Wireless Mobile Telephony ? Q First Generation, Analog Technologies Q Second Generation, Digital : M D-AMPS, GSM, IS-95 Q Third Generation: ITU IMT-2000
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Assessment of Claims Regarding Health Effects of 5G Mobile Telephony Networks
An Assessment of Claims regarding Health Effects of 5G Mobile Telephony Networks C R Burger, Z du Toit, A A Lysko, M T Masonta, F Mekuria, L Mfupe, N Ntlatlapa and E Suleman Contact: Dr Moshe Masonta [email protected] 2020-05-11 Contents Preamble .............................................................................................................................. 2 1. Overview of 5G Networks .............................................................................................. 3 1.1 What are 5G networks? ............................................................................................... 3 1.2 What are the health effects of mobile networks? .......................................................... 6 1.3 What can we expect from 5G networks?...................................................................... 7 2. Summary Technical Data on 5G .................................................................................... 9 2.1 Which frequencies will be used for 5G in South Africa? .......................................... 9 2.2 A Brief Comparison of 4G and 5G ......................................................................... 11 3. Summary notes ............................................................................................................ 12 Preamble This document was produced by a team of researchers from the Next Generation Enterprises and Institutions, and Next Generation Health clusters of the CSIR. It is a response to media claims of links between 5G mobile telephone networks -
What Is the Impact of Mobile Telephony on Economic Growth?
What is the impact of mobile telephony on economic growth? A Report for the GSM Association November 2012 Contents Foreword 1 The impact of mobile telephony on economic growth: key findings 2 What is the impact of mobile telephony on economic growth? 3 Appendix A 3G penetration and economic growth 11 Appendix B Mobile data usage and economic growth 16 Appendix C Mobile telephony and productivity in developing markets 20 Important Notice from Deloitte This report (the “Report”) has been prepared by Deloitte LLP (“Deloitte”) for the GSM Association (‘GSMA’) in accordance with the contract with them dated July 1st 2011 plus two change orders dated October 3rd 2011 and March 26th 2012 (“the Contract”) and on the basis of the scope and limitations set out below. The Report has been prepared solely for the purposes of assessing the impact of mobile services on GDP growth and productivity, as set out in the Contract. It should not be used for any other purpose or in any other context, and Deloitte accepts no responsibility for its use in either regard. The Report is provided exclusively for the GSMA’s use under the terms of the Contract. No party other than the GSMA is entitled to rely on the Report for any purpose whatsoever and Deloitte accepts no responsibility or liability or duty of care to any party other than the GSMA in respect of the Report or any of its contents. As set out in the Contract, the scope of our work has been limited by the time, information and explanations made available to us. -
A Novel View on Universal Mobile Telecommunication System (UMTS) in the Wireless and Mobile Communication Environment
Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2010|No.1(24) A Novel View on Universal Mobile Telecommunication System (UMTS) in the Wireless and Mobile Communication Environment Dr.S.S.Riaz Ahamed Principal, Sathak Institute of Technology, Ramanathapuram,TamilNadu, India-623501. Email:[email protected] Abstract The Universal Mobile Telecommunication System (UMTS) is a third generation (3G) mobile communications system that provides a range of broadband services to the world of wireless and mobile communications. The UMTS delivers low-cost, mobile communications at data rates of up to 2 Mbps. It preserves the global roaming capability of second generation GSM/GPRS networks and provides new enhanced capabilities. The UMTS is designed to deliver pictures, graphics, video communications, and other multimedia information, as well as voice and data, to mobile wireless subscribers. UMTS also addresses the growing demand of mobile and Internet applications for new capacity in the overcrowded mobile communications sky. The new network increases transmission speed to 2 Mbps per mobile user and establishes a global roaming standard. UMTS allows many more applications to be introduced to a worldwide base of users and provides a vital link between today’s multiple GSM systems and the ultimate single worldwide standard for all mobile telecommunications, International Mobile Telecommunications–2000 (IMT–2000). Keywords: Code Division Multiple Access (CDMA), Radio Access Network (RAN), Base Station Subsystem (BSS),Network and Switching Subsystem (NSS), Operations Support System (OSS),Base Station Controller (BSC), Base Transceiver Station (BTS), Transcoder and Rate Adapter Unit (TRAU), Operation and Maintenance Centers (OMCS), Packet Data Networks (PDNS), Virtual Home Environment (VHE), Radio Network Systems (RNSS), Transmission Power Control (TPC), Subscriber Identity Module (SIM) 1. -
