Beyond Pollination: Diversity of Secretory Structures During Flower Development in Different Legume Lineages
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Multiple Polyploidy Events in the Early Radiation of Nodulating And
Multiple Polyploidy Events in the Early Radiation of Nodulating and Nonnodulating Legumes Steven B. Cannon,*,y,1 Michael R. McKain,y,2,3 Alex Harkess,y,2 Matthew N. Nelson,4,5 Sudhansu Dash,6 Michael K. Deyholos,7 Yanhui Peng,8 Blake Joyce,8 Charles N. Stewart Jr,8 Megan Rolf,3 Toni Kutchan,3 Xuemei Tan,9 Cui Chen,9 Yong Zhang,9 Eric Carpenter,7 Gane Ka-Shu Wong,7,9,10 Jeff J. Doyle,11 and Jim Leebens-Mack2 1USDA-Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, Ames, IA 2Department of Plant Biology, University of Georgia 3Donald Danforth Plant Sciences Center, St Louis, MO 4The UWA Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia 5The School of Plant Biology, The University of Western Australia, Crawley, WA, Australia 6Virtual Reality Application Center, Iowa State University 7Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada 8Department of Plant Sciences, The University of Tennessee Downloaded from 9BGI-Shenzhen, Bei Shan Industrial Zone, Shenzhen, China 10Department of Medicine, University of Alberta, Edmonton, AB, Canada 11L. H. Bailey Hortorium, Department of Plant Biology, Cornell University yThese authors contributed equally to this work. *Corresponding author: E-mail: [email protected]. http://mbe.oxfordjournals.org/ Associate editor:BrandonGaut Abstract Unresolved questions about evolution of the large and diverselegumefamilyincludethetiming of polyploidy (whole- genome duplication; WGDs) relative to the origin of the major lineages within the Fabaceae and to the origin of symbiotic nitrogen fixation. Previous work has established that a WGD affects most lineages in the Papilionoideae and occurred sometime after the divergence of the papilionoid and mimosoid clades, but the exact timing has been unknown. -
Redalyc.Anatomy and Ontogeny of the Pericarp Of
Anais da Academia Brasileira de Ciências ISSN: 0001-3765 [email protected] Academia Brasileira de Ciências Brasil Paiva, Élder A.S.; Oliveira, Denise M.T.; Machado, Silvia R. Anatomy and ontogeny of the pericarp of Pterodon emarginatus Vogel (Fabaceae, Faboideae), with emphasis on secretory ducts Anais da Academia Brasileira de Ciências, vol. 80, núm. 3, septiembre, 2008, pp. 455-465 Academia Brasileira de Ciências Rio de Janeiro, Brasil Available in: http://www.redalyc.org/articulo.oa?id=32713466007 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative “main” — 2008/7/24 — 19:54 — page 455 — #1 Anais da Academia Brasileira de Ciências (2008) 80(3): 455-465 (Annals of the Brazilian Academy of Sciences) ISSN 0001-3765 www.scielo.br/aabc Anatomy and ontogeny of the pericarp of Pterodon emarginatus Vogel (Fabaceae, Faboideae), with emphasis on secretory ducts ÉLDER A.S. PAIVA1, DENISE M.T. OLIVEIRA1 and SILVIA R. MACHADO2 1Departamento de Botânica, Instituto de Ciências Biológicas, UFMG, Avenida Antonio Carlos, 6627, Pampulha 31270-901 Belo Horizonte, MG, Brasil 2Departamento de Botânica, Instituto de Biociências, UNESP, Caixa Postal 510, 18618-000 Botucatu, SP, Brasil Manuscript received on July 6, 2007; accepted for publication on March 25, 2008; presented by ALEXANDER W.A. KELLNER ABSTRACT Discrepant and incomplete interpretations of fruits of Pterodon have been published, especially on the structural interpretation of the pericarp portion that remain attached to the seed upon dispersal. -
Volatile Monoterpene 'Fingerprints' of Resinous Protium Tree Species in The
