STRAIGHT: Hazardless Processor Architecture Without Register Renaming Hidetsugu Irie, Toru Koizumi, Akifumi Fukuda, Seiya Akaki, Satoshi Nakae, Yutaro Bessho, Ryota Shioya The University of Tokyo Tokyo, Japan irie, koizumi, a.fukuda, akaki, nakae,
[email protected],
[email protected] Takahiro Notsu, Katsuhiro Yoda, Teruo Ishihara Shuichi Sakai FUJITSU LABORATORIES LTD. The University of Tokyo Kawasaki, Japan Tokyo, Japan notsu.takahiro, yoda.katsuhiro,
[email protected] [email protected] Abstract—The single-thread performance of a processor im- higher performance, more functions, and higher power effi- proves the capability of the entire system by reducing the critical ciency. Currently, for the wide range of purpose from embed- path latency of programs. Typically, conventional superscalar ded processors to server processors, the heterogeneous multi- processors improve this performance by introducing out-of- order (OoO) execution with register renaming. However, it is core architecture [1] is adopted, which typically implements also known to increase the complexity and affect the power various types and various scales of cores into a chip; the most efficiency. This paper realizes a novel computer architecture efficient cores among them are in charge for each application called “STRAIGHT” to resolve this dilemma. The key feature depending on its characteristics. This strategy trades off energy is a unique instruction format in which the source operand efficiency against lower-utilized cores, reflecting the recent is given based on the distance from the producer instruction. By leveraging this format, register renaming is completely dilemma that even though the number of transistors can be removed from the pipeline.