Migration to 3G Technology Standards: Europe, Japan, South Korea, and the U.S. by Richard Nunno, International Bureau, FCC
Migration to 3G Technology Standards: Europe, Japan, South Korea, and the U.S. By Richard Nunno, International Bureau, FCC Revised July 21, 2003 For over a decade, the International Telecommunication Union (ITU) has been supporting the international effort to develop an advanced third-generation (3G) mobile telecommunications service that has a higher bandwidth than previous and existing mobile services and that subscribers can seamlessly use across international borders (known as global roaming). To that end, the ITU has identified spectrum and developed technical standards for International Mobile Telecommunications 2000 (IMT-2000), the official name for 3G services. The ITU’s World Administrative Radiocommunication Conference (WARC) in 1992 and World Radiocommunication Conference (WRC) in 2000 identified several bands of spectrum that could be used for 3G services. The mobile telecommunications industry has started delivering 3G services that provide broadband applications including voice, data, and video. As defined by the ITU, 3G signal transmission rates must be able to reach 2 megabits per second (Mbps) or higher for indoor (low mobility) wireless applications (more than 35 times faster than today’s 56 kilobits per second (kbps) dial-up PC modems). 3G rates may be slower (384 kbps) for pedestrian traffic, and 144 kbps for high mobility (vehicular) traffic.1 How each country is implementing 3G systems depends on a number of factors, such as the country’s 3G spectrum allocations, the standards it adopts for 3G (if it adopts any standards vs. letting the marketplace make the decision), and the country’s current mobile telephony system configuration. Because a great deal of information and analysis is already available on the spectrum-related issues surrounding 3G implementation, this report focuses only on the technology standards issues pertaining to 3G. -
Study of Next Generations of Mobile Networks Dr
ISSN 2321 3361 © 2020 IJESC Research Article Volume 10 Issue No.2 Study of Next Generations of Mobile Networks Dr. Tripti Khatana Associate Professor Roorkee College of Engineering, Roorkee, India Abstract: Mobile based technologies are most widely used products and shown a huge growth in terms of user base. Every individual around the every corner of the world rely on mobile technology. The thing which makes it more powerful is cellular communication. Cellular communications are not only restricted to voice calls but it has gone way beyond our imagination from generation to generation. There has been seen a number of improvements along with performance. It has a great impact on our daily lifestyle i.e. the way we work, interact, learn, explore etc. This paper provides an insight about generations of network from 0G to 4G. Also it will throw light on next possible generations - 5G, 6G and 7G. Although 5G is under development and it will be deployed by 2020, there are no such standards has been finalized for it. This paper will also focus on 0G to 4G architecture and standards along with the technology that will be used for the development. The next evolutions 6G and 7G are just concepts for now and research works are being carried out, but they are the future of mobile communication networks. Keywords: 0G, 1G, 2G, 3G, 4G, 5G, Architecture, Standards, Technology, Generations of Networks, Comparative Study of Generations, 6G, 7G, Future of Networks. 1. INTRODUCTION development leads to evolution of different generations in next four decades. Now-a-days different wireless and mobile In every century, people want a communication system to share technologies are present such as third generation mobile their views. -
HD Voice Annex C Minimum Requirements with GSM/UMTS/LTE
GSM Association Non-Confidential Minimum Technical Requirements for use of the HD Voice Logo with GSM/UMTS/LTE issued by GSMA Minimum Technical Requirements for use of the HD Voice Logo with GSM/UMTS/LTE issued by GSMA Version 1.1 22nd March 2013 Security Classification – NON CONFIDENTIAL GSMA MATERIAL Copyright Notice Copyright © 2013 GSM Association. Antitrust Notice The information contain herein is in full compliance with the GSM Association’s antitrust compliance policy. Version 1.1 Page 1 of 18 GSM Association Non-Confidential Minimum Technical Requirements for use of the HD Voice Logo with GSM/UMTS/LTE issued by GSMA Table of Contents INTRODUCTION ..................................................................................................................... 3 ANNEX C: MINIMUM REQUIREMENTS FOR MOBILE NETWORKS AND TERMINALS FOR THE USAGE OF THE ‘HD VOICE’ LOGO WITH GSM/UMTS/LTE............................................................................................................... 3 DOCUMENT MANAGEMENT ............................................................................................... 18 Document History .................................................................................................................. 18 Other Information ................................................................................................................... 18 Version 1.1 Page 2 of 18 GSM Association Non-Confidential Minimum Technical Requirements for use of the HD Voice Logo with GSM/UMTS/LTE issued by GSMA INTRODUCTION -