Phytochemistry 160 (2019) 61–70 Contents lists available at ScienceDirect Phytochemistry journal homepage: www.elsevier.com/locate/phytochem Volatile monoterpene ‘fingerprints’ of resinous Protium tree species in the T Amazon rainforest ∗ Luani R.de O. Pivaa, Kolby J. Jardineb,d, , Bruno O. Gimenezb, Ricardo de Oliveira Perdizc, Valdiek S. Menezesb, Flávia M. Durganteb, Leticia O. Cobellob, Niro Higuchib, Jeffrey Q. Chambersd,e a Department of Forest Sciences, Federal University of Paraná, Curitiba, PR, Brazil b Department of Forest Management, National Institute for Amazon Research, Manaus, AM, Brazil c Department of Botany, National Institute for Amazon Research, Manaus, AM, Brazil d Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA e Department of Geography, University of California Berkeley, Berkeley, CA, USA ARTICLE INFO ABSTRACT Keywords: Volatile terpenoid resins represent a diverse group of plant defense chemicals involved in defense against her- Protium spp. (Burseraceae) bivory, abiotic stress, and communication. However, their composition in tropical forests remains poorly Tropical tree identification characterized. As a part of tree identification, the ‘smell’ of damaged trunks is widely used, but is highlysub- Chemotaxonomy jective. Here, we analyzed trunk volatile monoterpene emissions from 15 species of the genus Protium in the Resins central Amazon. By normalizing the abundances of 28 monoterpenes, 9 monoterpene ‘fingerprint’ patterns Volatile organic compounds emerged, characterized by a distinct dominant monoterpene. While 4 of the ‘fingerprint’ patterns were composed Hyperdominant genus Isoprenoids of multiple species, 5 were composed of a single species. Moreover, among individuals of the same species, 6 species had a single ‘fingerprint’ pattern, while 9 species had two or more ‘fingerprint’ patterns amongin- dividuals. -
93 47. Hymenaea Courbaril L
47. Hymenaea courbaril L. - loksi var. courbaril 47a. Hymenaea oblongifolia Huber var. davisii (Sandw. Lee & Langenh.) Synonym (47) : Hymenaea davisii Sandw. Family : Leguminosae (Caesalpinioideae) Vernacular names Suriname : Rediloksi / Rode lokus Guyana : Locust / Kawanari / Moire / Stinking toe French Guiana : Courbaril / Loka Bolivia : Algarbobo Brazil : Jatoba / Copal / Copinol / Jutai Colombia : Algarrobo Venezuela : Jatahv / Algarrobo Peru : Azucar-huayo International trade name : Courbaril, Jatoba Occurrence : Suriname, Guianas, Brazil, Venezuela, Colombia, Central America Tree description Bole length : bole 18 - 24 m: tree height 30 - 45 m Diameter : 0.50 – 1.50 m Log shape : straight, cylindrical; tree base swollen or buttressed Wood description Sapwood : distinct, whitish to cream white Heartwood : orange brown with dark veins or light brown to purplish brown Grain : generally straight, sometimes interlocked Texture : fine to moderately coarse Technological characteristics Physical properties (47) H. courbaril Green density (g/cm3): 1.10 Air dry density at 12% MC (g/cm3): 0.87 Total tangential shrinkage (%) : 8.5 Total radial shrinkage (%) : 4.4 Total volumetric shrinkage (%) : 12.6 93 Mechanical properties (47) H. courbaril Bending strength at 12% MC (N/mm2): 173 Modulus of elasticity (MOE) at 12% MC (N/mm2): 19800 Crushing strength at 12% MC (N/mm2): 98 Processing Sawing : difficult, power required; blunting effect: moderate Drying : slow drying recommended; difficult to air-season; US Kiln schedule T3 – C2 for 25-38 mm and T3 – C1 for 50 mm stock Machining : special tools recommended Gluing : good in dry and interior condition Nailing : pre-boring necessary Finishing : good Veneering : slices well; peeling difficult due to hardness Natural durability Decay fungi : moderate to very good Termites : very good Marine borers : moderate Treatability (heartwood) : poor End uses : exterior and interior joinery, marine constructions, high grade furniture and cabinet work, flooring, stairs, decorative veneer and fittings, turnery, arched articles. -
