Protein Modification and Catabolic Fates of Lipid

Total Page:16

File Type:pdf, Size:1020Kb

Protein Modification and Catabolic Fates of Lipid PROTEIN MODIFICATION AND CATABOLIC FATES OF LIPID PEROXIDATION PRODUCTS by CHUAN SHI Submitted in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Dissertation Advisor: Gregory P. Tochtrop, Ph.D. Department of Chemistry CASE WESTERN RESERVE UNIVERSITY January 2017 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the dissertation of ______________________________________________________Chuan Shi candidate for the Doctor of Philosophy degree *. Rajesh Viswanathan (signed)_______________________________________________ (chair of the committee) Anthony Pearson ________________________________________________ Michael Zagorski ________________________________________________ Henri Brunengraber ________________________________________________ Gregory Tochtrop ________________________________________________ ________________________________________________ (date) _______________________Dec. 8, 2016 *We also certify that written approval has been obtained for any proprietary material contained therein. This thesis is dedicated to my parents in the deepest appreciation and gratitude for their unconditional love, endless support and continuous encouragement throughout every step in my life TABLE OF CONTENTS Table of Contents ................................................................................................................. i List of Figures ......................................................................................................................v List of Schemes ................................................................................................................. vii List of Tables ................................................................................................................... viii Acknowledgement ............................................................................................................. ix List of Abbreviations ......................................................................................................... xi Abstract ..............................................................................................................................xv Chapter 1. General Introduction ..........................................................................................1 1.1 Oxidative stress ..........................................................................................................2 1.2 Lipid peroxidation ......................................................................................................3 1.3 Fates of LPO products and their relevance on disease states ....................................5 1.3.1 Reactions with proteins and other endogenous nucleophiles .............................5 1.3.2 Metabolic fate ......................................................................................................8 1.4 Research Strategy ....................................................................................................11 1.4.1 Characterization of the enzymes in catabolic pathway of 4-HNE ....................11 1.4.2 Investigation of the relevance of EKODEs in diseases or aging .......................13 1.5 References ................................................................................................................15 Chapter 2. Identification of Relevant Enzymes in the Catabolic Pathways of 4- Hydroxyacids and Lipid Peroxidation Products ...............................................................23 2.1 Introduction ..............................................................................................................24 2.2 Results and Discussions ...........................................................................................28 2.2.1 Kinase activity assay .........................................................................................28 i 2.2.2 Kinase purification ............................................................................................33 2.2.3 Verification of kinase candidates ......................................................................39 2.3 Conclusions ..............................................................................................................43 2.4 Experimental Sections .............................................................................................44 2.4.1 Materials and Methods ......................................................................................44 2.4.2 GHP-CoA kinase activity assay ........................................................................46 2.4.3 Kinase purification ............................................................................................53 2.4.3 Kinase purification ............................................................................................48 2.4.4 Verification of kinase candidate ........................................................................50 2.5 Acknowledgement ....................................................................................................52 2.6 References ................................................................................................................53 Chapter 3. Mechanistic Study of Protein Modification by Epoxyketooctadecenoic Acids (EKODEs) ..........................................................................................................................59 3.1 Introduction ..............................................................................................................60 3.2 Results and Discussions ...........................................................................................63 3.2.1 Mechanistic study of the reactions of EKODE model compounds with analogues of nucleophilic amino acids ......................................................................63 3.2.2 Reactions of EKODEs with cysteine ................................................................68 3.2.3 Mass spectrometric characterization of the modification of human serum albumin (HSA) by trans-EKODE-(E)-IIb .................................................................73 3.3 Conclusions ..............................................................................................................79 3.4 Experimental Sections .............................................................................................80 3.4.1 Materials and Methods ......................................................................................80 ii 3.4.2 Mechanistic study of the reactions of EKODE model compounds with analogues of nucleophilic amino acids ......................................................................81 3.4.3 Reactions of EKODEs with cysteine ................................................................87 3.4.4 Mass spectrometric characterization of the modification of HSA by trans- EKODE-(E)-IIb .........................................................................................................89 3.5 Acknowledgement ....................................................................................................92 3.6 References ................................................................................................................93 Chapter 4. Immunochemical Detection of EKODE-Cysteine Adducts in Oxidative Stress, Aging, and Diseases ..........................................................................................................99 4.1 Introduction ............................................................................................................100 4.2 Results and Discussions .........................................................................................103 4.2.1 Strategies for antigen preparation ....................................................................103 4.2.2 Production and characterization of antibodies against EKODE-cysteine adduct ..................................................................................................................................108 4.2.3 Immunochemical detection of EKODE-cysteine adduct in nervous system...113 4.2.4 Immunochemical detection of EKODE-cysteine adduct in cardiovascular disease and other tissues ...........................................................................................117 4.3 Conclusions ............................................................................................................121 4.4 Experimental Sections ...........................................................................................122 4.4.1 Materials and Methods ....................................................................................122 4.4.2 Synthesis of antigens against EKODE-cysteine adduct .................................123 4.4.3 Production and characterization of anti-EKODE-Cys antibodies ...................126 iii 4.4.4 Immunochemical detection of endogenous EKODE-Cys adducts in biological samples ....................................................................................................................130 4.5 Acknowledgement ..................................................................................................133 4.6 References ..............................................................................................................134 Chapter 5. Future Directions ...........................................................................................140 5.1 Identification of relevant kinase in the catabolic pathways of 4-hydroxyacids .....141 5.2 Protein modification
Recommended publications
  • Aldrich Raman