Location Update Procedure
Location Update Procedure In order to make a mobile terminated call, The GSM network should know the location of the MS (Mobile Station), despite of its movement. For this purpose the MS periodically reports its location to the network using the Location Update procedure. Location Area (LA) A GSM network is divided into cells. A group of cells is considered a location area. A mobile phone in motion keeps the network informed about changes in the location area. If the mobile moves from a cell in one location area to a cell in another location area, the mobile phone should perform a location area update to inform the network about the exact location of the mobile phone. The Location Update procedure is performed: When the MS has been switched off and wants to become active, or When it is active but not involved in a call, and it moves from one location area to another, or After a regular time interval. Location registration takes place when a mobile station is turned on. This is also known as IMSI Attach because as soon as the mobile station is switched on it informs the Visitor Location Register (VLR) that it is now back in service and is able to receive calls. As a result of a successful registration, the network sends the mobile station two numbers that are stored in the SIM (Subscriber Identity Module) card of the mobile station. These two numbers are:- 1. Location Area Identity (LAI) 2. Temporary Mobile Subscriber Identity (TMSI). The network, via the control channels of the air interface, sends the LAI. -
International Mobile Roaming Agreements”, OECD Digital Economy Papers, No
Please cite this paper as: OECD (2013-06-03), “International Mobile Roaming Agreements”, OECD Digital Economy Papers, No. 223, OECD Publishing, Paris. http://dx.doi.org/10.1787/5k4559fzbn5l-en OECD Digital Economy Papers No. 223 International Mobile Roaming Agreements OECD Unclassified DSTI/ICCP/CISP(2012)2/FINAL Organisation de Coopération et de Développement Économiques Organisation for Economic Co-operation and Development 03-Jun-2013 ___________________________________________________________________________________________ English - Or. English DIRECTORATE FOR SCIENCE, TECHNOLOGY AND INDUSTRY COMMITTEE FOR INFORMATION, COMPUTER AND COMMUNICATIONS POLICY Unclassified DSTI/ICCP/CISP(2012)2/FINAL Working Party on Communication Infrastructures and Services Policy INTERNATIONAL MOBILE ROAMING AGREEMENTS English - Or. English JT03340780 Complete document available on OLIS in its original format This document and any map included herein are without prejudice to the status of or sovereignty over any territory, to the delimitation of international frontiers and boundaries and to the name of any territory, city or area. DSTI/ICCP/CISP(2012)2/FINAL FOREWORD The Working Party on Communication Infrastructures and Services Policy (CISP) discussed this paper in June 2012. It agreed to recommend the paper for declassification to the Committee for Information, Computer and Communications Policy (ICCP). The ICCP Committee agreed to its declassification in October 2012. The document was prepared by Mr. Tony Shortall, Director of Telage. It is published -
3G Telecommunication Networks Kajali Bansal Assistant Professor Computer Science & Engineering Dept
Volume 3, Issue 6, June 2013 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com 3G Telecommunication Networks Kajali Bansal Assistant Professor Computer Science & Engineering Dept. Chandigarh University (Punjab) India Abstract: 3G is the third generation of wireless technologies. This comes with enhancements over previous wireless technologies, as high-speed transmission, advanced multimedia access and. 3G is mostly used with mobile phones and handsets as a means to connect the phone to the Internet or other IP networks in order to make voice and video calls, download and upload data and to surf the net. 3G is the successor of 2G and 1G standards. The 3G networks handle the majority of all data transfers for cellular service providers. Keywords: 3G, 4G, 5G, Radio Access Network, Telecommunication, Cellular Network. I. Introduction 3G wireless technology is the convergence of various 2G wireless telecommunications systems into a single global system which includes both terrestrial and satellite components. 3G wireless technology has ability to unify existing cellular standards with CDMA, GSM, and TDMA. 3G has the following enhancements over 2.5G and previous networks: Higher data speed, Video-conferencing support, Enhanced audio and video streaming, Web and WAP browsing at higher speeds, IPTV (TV through the Internet) support transfer rate for 3G networks is between 128 and 144 kbps for devices that are moving fast and 384 kbps for slow ones. For fixed wireless LANs, the speed goes beyond 2mbps. II. Back Ground The first mobile telephone systems (car phone) were introduced in the late 1940s in the United States and in 1950s in Europe. -
