Chengjeffrey.Pdf (8.685Mb)

Total Page:16

File Type:pdf, Size:1020Kb

Chengjeffrey.Pdf (8.685Mb) CDNA CLONING AND CHARACTERIZATION OF ENZYMES THAT SYNTHESIZE BILE ACIDS, VITAMIN D AND WAXES APPROVED BY SUPERVISORY COMMITTEE David Russell, Ph.D. Helen Hobbs, M.D. Elliott Ross, Ph.D. James Waddle, Ph.D. CDNA CLONING AND CHARACTERIZATION OF ENZYMES THAT SYNTHESIZE BILE ACIDS, VITAMIN D AND WAXES by JEFFREY BINYAN CHENG DISSERTATION / THESIS Presented to the Faculty of the Graduate School of Biomedical Sciences The University of Texas Southwestern Medical Center at Dallas In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY The University of Texas Southwestern Medical Center at Dallas Dallas, Texas June, 2006 Copyright by Jeffrey Binyan Cheng, 2006 All Rights Reserved cDNA CLONING AND CHARACTERIZATION OF ENZYMES THAT SYNTHESIZE BILE ACIDS, VITAMIN D AND WAXES Publication No. Jeffrey Binyan Cheng, Ph.D. The University of Texas Southwestern Medical Center at Dallas, 2006 Supervising Professor: David Russell, Ph.D. Countless enzymes are required for the synthesis of the diverse array of lipids found in nature. The identification and characterization of five different lipid metabolizing 5 enzymes are reported here. The 3β-hydroxy-∆ -C27-steroid oxidoreductase (C27 3β-HSD) enzyme catalyzes a step in bile acid synthesis. Subjects with mutations in the encoding gene fail to synthesize bile acids and develop liver disease. Fifteen patients were screened and twelve different mutations were identified in the C27 3β-HSD gene. Vitamin D is required for normal bone metabolism and maintenance of serum calcium levels. The conversion of vitamin D into an active ligand requires 25-hydroxylation. I report here the identification by expression cloning of a cytochrome P450 (CYP2R1) with iv vitamin D 25-hydroxylase activity. A patient with low circulating levels of 25- hydroxyvitamin D and classic symptoms of vitamin D deficiency was identified. Molecular analysis of this individual revealed homozygosity for a transition mutation in the CYP2R1 gene causing the substitution of a proline for a leucine in the protein and eliminating vitamin D 25-hydroxylase enzyme activity. These data identify CYP2R1 as a biologically relevant vitamin D 25-hydroxylase and reveal the molecular basis of a human genetic disease, selective 25-hydroxyvitamin D deficiency. The reduction of fatty acids to fatty alcohols, by a fatty acyl-CoA reductase enzyme, is required for the synthesis of wax monoesters and ether lipids. Using a bioinformatics approach, the first two mammalian fatty acyl-CoA reductase genes (FAR1 and FAR2) were identified. The two mouse FAR enzymes, which share 57% sequence identity at the amino acid level, have differing substrate specificities and tissue distributions implying unique physiological roles for each. Wax monoesters are synthesized by the esterification of fatty alcohols and fatty acids. A mammalian enzyme that catalyzes this reaction has not been isolated. Here, I report the identification by expression cloning of a wax synthase gene. Co-expression of cDNAs specifying FAR1 and wax synthase led to the synthesis of wax monoesters. The data suggests that wax monoester synthesis in mammals involves a two step biosynthetic pathway catalyzed by fatty acyl-CoA reductase and wax synthase enzymes. v TABLE OF CONTENTS Abstract iv Table of Contents vi Publications viii List of Figures and Tables ix List of Abbreviations xii Chapter 1 Introduction 1 5 Chapter 2 Molecular genetics of 3β-hydroxy-∆ -C27-steroid oxidoreductase deficiency in 16 patients with loss of bile acid synthesis and liver disease A. Introduction 33 B. Materials and Methods 36 C. Results 40 D. Discussion 44 E. Figures and Tables 49 Chapter 3 De-orphanization of cytochrome P450 2R1: a microsomal vitamin D 25- hydroxylase A. Introduction 67 B. Materials and Methods 70 C. Results 78 D. Discussion 88 E. Figures 94 Chapter 4 Genetic evidence that the human CYP2R1 enzyme is a key vitamin D 25- hydroxylase A. Introduction 112 B. Materials and Methods 114 C. Results 118 D. Discussion 122 E. Figures 127 vi Chapter 5 Identification of two mammalian fatty acyl-coenzyme A reductases with different substrate specificities and tissue distributions A. Introduction 137 B. Materials and Methods 139 C. Results 149 D. Discussion 156 E. Figures 161 Chapter 6 Expression cloning of mammalian wax synthase cDNAs encoding a member of the diacylglycerol acyltransferase family A. Introduction 175 B. Materials and Methods 178 C. Results 189 D. Discussion 