    Aldrich Raman Library Listing – 14,033 spectra This library represents the most comprehensive collection of FT-Raman spectral references available. It contains many common chemicals found in the Aldrich Handbook of Fine Chemicals. To create the Aldrich Raman Condensed Phase Library, 14,033 compounds found in the Aldrich Collection of FT-IR Spectra Edition II Library were excited with an Nd:YVO4 laser (1064 nm) using laser powers between 400 - 600 mW, measured at the sample. A Thermo FT-Raman spectrometer (with a Ge detector) was used to collect the Raman spectra. The spectra were saved in Raman Shift format. Aldrich Raman Index Compound Name Index Compound Name 4803 ((1R)-(ENDO,ANTI))-(+)-3- 4246 (+)-3-ISOPROPYL-7A- BROMOCAMPHOR-8- SULFONIC METHYLTETRAHYDRO- ACID, AMMONIUM SALT PYRROLO(2,1-B)OXAZOL-5(6H)- 2207 ((1R)-ENDO)-(+)-3- ONE, BROMOCAMPHOR, 98% 12568 (+)-4-CHOLESTEN-3-ONE, 98% 4804 ((1S)-(ENDO,ANTI))-(-)-3- 3774 (+)-5,6-O-CYCLOHEXYLIDENE-L- BROMOCAMPHOR-8- SULFONIC ASCORBIC ACID, 98% ACID, AMMONIUM SALT 11632 (+)-5-BROMO-2'-DEOXYURIDINE, 2208 ((1S)-ENDO)-(-)-3- 97% BROMOCAMPHOR, 98% 11634 (+)-5-FLUORODEOXYURIDINE, 769 ((1S)-ENDO)-(-)-BORNEOL, 99% 98+% 13454 ((2S,3S)-(+)- 11633 (+)-5-IODO-2'-DEOXYURIDINE, 98% BIS(DIPHENYLPHOSPHINO)- 4228 (+)-6-AMINOPENICILLANIC ACID, BUTANE)(N3-ALLYL)PD(II) CL04, 96% 97 8167 (+)-6-METHOXY-ALPHA-METHYL- 10297 ((3- 2- NAPHTHALENEACETIC ACID, DIMETHYLAMINO)PROPYL)TRIPH 98% ENYL- PHOSPHONIUM BROMIDE, 12586 (+)-ANDROSTA-1,4-DIENE-3,17- 99% DIONE, 98% 13458 ((R)-(+)-2,2'- 963 (+)-ARABINOGALACTAN BIS(DIPHENYLPHOSPHINO)-1,1'-
    [Show full text]
  • 1 Abietic Acid R Abrasive Silica for Polishing DR Acenaphthene M (LC
    1 abietic acid R abrasive silica for polishing DR acenaphthene M (LC) acenaphthene quinone R acenaphthylene R acetal (see 1,1-diethoxyethane) acetaldehyde M (FC) acetaldehyde-d (CH3CDO) R acetaldehyde dimethyl acetal CH acetaldoxime R acetamide M (LC) acetamidinium chloride R acetamidoacrylic acid 2- NB acetamidobenzaldehyde p- R acetamidobenzenesulfonyl chloride 4- R acetamidodeoxythioglucopyranose triacetate 2- -2- -1- -β-D- 3,4,6- AB acetamidomethylthiazole 2- -4- PB acetanilide M (LC) acetazolamide R acetdimethylamide see dimethylacetamide, N,N- acethydrazide R acetic acid M (solv) acetic anhydride M (FC) acetmethylamide see methylacetamide, N- acetoacetamide R acetoacetanilide R acetoacetic acid, lithium salt R acetobromoglucose -α-D- NB acetohydroxamic acid R acetoin R acetol (hydroxyacetone) R acetonaphthalide (α)R acetone M (solv) acetone ,A.R. M (solv) acetone-d6 RM acetone cyanohydrin R acetonedicarboxylic acid ,dimethyl ester R acetonedicarboxylic acid -1,3- R acetone dimethyl acetal see dimethoxypropane 2,2- acetonitrile M (solv) acetonitrile-d3 RM acetonylacetone see hexanedione 2,5- acetonylbenzylhydroxycoumarin (3-(α- -4- R acetophenone M (LC) acetophenone oxime R acetophenone trimethylsilyl enol ether see phenyltrimethylsilyl... acetoxyacetone (oxopropyl acetate 2-) R acetoxybenzoic acid 4- DS acetoxynaphthoic acid 6- -2- R 2 acetylacetaldehyde dimethylacetal R acetylacetone (pentanedione -2,4-) M (C) acetylbenzonitrile p- R acetylbiphenyl 4- see phenylacetophenone, p- acetyl bromide M (FC) acetylbromothiophene 2- -5-
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Biomedical Applications of Polymeric Cryogels
    applied sciences Review Biomedical Applications of Polymeric Cryogels Monireh Bakhshpour 1, Neslihan Idil 2, I¸sıkPerçin 2 and Adil Denizli 1,* 1 Department of Chemistry, Faculty of Science, Hacettepe University, Ankara 06800, Turkey; [email protected] 2 Department of Biology, Faculty of Science, Hacettepe University, Ankara 06800, Turkey; [email protected] (N.I.); [email protected] (I.P.) * Correspondence: [email protected]; Tel.: +90-312-297-7983 Received: 31 December 2018; Accepted: 4 February 2019; Published: 7 February 2019 Featured Application: This study presents the comprehensive applications of polymeric cryogels in the field of biomedicine. To the best of our knowledge, this review is one of the most pioneering paper comparatively explains the biomedical applications of cryogels in detail. Abstract: The application of interconnected supermacroporous cryogels as support matrices for the purification, separation and immobilization of whole cells and different biological macromolecules has been well reported in literature. Cryogels have advantages over traditional gel carriers in the field of biochromatography and related biomedical applications. These matrices nearly mimic the three-dimensional structure of native tissue extracellular matrix. In addition, mechanical, osmotic and chemical stability of cryogels make them attractive polymeric materials for the construction of scaffolds in tissue engineering applications and in vitro cell culture, separation materials for many different processes such as immobilization of biomolecules, capturing of target molecules, and controlled drug delivery. The low mass transfer resistance of cryogel matrices makes them useful in chromatographic applications with the immobilization of different affinity ligands to these materials. Cryogels have been introduced as gel matrices prepared using partially frozen monomer or polymer solutions at temperature below zero.