XP5 Push-To-Talk General English
Push–to–Talk – General What is Enhanced Push-to-talk (EPTT)? Enhanced Push-to-talk (EPTT) is a special feature on a mobile phone that combines the functionality of a walkie-talkie or 2-way radio with the normal handset features. It provides simple communication to a group of people with just a press of a button. It allows the customer to instantly reach other EPTT contacts by eliminating the dialing and ringing steps in a regular cellular call. EPTT calls can be made to one person or to a group of people. It is also referred to as Push to Talk over Cellular (PoC) How does EPTT work? EPTT is based on half-duplex communication (ability to speak over the same channel but not at the same time). It uses Voice over internet protocol (VoIP). The person, who talks, keeps the EPTT button pressed, while others can only listen. Thereafter the speaker releases the EPTT button, and the next speaker presses the button and starts talking. An EPTT call will end when the caller ends the call. However, other speakers of the group can end their call session, any time. Is EPTT number different from my mobile number? No, the EPTT phone number is the same as your 10 digit mobile number. But this number should be provisioned by the operator for EPTT to work. Can I make/receive an EPTT call without using the speaker phone? EPTT calls are generally started over the speaker phone but can be changed to the earpiece at any time. You can listen to EPTT calls through your phone’s speaker or earpiece. -
Security for the Core Network of Third Generation Mobile Systems
Security for the core network of third generation mobile systems GUNTER HORN, DIRK KROSELBERG Siemens AG, Corporate Technology, D-81730 Muenchen, Germany STEFANPUTZ T-Mobil, P.O. Box 300463, D-53184 Bonn, Germany ROLAND SCHMITZ T-Nova Technology Centre, D-64307 Darmstadt, Germany Keywords: UMTS, MAP Security, Multimedia domain, SIP, IPSec, IKE, Key Management Abstract: This contribution gives a survey of the present standardisation activities by 3GPP (3'd Generation Partnership Project1) in the area of security for signalling in the core network of third generation mobile systems. We give an overview of the protocols that need to be secured, present the basic principles behind the overall security architecture and describe the key management and format of secured messages, as far as they have already been finalised. In particular, we address core network security aspects of the 3GPP multimedia domain. 1 3GPP was formed by regional standards organisations from Europe, Asia and North America to produce specifications for a third generation mobile system named UMTS which is designed to evolve from GSM core network. There is a competing effort known as 3GPP2 with partners from North America and Asia. The original version of this chapter was revised: The copyright line was incorrect. This has been corrected. The Erratum to this chapter is available at DOI: 10.1007/978-0-387-35413-2_36 R. Steinmetz et al. (eds.), Communications and Multimedia Security Issues of the New Century © IFIP International Federation for Information Processing 2001 298 1. THREATS TO CORE NETWORK SECURITY FOR MOBILE RADIO NETWORKS The core network of mobile radio systems is the part of the network which is independent of the radio interface technology of the mobile terminal. -
GSM Dual-Band GPRS Digital Mobile Phone User Manual the Manual Is Applicable for R235 Mobile Phone
GSM Dual-Band GPRS Digital Mobile Phone User Manual The manual is applicable for R235 mobile phone LEGAL INFORMATION Copyright © 2010 by ZTE CORPORATION All Rights Reserved. No part of this publication may be excerpted, reproduced, translated or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without the prior written permission of ZTE Corporation. The manual is published by ZTE Corporation. We reserve the right to make modifications on print errors or update specifications without prior notice. Version No. : R1.0 Edition Time : 20101216 Manual No. : 079584502371 Contents Security ....................................4 Sending MMS.........................25 Safety Precautions..................4 Receiving messages.............26 Limitation of Liability ............12 Call History ............................27 Key functions ........................13 Personalizing phone ............27 Indicator icons......................16 User Profiles ..........................29 Battery....................................16 Setting alarm..........................29 Inserting SIM card .................19 View Image.............................29 Inserting memory card .........20 Play Music..............................30 Powering on/ off phone ........21 File Manager ..........................30 Writing text.............................21 WAP ........................................31 Adding a contact ...................23 FM Radio ................................32 Making and receiving calls...24