196 E. Figures 201 Bibliography 217 vii PUBLICATIONS Cheng, J. B., Jacquemin, E., Gerhard, M., Nazer, H., Cresteil, D., Heubi, J.E., Setchell, K.D., and Russell, D. W. (2004). Molecular genetics of 3beta-hydroxy-Delta5-C27-steroid oxidoreductase deficiency in 16 patients with loss of bile acid synthesis and liver disease. J Clin Endocrinol Metab 88, 1,833-1,841. Cheng, J. B., Motola, D. L., Mangelsdorf, D. J., and Russell, D. W. (2003). De- orphanization of cytochrome P450 2R1, a microsomal vitamin D 25-hydroxylase. J Biol Chem 278, 38,084-38,093. Cheng, J. B., Levine, M.A., Bell, N.H., Mangelsdorf, D.J., and Russell, D. W. (2004). Genetic evidence that the human CYP2R1 enzyme is a key vitamin D 25-hydroxylase. Proc Natl Acad Sci USA 101, 7,711-7,715. Cheng, J. B. and Russell, D. W. (2004). Mammalian wax biosynthesis: I. Identification of two fatty acyl-Coenzyme A reductases with different substrate specificities and tissue distributions. J Biol Chem 279, 37,789-37,797. Cheng, J. B. and Russell, D. W. (2004). Mammalian wax biosynthesis: II. Expression cloning of wax synthase cDNAs encoding a member of the acyltransferase enzyme family. J Biol Chem 279, 37,798-37,807. viii LIST OF FIGURES AND TABLES Chapter 1 Figure 1 Biochemical steps involved in conversion of cholesterol to bile Acids Figure 2 Two different forms of vitamin D Figure 3 Steps involved in endogenous synthesis of vitamin D Figure 4 Activation and inactivation pathways of vitamin D Figure 5 The biochemical steps of mammalian wax biosynthesis Figure 6 Subclasses of phospholipids Chapter 2 Table 1 Summary of clinical data from 16 patients with C27 3β-HSD deficiency Table 2 Molecular genetics of C27 3β-HSD deficiency Figure 1 Reaction catalyzed by the C27 3β-HSD enzyme Figure 2 Pedigrees of two families with C27 3β-HSD deficiency Figure 3 DNA sequence analyses of mutations in the HSD3B7 gene Figure 4 Structure of the HSD3B7 gene and locations of mutations identified in subjects with neonatal cholestasis Figure 5 RNA blotting analysis of HSD3B7 mutations Figure 6 Effects of HSD3B7 mutations on C27 3β-HSD enzyme activity Chapter 3 Figure 1 Expression cloning of vitamin D 25-hydroxylase cDNA Figure 2 Amino acid sequences and gene structure of cytochrome P450 2R1 Figure 3 Activation of vitamin D3 by CYP2R1 Figure 4 Activation of vitamin D3 by cytochrome P450 enzymes ix Figure 5 Response of VDR/VDRE-Luciferase reporter system to P450 expression vectors and vitamin D3 Figure 6 Activation of vitamin D3 and vitamin D2 by microsomal versus mitochondrial P450 enzymes Figure 7 Inactivation of vitamin D metabolites by expression of CYP24A1 vitamin D 24-hydroxylase Figure 8 Biochemical and immunological identification of CYP2R1 vitamin D metabolites Figure 9 Tissue distributions of mouse vitamin D hydroxylase mRNAs Chapter 4 Figure 1 Structure of the human CYP2R1 gene Figure 2 DNA sequence analysis of mutation in CYP2R1 vitamin D 25-hydroxylase Figure 3 Biochemical assay of CYP2R1 vitamin D 25-hydroxylase enzyme activity Figure 4 L99P mutation in CYP2R1 causes loss of vitamin D3 activation Figure 5 Response of normal and L99P CYP2R1 enzymes to increasing concentrations of vitamin D3 and vitamin D2 Chapter 5 Figure 1 Amino acid sequences of mouse, plant and insect fatty acyl-CoA reductase (FAR) enzymes Figure 2 Tissue distributions of mouse FAR1 and FAR2 mRNAs Figure 3 Expression of mouse and human FAR enzymes in HEK 293 cells Figure 4 Substrate and cofactor preferences of mouse FAR1 enzyme Figure 5 Substrate preferences of mouse FAR1 and FAR2 enzymes Figure 6 Subcellular localization of mouse FAR1 and FAR2 enzymes x Chapter 6 Figure 1 Expression cloning of wax synthase cDNAs from mouse preputial gland and expression mouse and human wax synthase enzyme activities in HEK 293 cells Figure 2 Comparison of mouse and human wax synthases Figure 3 Substrate preferences of the mouse wax synthase enzyme Figure 4 Wax synthase activity of acyltransferase family members Figure 5 Acyltransferase activity of wax synthase enzyme. Figure 6 Subcellular localization of mouse wax synthase enzyme Figure 7 Tissue distributions of mouse wax synthase mRNA Figure 8 Reconstitution of mammalian wax biosynthetic pathway in cell lysates of transfected HEK 293 cells xi LIST OF ABBREVIATIONS 25-hydroxycholesterol [3H]cholest-5-ene-3ß,25-diol 7-dehydrocholesterol 5,7,-cholestadien-3β-ol ACAT acyl-CoA:cholesterol acyltransferase ACC acetyl-CoA carboxylase Adx adrenodoxin BSA bovine serum albumin 5 C27 3ß-HSD 3ß-hydroxy- -C27-steroid oxidoreductase CHAPS 3-[(3-cholamidopropyl)dimethylammonio]-1- propanesulfonic acid CMV cytomegalovirus CoA acyl-coenzyme A CT threshold value CYP cytochrome P450 CYP39A1 24-hydroxycholesterol 7α-hydroxylase CYP46A1 cholesterol 24-hydroxylase CYP7A1 cholesterol 7α hydroxylase CYP7B1 oxysterol 7α-hydroxylase DGAT acyl-CoA:diacylglycerol acyltransferase DHAP dihydroxyacetone phosphate DHAPAT dihydroxyacetone phosphate acyltransferase xii DMEM Dulbecco's modified Eagle's medium E. coli Escherichia coli FAR fatty acyl-coenzyme A reductase FAS fatty acid synthase FXR farnesoid X receptor