    [Show full text]
  • Mitochondrial Involvement and Erythronic Acid As a Novel Biomarker in Transaldolase Deficiency Udo F.H
    Mitochondrial involvement and erythronic acid as a novel biomarker in transaldolase deficiency Udo F.H. Engelke, Fokje S.M. Zijlstra, Fanny Mochel, Vassili Valayannopoulos, Daniel Rabier, Leo A.J. Kluijtmans, András Perl, Nanda M. Verhoeven-Duif, Pascale de Lonlay, Mirjam M.C. Wamelink, et al. To cite this version: Udo F.H. Engelke, Fokje S.M. Zijlstra, Fanny Mochel, Vassili Valayannopoulos, Daniel Rabier, et al.. Mitochondrial involvement and erythronic acid as a novel biomarker in transaldolase deficiency. Biochimica et Biophysica Acta - Molecular Basis of Disease, Elsevier, 2010, 1802 (11), pp.1028. 10.1016/j.bbadis.2010.06.007. hal-00623290 HAL Id: hal-00623290 https://hal.archives-ouvertes.fr/hal-00623290 Submitted on 14 Sep 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ÔØ ÅÒÙ×Ö ÔØ Mitochondrial involvement and erythronic acid as a novel biomarker in transaldolase deficiency Udo F.H. Engelke, Fokje S.M. Zijlstra, Fanny Mochel, Vassili Valayannopou- los, Daniel Rabier, Leo A.J. Kluijtmans, Andr´asPerl, Nanda M. Verhoeven- Duif, Pascale de Lonlay, Mirjam M.C. Wamelink, Cornelis Jakobs, Eva´ Morava, Ron A. Wevers PII: S0925-4439(10)00117-1 DOI: doi: 10.1016/j.bbadis.2010.06.007 Reference: BBADIS 63115 To appear in: BBA - Molecular Basis of Disease Received date: 23 April 2010 Revised date: 11 June 2010 Accepted date: 11 June 2010 Please cite this article as: Udo F.H.
    [Show full text]
  • Phytochem Referenzsubstanzen
    High pure reference substances Phytochem Hochreine Standardsubstanzen for research and quality für Forschung und management Referenzsubstanzen Qualitätssicherung Nummer Name Synonym CAS FW Formel Literatur 01.286. ABIETIC ACID Sylvic acid [514-10-3] 302.46 C20H30O2 01.030. L-ABRINE N-a-Methyl-L-tryptophan [526-31-8] 218.26 C12H14N2O2 Merck Index 11,5 01.031. (+)-ABSCISIC ACID [21293-29-8] 264.33 C15H20O4 Merck Index 11,6 01.032. (+/-)-ABSCISIC ACID ABA; Dormin [14375-45-2] 264.33 C15H20O4 Merck Index 11,6 01.002. ABSINTHIN Absinthiin, Absynthin [1362-42-1] 496,64 C30H40O6 Merck Index 12,8 01.033. ACACETIN 5,7-Dihydroxy-4'-methoxyflavone; Linarigenin [480-44-4] 284.28 C16H12O5 Merck Index 11,9 01.287. ACACETIN Apigenin-4´methylester [480-44-4] 284.28 C16H12O5 01.034. ACACETIN-7-NEOHESPERIDOSIDE Fortunellin [20633-93-6] 610.60 C28H32O14 01.035. ACACETIN-7-RUTINOSIDE Linarin [480-36-4] 592.57 C28H32O14 Merck Index 11,5376 01.036. 2-ACETAMIDO-2-DEOXY-1,3,4,6-TETRA-O- a-D-Glucosamine pentaacetate 389.37 C16H23NO10 ACETYL-a-D-GLUCOPYRANOSE 01.037. 2-ACETAMIDO-2-DEOXY-1,3,4,6-TETRA-O- b-D-Glucosamine pentaacetate [7772-79-4] 389.37 C16H23NO10 ACETYL-b-D-GLUCOPYRANOSE> 01.038. 2-ACETAMIDO-2-DEOXY-3,4,6-TRI-O-ACETYL- Acetochloro-a-D-glucosamine [3068-34-6] 365.77 C14H20ClNO8 a-D-GLUCOPYRANOSYLCHLORIDE - 1 - High pure reference substances Phytochem Hochreine Standardsubstanzen for research and quality für Forschung und management Referenzsubstanzen Qualitätssicherung Nummer Name Synonym CAS FW Formel Literatur 01.039.