Insect Galls from Serra De São José 423
INSECT GALLS FROM SERRA DE SÃO JOSÉ 423 INSECT GALLS FROM SERRA DE SÃO JOSÉ (TIRADENTES, MG, BRAZIL) MAIA, V. C.1 and FERNANDES, G. W.2 1Departamento de Entomologia, Museu Nacional, Quinta da Boa Vista, São Cristóvão, CEP 209940-040, Rio de Janeiro, RJ, Brazil 2Ecologia Evolutiva de Herbívoros Tropicais, DBG, ICB, Universidade Federal de Minas Gerais, C.P. 486, CEP 30161-970, Belo Horizonte, MG, Brazil Correspondence to: Valéria Cid Maia, Museu Nacional, Quinta da Boa Vista, São Cristóvão, CEP 209940-040, Rio de Janeiro, RJ, Brazil, e-mail: [email protected] Received February 21, 2003 – Accepted July 30, 2003 – Distributed August 31, 2004 (With 107 figures) ABSTRACT One hundred thirty-seven morphotypes of insect galls were found on 73 plant species (47 genera and 30 families) in Serra de São José, in Tiradentes, MG, Brazil. Fabaceae, Myrtaceae, Asteraceae, and Melastomataceae were the plant families that supported most of the galls (49.6% of the total). Galls were mostly found on leaves and stems (66.4% and 25.5%, respectively). Galls were induced by Diptera, Lepidoptera, Coleoptera, Hemiptera (Sternorrhyncha), Hymenoptera, and Thysanoptera. The majority of them (73.7%) were induced by gall midges (Cecidomyiidae: Diptera). Besides the gall inducers, other insects found associated with the galls were parasitoids (Hymenoptera), inquilines (Coleoptera, Lepi- doptera, Diptera, and Hemiptera), and predators (Diptera). Key words: galls, insects, rupestrian fields, cerrado, Minas Gerais. RESUMO Galhas de insetos da Serra de São José (Tiradentes, MG, Brasil) Foram encontrados 137 tipos de galhas de insetos em 73 espécies de plantas (47 gêneros e 30 famílias) na Serra de São José (Tiradentes, MG, Brasil). -
Insecticides - Development of Safer and More Effective Technologies
INSECTICIDES - DEVELOPMENT OF SAFER AND MORE EFFECTIVE TECHNOLOGIES Edited by Stanislav Trdan Insecticides - Development of Safer and More Effective Technologies http://dx.doi.org/10.5772/3356 Edited by Stanislav Trdan Contributors Mahdi Banaee, Philip Koehler, Alexa Alexander, Francisco Sánchez-Bayo, Juliana Cristina Dos Santos, Ronald Zanetti Bonetti Filho, Denilson Ferrreira De Oliveira, Giovanna Gajo, Dejane Santos Alves, Stuart Reitz, Yulin Gao, Zhongren Lei, Christopher Fettig, Donald Grosman, A. Steven Munson, Nabil El-Wakeil, Nawal Gaafar, Ahmed Ahmed Sallam, Christa Volkmar, Elias Papadopoulos, Mauro Prato, Giuliana Giribaldi, Manuela Polimeni, Žiga Laznik, Stanislav Trdan, Shehata E. M. Shalaby, Gehan Abdou, Andreia Almeida, Francisco Amaral Villela, João Carlos Nunes, Geri Eduardo Meneghello, Adilson Jauer, Moacir Rossi Forim, Bruno Perlatti, Patrícia Luísa Bergo, Maria Fátima Da Silva, João Fernandes, Christian Nansen, Solange Maria De França, Mariana Breda, César Badji, José Vargas Oliveira, Gleberson Guillen Piccinin, Alan Augusto Donel, Alessandro Braccini, Gabriel Loli Bazo, Keila Regina Hossa Regina Hossa, Fernanda Brunetta Godinho Brunetta Godinho, Lilian Gomes De Moraes Dan, Maria Lourdes Aldana Madrid, Maria Isabel Silveira, Fabiola-Gabriela Zuno-Floriano, Guillermo Rodríguez-Olibarría, Patrick Kareru, Zachaeus Kipkorir Rotich, Esther Wamaitha Maina, Taema Imo Published by InTech Janeza Trdine 9, 51000 Rijeka, Croatia Copyright © 2013 InTech All chapters are Open Access distributed under the Creative Commons Attribution 3.0 license, which allows users to download, copy and build upon published articles even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. After this work has been published by InTech, authors have the right to republish it, in whole or part, in any publication of which they are the author, and to make other personal use of the work. -
