0 500ml 477 5lt 4095 A 1235 ACETAMIDE for synthesis 99% 60-35-5 500 gm 801 A 1240 ACETAMIDINE CHLORIDE for synthesis 124-42-5 100gm 3159 250gm 7830 A 1242 N-(2-ACETAMIDO) IMINODIACETIC ACID (ADA BUFFER) 26239-55-4 25gm 855 100gm 2592 250 gm 5994 A 1245 ACETANILIDE for synthesis 98.5% 103-84-4 500gm 918 5kg 8289 A 1248 ACETATE BUFFER SOLUTION pH 4.6 - - - - - 500ml 180 5lt 1449 A 1250 ACETIC ACID glacial 99% 64-19-7 500ml 207 5lt 1602 A 1251 ACETIC ACID glacial GR 99%+ 64-19-7 500ml 252 5lt 1908 A 1252 ACETIC ACID GLACIAL GR 99.7% 64-19-7 500ml 315 5lt 1998 A 1253 ACETIC ACID GLACIAL EL 99.9% 64-19-7 500ml 378 5lt 2502 A 1254 ACETIC ACID 99.8% for HPLC 64-19-7 -
JUN I 13998 Scienct LIBRARIES This Doctoral Thesis Has Been Examined by a Committee of the Department of Chemistry As Follows
THE DEVELOPMENT OF ORGANOTIN REAGENTS FOR ORGANIC SYNTHESIS by David Scott Hays B. S. Chemistry, University of Illinois Submitted to the Department of Chemistry in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY IN ORGANIC CHEMISTRY at the Massachusetts Institute of Technology June 1998 © Massachusetts Institute of Technology, 1998 All rights reserved Signature of Author Department of Chemistry May 14, 1998 Certified by Gregory C. Fu t' Thesis Supervisor Accepted by Dietmar Seyferth Chairman, Departmental Committee on Graduate Students JUN I 13998 scienct LIBRARIES This doctoral thesis has been examined by a committee of the Department of Chemistry as follows: Professor Peter H. Seeberger I_ _ /1 Chairman Professor Gregory C. Fu J _J Thesis Supervisor Professor Rick L. Danheiser THE DEVELOPMENT OF ORGANOTIN REAGENTS FOR ORGANIC SYNTHESIS by David Scott Hays Submitted to the Department of Chemistry on May 14, 1998 in partial fulfillment of the requirements for the Degree of Doctor of Philosophy at the Massachusetts Institute of Technology ABSTRACT A method for the intramolecular pinacol coupling of dialdehydes and ketoaldehydes is described. The method was found to be useful for synthesizing 1,2-cyclopentanediols with very high degrees of diastereoselectivity in favor of the cis stereochemistry. 1,2- Cyclohexanediols were generated with lower degrees of stereoselection. This free radical chain process involves as the key steps: 1) an intramolecular addition of a tin ketyl radical to a pendant carbonyl group, followed by 2) a rapid intramolecular homolytic displacement by an oxygen radical at the tin center to liberate an alkyl radical. The development of a Bu 3 SnH-catalyzed carbon-carbon bond forming reaction (the reductive cyclization of enals and enones) is described, followed by a catalytic variant of the Barton-McCombie deoxygenation reaction. -
Hae II Hae III Hae III Methyltransferase Hafnium Standard Solution (Hf 1000)
General Catalog of Kanto Reagents, Chemicals & Biologicals + Oct. 2021 HABA(HABCA) → o-[(p-Hydroxyphenyl)azo]benzoic acid Hae II store below -20℃ 20,000units/mL 49889-83 NEB(R0107S) 2000units JPY10,000 49889-84 NEB(R0107L) 10000units JPY40,300 Hae III [PS] store below -20℃ 49889-85 NEB(R0108S) 3000units JPY6,900 49889-86 NEB(R0108L) 15000units JPY27,600 49889-87 NEB(R0108T) 3000units JPY7,300 49889-88 NEB(R0108M) 15000units JPY29,700 Hae III Methyltransferase store below -20℃ 10,000units/mL 49885-01 NEB(M0224S) 500units JPY13,200 Hafnium standard solution (Hf 1000) Danger UN No.[2031] Hf in 0.1mol/L HNO3 18155-1B Hf:1000mg/L for atomic 100mL JPY18,000 absorption spectrometry General Catalog of Kanto Reagents, Chemicals & Biologicals + Oct. 2021 Hafnium, cube, 5N Warning Hf...178.48 [ISH] CAS RN®[7440-58-6] mp 2227℃† particle size abt 2mm 18673-53 99.999%(Im.S.) for advanced 5g JPY26,000 material research Hafnium oxide, 2N5 Warning HfO2...210.48 [ISH] CAS RN®[12055-23-1] mp 2774℃† 18000-23 >99.5%(Im.S.) high purity reagent 100g JPY60,000 18000-33 >99.5%(Im.S.) high purity reagent 25g JPY21,000 HA-100 hydrochloride C13H15N3O2S・2HCl...350.26 store below -20℃ CAS RN®[210297-47-5] 49029-36 APExB(C4953-5) 5mg JPY24,000 49029-37 APExB(C4953-10) 10mg JPY33,500 49029-38 APExB(C4953-25) 25mg JPY61,300 Halfenprox standard Danger C24H23BrF2O3...477.33 [DS][FS] store at 0℃-6℃ CAS RN®[111872-58-3]UN No.[2810] bp 291℃▲ 49831-27 DES(C14059000) for pesticide 10mg JPY74,000 residue analysis General Catalog of Kanto Reagents, Chemicals & Biologicals + Oct.