    [Show full text]
  • Molecularly Imprinted Polymers Combined with Electrochemical Sensors for Food Contaminants Analysis
    molecules Review Molecularly Imprinted Polymers Combined with Electrochemical Sensors for Food Contaminants Analysis Dounia Elfadil 1,2, Abderrahman Lamaoui 2 , Flavio Della Pelle 1 , Aziz Amine 2,* and Dario Compagnone 1,* 1 Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100 Teramo, Italy; [email protected] (D.E.); [email protected] (F.D.P.) 2 Laboratory of Process Engineering and Environment, Faculty of Sciences and Techniques, Hassan II University of Casablanca, Mohammedia 28810, Morocco; [email protected] * Correspondence: [email protected] (A.A.); [email protected] (D.C.) Abstract: Detection of relevant contaminants using screening approaches is a key issue to ensure food safety and respect for the regulatory limits established. Electrochemical sensors present several advantages such as rapidity; ease of use; possibility of on-site analysis and low cost. The lack of selectivity for electrochemical sensors working in complex samples as food may be overcome by coupling them with molecularly imprinted polymers (MIPs). MIPs are synthetic materials that mimic biological receptors and are produced by the polymerization of functional monomers in presence of a target analyte. This paper critically reviews and discusses the recent progress in MIP-based electrochemical sensors for food safety. A brief introduction on MIPs and electrochemical sensors is given; followed by a discussion of the recent achievements for various MIPs-based electrochemical sensors for food contaminants analysis. Both electropolymerization and chemical synthesis of MIP- Citation: Elfadil, D.; Lamaoui, A.; based electrochemical sensing are discussed as well as the relevant applications of MIPs used in Della Pelle, F.; Amine, A.; sample preparation and then coupled to electrochemical analysis.
    [Show full text]
  • Pentose Phosphate Pathway in Health and Disease: from Metabolic
    UNIVERSIDADE DE LISBOA FACULDADE DE FARMÁCIA DEPARTAMENTO DE BIOQUÍMICA PENTOSE PHOSPHATE PATHWAY IN HEALTH AND DISEASE: FROM METABOLIC DYSFUNCTION TO BIOMARKERS Rúben José Jesus Faustino Ramos Orientador: Professora Doutora Maria Isabel Ginestal Tavares de Almeida Mestrado em Análises Clínicas 2013 Pentose Phosphate Pathway in health and disease: From metabolic dysfunction to biomarkers . Via das Pentoses Fosfato na saúde e na doença: Da disfunção metabólica aos biomarcadores Dissertação apresentada à Faculdade de Farmácia da Universidade de Lisboa para obtenção do grau de Mestre em Análises Clínicas Rúben José Jesus Faustino Ramos Lisboa 2013 Orientador: Professora Doutora Maria Isabel Ginestal Tavares de Almeida The studies presented in this thesis were performed at the Metabolism and Genetics group, iMed.UL (Research Institute for Medicines and Pharmaceutical Sciences), Faculdade de Farmácia da Universidade de Lisboa, Portugal, under the supervision of Prof. Maria Isabel Ginestal Tavares de Almeida, and in collaboration with the Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands, Dr. Mirjam Wamelink. De acordo com o disposto no ponto 1 do artigo nº 41 do Regulamento de Estudos Pós- Graduados da Universidade de Lisboa, deliberação nº 93/2006, publicada em Diário da Republica – II série nº 153 – de 5 julho de 2003, o autor desta dissertação declara que participou na conceção e execução do trabalho experimental, interpretação dos resultados obtidos e redação dos manuscritos. Para os meus pais e