DENDROCHRONOLOGY and GROWTH of Copaifera Langsdorffii WOOD in the VEGETATIVE DYNAMICS of the PIRAPITINGA ECOLOGICAL STATION, STATE of MINAS GERAIS, BRAZIL
DENDROCHRONOLOGY AND GROWTH OF Copaifera langsdorffii WOOD IN THE VEGETATIVE DYNAMICS OF THE PIRAPITINGA ECOLOGICAL STATION, STATE OF MINAS GERAIS, BRAZIL Daniel Costa de Carvalho1, Marcos Gervasio Pereira2*, João Vicente Figueiredo Latorraca1, José Henrique Camargo Pace1, Leonardo Davi Silveira Augusto Baptista da Silva1, Jair Figueiredo do Carmo3 1 Rural Federal University of Rio de Janeiro, Institute of Forests, Seropédica, Rio de Janeiro, Brazil - [email protected]; [email protected]; [email protected]; [email protected] 2* Rural Federal University of Rio de Janeiro, Department of Soils, Seropédica, Rio de Janeiro, Brazil - [email protected] 3 Federal University of Mato Grosso, Institute of Agricultural and Environmental Sciences, Cuiabá, Mato Grosso, Brazil - [email protected] Received for publication: 22/12/2016 - Accepted for publication: 15/12/2017 Abstract The aim of this study was to construct the chronology of Copaifera langsdorffii (copaíba) growth rings in order to understand the dynamics of Cerrado vegetation formations that occur in a river island in the Três Marias Hydroelectric Power Plant reservoir, state of Minas Gerais, Brazil. For this purpose, 30 copaíba trees identified in the Mata Seca Sempre-Verde phytophysiognomy at Pirapitinga Ecological Station (PES), state of Minas Gerais, were selected. Two radial samples of each tree were collected with the aid of a probe. The samples were mechanically polished for better visualization of the growth rings, which allowed their delimitation and measurement. Afterwards, the synchronization of the growth rings width was verified in order to generate a master chronological series of the species. To verify the influence of meteorological factors, Pearson correlation (p < 0.5) was used. -
DPR Journal 2016 Corrected Final.Pmd
Bul. Dept. Pl. Res. No. 38 (A Scientific Publication) Government of Nepal Ministry of Forests and Soil Conservation Department of Plant Resources Thapathali, Kathmandu, Nepal 2016 ISSN 1995 - 8579 Bulletin of Department of Plant Resources No. 38 PLANT RESOURCES Government of Nepal Ministry of Forests and Soil Conservation Department of Plant Resources Thapathali, Kathmandu, Nepal 2016 Advisory Board Mr. Rajdev Prasad Yadav Ms. Sushma Upadhyaya Mr. Sanjeev Kumar Rai Managing Editor Sudhita Basukala Editorial Board Prof. Dr. Dharma Raj Dangol Dr. Nirmala Joshi Ms. Keshari Maiya Rajkarnikar Ms. Jyoti Joshi Bhatta Ms. Usha Tandukar Ms. Shiwani Khadgi Mr. Laxman Jha Ms. Ribita Tamrakar No. of Copies: 500 Cover Photo: Hypericum cordifolium and Bistorta milletioides (Dr. Keshab Raj Rajbhandari) Silene helleboriflora (Ganga Datt Bhatt), Potentilla makaluensis (Dr. Hiroshi Ikeda) Date of Publication: April 2016 © All rights reserved Department of Plant Resources (DPR) Thapathali, Kathmandu, Nepal Tel: 977-1-4251160, 4251161, 4268246 E-mail: [email protected] Citation: Name of the author, year of publication. Title of the paper, Bul. Dept. Pl. Res. N. 38, N. of pages, Department of Plant Resources, Kathmandu, Nepal. ISSN: 1995-8579 Published By: Mr. B.K. Khakurel Publicity and Documentation Section Dr. K.R. Bhattarai Department of Plant Resources (DPR), Kathmandu,Ms. N. Nepal. Joshi Dr. M.N. Subedi Reviewers: Dr. Anjana Singh Ms. Jyoti Joshi Bhatt Prof. Dr. Ram Prashad Chaudhary Mr. Baidhya Nath Mahato Dr. Keshab Raj Rajbhandari Ms. Rose Shrestha Dr. Bijaya Pant Dr. Krishna Kumar Shrestha Ms. Shushma Upadhyaya Dr. Bharat Babu Shrestha Dr. Mahesh Kumar Adhikari Dr. Sundar Man Shrestha Dr. -