    [Show full text]
  • Pentose Phosphate Pathway Biochemistry, Metabolism and Inherited Defects
    Pentose phosphate pathway biochemistry, metabolism and inherited defects Amsterdam 2008 Mirjam M.C. Wamelink The research described in this thesis was carried out at the Department of Clinical Chemistry, Metabolic Unit, VU University Medical Center, Amsterdam, The Netherlands. The publication of this thesis was financially supported by: Department of Clinical Chemistry, VU University Medical Center Amsterdam E.C. Noyons Stichting ter bevordering van de Klinische Chemie in Nederland J.E. Jurriaanse Stichting te Rotterdam Printed by: Printpartners Ipskamp BV, Enschede ISBN: 978-90-9023415-1 Cover: Representation of a pathway of sugar Copyright Mirjam Wamelink, Amsterdam, The Netherlands, 2008 2 VRIJE UNIVERSITEIT Pentose phosphate pathway biochemistry, metabolism and inherited defects ACADEMISCH PROEFSCHRIFT ter verkrijging van de graad Doctor aan de Vrije Universiteit Amsterdam, op gezag van de rector magnificus prof.dr. L.M. Bouter, in het openbaar te verdedigen ten overstaan van de promotiecommissie van de faculteit der Geneeskunde op donderdag 11 december 2008 om 13.45 uur in de aula van de universiteit, De Boelelaan 1105 door Mirjam Maria Catharina Wamelink geboren te Alkmaar 3 promotor: prof.dr.ir. C.A.J.M. Jakobs copromotor: dr. E.A. Struijs 4 Abbreviations 6PGD 6-phosphogluconate dehydrogenase ADP adenosine diphosphate ATP adenosine triphosphate CSF cerebrospinal fluid DHAP dihydroxyacetone phosphate G6PD glucose-6-phosphate dehydrogenase GA glyceraldehyde GAPDH glyceraldehyde-3-phosphate dehydrogenase GSG oxidized glutathione
    [Show full text]
  • Otto-Catalog-2019-20.Pdf
    Lab Chemicals & More..... Otto Catalog 2019-20 1 CODE PRODUCT NAME CAS NO. PACKING RATE ` PACKING RATE ` A 1214 ABSCISIC ACID practical grade 10% 14375-45-2 100mg 2007 1gm 13059 A 1215 ABSCISIC ACID for biochemistry 99% 14375-45-2 25mg 1395 100mg 3609 500 mg 17469 A 1217 (7-AMINO CEPHALOSPORANIC ACID) 7-ACA 98% 957-68-6 1gm 2403 5gm 9396 A 1225 ACACIA 9000-01-5 500gm 504 5kg 4392 A 1226 ACACIA spray dried powder 9000-01-5 500gm 684 5kg 6309 A 1227 ACACIA GR 9000-01-5 500gm 828 5kg 7407 A 0855 ACARBOSE, >95% 56180-94-0 1 gm 18099 A 1229 ACENAPHTHENE pract 83-32-9 100gm 306 500gm 1395 5 kg 11907 A 1230 ACENAPHTHENE for synthesis 97% 83-32-9 100gm 450 500gm 1692 A 1231 ACENAPHTHENE GR for HLPC 83-32-9 100gm 1359 500gm 5533 A 1234 ACES BUFFER 99% 7365-82-4 5gm 864 25gm 2385 [N-(2-Acetamido)-2-aminoethane sulfonic acid] 100 gm 8739 A 1233 ACETALDEHYDE 20-30% solution for synthesis 75-07-0 500ml 477 5lt 4095 A 1235 ACETAMIDE for synthesis 99% 60-35-5 500 gm 801 A 1240 ACETAMIDINE CHLORIDE for synthesis 124-42-5 100gm 3159 250gm 7830 A 1242 N-(2-ACETAMIDO) IMINODIACETIC ACID (ADA BUFFER) 26239-55-4 25gm 855 100gm 2592 250 gm 5994 A 1245 ACETANILIDE for synthesis 98.5% 103-84-4 500gm 918 5kg 8289 A 1248 ACETATE BUFFER SOLUTION pH 4.6 - - - - - 500ml 180 5lt 1449 A 1250 ACETIC ACID glacial 99% 64-19-7 500ml 207 5lt 1602 A 1251 ACETIC ACID glacial GR 99%+ 64-19-7 500ml 252 5lt 1908 A 1252 ACETIC ACID GLACIAL GR 99.7% 64-19-7 500ml 315 5lt 1998 A 1253 ACETIC ACID GLACIAL EL 99.9% 64-19-7 500ml 378 5lt 2502 A 1254 ACETIC ACID 99.8% for HPLC 64-19-7
    [Show full text]
  • Hae II Hae III Hae III Methyltransferase Hafnium Standard Solution (Hf 1000)