University of California Santa Cruz Responding to An
UNIVERSITY OF CALIFORNIA SANTA CRUZ RESPONDING TO AN EMERGENT PLANT PEST-PATHOGEN COMPLEX ACROSS SOCIAL-ECOLOGICAL SCALES A dissertation submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in ENVIRONMENTAL STUDIES with an emphasis in ECOLOGY AND EVOLUTIONARY BIOLOGY by Shannon Colleen Lynch December 2020 The Dissertation of Shannon Colleen Lynch is approved: Professor Gregory S. Gilbert, chair Professor Stacy M. Philpott Professor Andrew Szasz Professor Ingrid M. Parker Quentin Williams Acting Vice Provost and Dean of Graduate Studies Copyright © by Shannon Colleen Lynch 2020 TABLE OF CONTENTS List of Tables iv List of Figures vii Abstract x Dedication xiii Acknowledgements xiv Chapter 1 – Introduction 1 References 10 Chapter 2 – Host Evolutionary Relationships Explain 12 Tree Mortality Caused by a Generalist Pest– Pathogen Complex References 38 Chapter 3 – Microbiome Variation Across a 66 Phylogeographic Range of Tree Hosts Affected by an Emergent Pest–Pathogen Complex References 110 Chapter 4 – On Collaborative Governance: Building Consensus on 180 Priorities to Manage Invasive Species Through Collective Action References 243 iii LIST OF TABLES Chapter 2 Table I Insect vectors and corresponding fungal pathogens causing 47 Fusarium dieback on tree hosts in California, Israel, and South Africa. Table II Phylogenetic signal for each host type measured by D statistic. 48 Table SI Native range and infested distribution of tree and shrub FD- 49 ISHB host species. Chapter 3 Table I Study site attributes. 124 Table II Mean and median richness of microbiota in wood samples 128 collected from FD-ISHB host trees. Table III Fungal endophyte-Fusarium in vitro interaction outcomes. -
E Edulis ATION FLORÍSTICA DA MATA CILIAR DO RIO
Oecologia Australis 23(4):812-828, 2019 https://doi.org/10.4257/oeco.2019.2304.08 GEOGRAPHIC DISTRIBUTION OF THE THREATENED PALM Euterpe edulis Mart. IN THE ATLANTIC FOREST: IMPLICATIONS FOR CONSERVATION FLORÍSTICA DA MATA CILIAR DO RIO AQUIDAUANA (MS): SUBSÍDIOS À RESTAURAÇÃO DE ÁREAS DEGRADADAS Aline Cavalcante de Souza1* & Jayme Augusto Prevedello1 1 2 1 1 Gilson Lucas Xavier de Oliveira , Bruna Alves Coutinho , Bruna Gardenal Fina Cicalise & Universidade do Estado do Rio de Janeiro, Instituto de Biologia, Departamento de Ecologia, Laboratório de Ecologia de 1,2,3 Paisagens, Rua São Francisco Xavier 524, Maracanã, CEP 20550-900, Rio de Janeiro, RJ, Brazil. Camila Aoki * E-mails: [email protected] (*corresponding author); [email protected] ¹ Universidade Federal de Mato Grosso do Sul, Campus Aquidauana, Unidade II, Rua Oscar Trindade de Barros, 740, Bairro da Serraria, CEP 79200-000, Aquidauana, MS, Brasil. Abstract: The combination of species distribution models based on climatic variables, with spatially explicit ² Universidade Federal de Mato Grosso do Sul, Programa de Pós-Graduação em Biologia Vegetal, Instituto de Biociências, analyses of habitat loss, may produce valuable assessments of current species distribution in highly disturbed Av. Costa e Silva, s/n, Bairro Universitário, CEP 79070-900, Campo Grande, MS, Brasil. ecosystems. Here, we estimated the potential geographic distribution of the threatened palm Euterpe 3 Universidade Federal de Mato Grosso do Sul, Programa de Pós-Graduação em Recursos Naturais, Faculdade de edulis Mart. (Arecaceae), an ecologically and economically important species inhabiting the Atlantic Forest Engenharias, Arquitetura e Urbanismo e Geografia, Av. Costa e Silva, s/n, Cidade Universitária, CEP 79070-900, Campo biodiversity hotspot. -
Fruits and Seeds of Genera in the Subfamily Faboideae (Fabaceae)
Fruits and Seeds of United States Department of Genera in the Subfamily Agriculture Agricultural Faboideae (Fabaceae) Research Service Technical Bulletin Number 1890 Volume I December 2003 United States Department of Agriculture Fruits and Seeds of Agricultural Research Genera in the Subfamily Service Technical Bulletin Faboideae (Fabaceae) Number 1890 Volume I Joseph H. Kirkbride, Jr., Charles R. Gunn, and Anna L. Weitzman Fruits of A, Centrolobium paraense E.L.R. Tulasne. B, Laburnum anagyroides F.K. Medikus. C, Adesmia boronoides J.D. Hooker. D, Hippocrepis comosa, C. Linnaeus. E, Campylotropis macrocarpa (A.A. von Bunge) A. Rehder. F, Mucuna urens (C. Linnaeus) F.K. Medikus. G, Phaseolus polystachios (C. Linnaeus) N.L. Britton, E.E. Stern, & F. Poggenburg. H, Medicago orbicularis (C. Linnaeus) B. Bartalini. I, Riedeliella graciliflora H.A.T. Harms. J, Medicago arabica (C. Linnaeus) W. Hudson. Kirkbride is a research botanist, U.S. Department of Agriculture, Agricultural Research Service, Systematic Botany and Mycology Laboratory, BARC West Room 304, Building 011A, Beltsville, MD, 20705-2350 (email = [email protected]). Gunn is a botanist (retired) from Brevard, NC (email = [email protected]). Weitzman is a botanist with the Smithsonian Institution, Department of Botany, Washington, DC. Abstract Kirkbride, Joseph H., Jr., Charles R. Gunn, and Anna L radicle junction, Crotalarieae, cuticle, Cytiseae, Weitzman. 2003. Fruits and seeds of genera in the subfamily Dalbergieae, Daleeae, dehiscence, DELTA, Desmodieae, Faboideae (Fabaceae). U. S. Department of Agriculture, Dipteryxeae, distribution, embryo, embryonic axis, en- Technical Bulletin No. 1890, 1,212 pp. docarp, endosperm, epicarp, epicotyl, Euchresteae, Fabeae, fracture line, follicle, funiculus, Galegeae, Genisteae, Technical identification of fruits and seeds of the economi- gynophore, halo, Hedysareae, hilar groove, hilar groove cally important legume plant family (Fabaceae or lips, hilum, Hypocalypteae, hypocotyl, indehiscent, Leguminosae) is often required of U.S. -
Copaifera of the Neotropics: a Review of the Phytochemistry and Pharmacology
International Journal of Molecular Sciences Review Copaifera of the Neotropics: A Review of the Phytochemistry and Pharmacology Rafaela da Trindade 1, Joyce Kelly da Silva 1,2 ID and William N. Setzer 3,4,* ID 1 Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Pará, 66075-900 Belém, Brazil; [email protected] (R.d.T.); [email protected] (J.K.d.S.) 2 Programa de Pós-Graduação em Química, Universidade Federal do Pará, 66075-900 Belém, Brazil 3 Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA 4 Aromatic Plant Research Center, 615 St. George Square Court, Suite 300, Winston-Salem, NC 27103, USA * Correspondence: [email protected] or [email protected]; Tel.: +1-256-824-6519 Received: 25 April 2018; Accepted: 15 May 2018; Published: 18 May 2018 Abstract: The oleoresin of Copaifera trees has been widely used as a traditional medicine in Neotropical regions for thousands of years and remains a popular treatment for a variety of ailments. The copaiba resins are generally composed of a volatile oil made up largely of sesquiterpene hydrocarbons, such as β-caryophyllene, α-copaene, β-elemene, α-humulene, and germacrene D. In addition, the oleoresin is also made up of several biologically active diterpene acids, including copalic acid, kaurenoic acid, alepterolic acid, and polyalthic acid. This review presents a summary of the ecology and distribution of Copaifera species, the traditional uses, the biological activities, and the phytochemistry of copaiba oleoresins. In addition, several biomolecular targets relevant to the bioactivities have been implicated by molecular docking methods. Keywords: copaiba; oleoresin; essential oil; sesquiterpenoids; diterpenoids; biological activity; molecular targets 1.