    General Catalog of Kanto Reagents, Chemicals & Biologicals + Oct. 2021 HABA(HABCA) → o-[(p-Hydroxyphenyl)azo]benzoic acid Hae II store below -20℃ 20,000units/mL 49889-83 NEB(R0107S) 2000units JPY10,000 49889-84 NEB(R0107L) 10000units JPY40,300 Hae III [PS] store below -20℃ 49889-85 NEB(R0108S) 3000units JPY6,900 49889-86 NEB(R0108L) 15000units JPY27,600 49889-87 NEB(R0108T) 3000units JPY7,300 49889-88 NEB(R0108M) 15000units JPY29,700 Hae III Methyltransferase store below -20℃ 10,000units/mL 49885-01 NEB(M0224S) 500units JPY13,200 Hafnium standard solution (Hf 1000) Danger UN No.[2031] Hf in 0.1mol/L HNO3 18155-1B Hf:1000mg/L for atomic 100mL JPY18,000 absorption spectrometry General Catalog of Kanto Reagents, Chemicals & Biologicals + Oct. 2021 Hafnium, cube, 5N Warning Hf...178.48 [ISH] CAS RN®[7440-58-6] mp 2227℃† particle size abt 2mm 18673-53 99.999%(Im.S.) for advanced 5g JPY26,000 material research Hafnium oxide, 2N5 Warning HfO2...210.48 [ISH] CAS RN®[12055-23-1] mp 2774℃† 18000-23 >99.5%(Im.S.) high purity reagent 100g JPY60,000 18000-33 >99.5%(Im.S.) high purity reagent 25g JPY21,000 HA-100 hydrochloride C13H15N3O2S・2HCl...350.26 store below -20℃ CAS RN®[210297-47-5] 49029-36 APExB(C4953-5) 5mg JPY24,000 49029-37 APExB(C4953-10) 10mg JPY33,500 49029-38 APExB(C4953-25) 25mg JPY61,300 Halfenprox standard Danger C24H23BrF2O3...477.33 [DS][FS] store at 0℃-6℃ CAS RN®[111872-58-3]UN No.[2810] bp 291℃▲ 49831-27 DES(C14059000) for pesticide 10mg JPY74,000 residue analysis General Catalog of Kanto Reagents, Chemicals & Biologicals + Oct.
    [Show full text]
  • Or 12 Hours in a Stainless Steel Bomb
    Volume 12 (1962) 1. Cyclobutane Derivatives from Thermal Cycloaddition Reactions - John D. Roberts and Clay M. Sharts 2. The Preparation of Olefins by the Pyrolysis of Xanthates. The Chugaev Reaction - Harold R. Nace 3. The Synthesis of Aliphatic and Alicyclic Nitro Compounds - Nathan Kornblum 4. Synthesis of Peptides with Mixed Anhydrides - Noel F. Albertson 5. Desulfurizatioand Eugene nE . witvanh TameleRaney nNicke l - George R. Pettit Preparation of substituted cyclobutanes and cyclobutenes by cycloaddition reactions of alkene to alkene and alkene to alkyne has become an important synthetic reaction and, in fact, where applicable, is now the method of choice for synthesis of four-membered carbon ring compounds. Such cycloadditions may be achieved thermally under autogenous pressure in the presence of free-radical inhibitors or photochemically by irradiation with visible or ultraviolet light. This chapter does not include photochemical cycloadditions or the thermal dimerizations of ketenes since these have been well reviewed elsewhere.1-3 Historically, the establishment of cyclobutane structures for cycloaddition products provides an enlightening example of the waxing and waning of fashions in the interpretation of organic reactions. Some of the interesting and important landmarks will be briefly noted here.* First, the early work of Liebermann4 (1889) on the truxillic acids provided a strong measure of confidence for later workers in assigning cyclobutane structures to a variety of cycloadducts, and, when Kraemer5 discovered dicyclopentadiene (1896), he suggested that it was a cyclobutane derivative. This was followed by proposals of cyclobutane structures for dimers from 1,5-cycloöctadiene (Willst tter,6 1905), substituted ketenes (Staudinger,7 1906–1912), unsaturated acids (Doebner,8 1907), and allenes (Lebedev,9 1911–1913).
    [Show full text]