Recommended publications
  • Identification and Developmental Expression of the Full Complement Of
    Goldstone et al. BMC Genomics 2010, 11:643 http://www.biomedcentral.com/1471-2164/11/643 RESEARCH ARTICLE Open Access Identification and developmental expression of the full complement of Cytochrome P450 genes in Zebrafish Jared V Goldstone1, Andrew G McArthur2, Akira Kubota1, Juliano Zanette1,3, Thiago Parente1,4, Maria E Jönsson1,5, David R Nelson6, John J Stegeman1* Abstract Background: Increasing use of zebrafish in drug discovery and mechanistic toxicology demands knowledge of cytochrome P450 (CYP) gene regulation and function. CYP enzymes catalyze oxidative transformation leading to activation or inactivation of many endogenous and exogenous chemicals, with consequences for normal physiology and disease processes. Many CYPs potentially have roles in developmental specification, and many chemicals that cause developmental abnormalities are substrates for CYPs. Here we identify and annotate the full suite of CYP genes in zebrafish, compare these to the human CYP gene complement, and determine the expression of CYP genes during normal development. Results: Zebrafish have a total of 94 CYP genes, distributed among 18 gene families found also in mammals. There are 32 genes in CYP families 5 to 51, most of which are direct orthologs of human CYPs that are involved in endogenous functions including synthesis or inactivation of regulatory molecules. The high degree of sequence similarity suggests conservation of enzyme activities for these CYPs, confirmed in reports for some steroidogenic enzymes (e.g. CYP19, aromatase; CYP11A, P450scc; CYP17, steroid 17a-hydroxylase), and the CYP26 retinoic acid hydroxylases. Complexity is much greater in gene families 1, 2, and 3, which include CYPs prominent in metabolism of drugs and pollutants, as well as of endogenous substrates.
    [Show full text]
  • Mining for Oxysterols in Cyp7b1-/- Mouse Brain and Plasma
    biomolecules Communication − − Mining for Oxysterols in Cyp7b1 / Mouse Brain and Plasma: Relevance to Spastic Paraplegia Type 5 Anna Meljon 1,2, Peter J. Crick 1, Eylan Yutuc 1 , Joyce L. Yau 3, Jonathan R. Seckl 3, Spyridon Theofilopoulos 1,4 , Ernest Arenas 4, Yuqin Wang 1 and William J. Griffiths 1,* 1 Swansea University Medical School, ILS1 Building, Singleton Park, Swansea SA2 8PP, UK; [email protected] (A.M.); [email protected] (P.J.C.); [email protected] (E.Y.); s.theofi[email protected] (S.T.); [email protected] (Y.W.) 2 Institute for Global Food Security, Queens University Belfast, Stranmillis Road, Belfast BT9 5AG, UK 3 Endocrinology Unit, BHF Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK; [email protected] (J.L.Y.); [email protected] (J.R.S.) 4 Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17177 Stockholm, Sweden; [email protected] * Correspondence: w.j.griffi[email protected]; Tel.: +44-1792-295562 Received: 6 March 2019; Accepted: 2 April 2019; Published: 13 April 2019 Abstract: Deficiency in cytochrome P450 (CYP) 7B1, also known as oxysterol 7α-hydroxylase, in humans leads to hereditary spastic paraplegia type 5 (SPG5) and in some cases in infants to liver disease. SPG5 is medically characterized by loss of motor neurons in the corticospinal tract. In an effort to gain a better understanding of the fundamental biochemistry of this disorder, we have extended our previous profiling of the oxysterol content of brain and plasma of Cyp7b1 knockout (-/-) mice to include, amongst other sterols, 25-hydroxylated cholesterol metabolites.
    [Show full text]
  • Transcriptomic Characterization of Fibrolamellar Hepatocellular
    Transcriptomic characterization of fibrolamellar PNAS PLUS hepatocellular carcinoma Elana P. Simona, Catherine A. Freijeb, Benjamin A. Farbera,c, Gadi Lalazara, David G. Darcya,c, Joshua N. Honeymana,c, Rachel Chiaroni-Clarkea, Brian D. Dilld, Henrik Molinad, Umesh K. Bhanote, Michael P. La Quagliac, Brad R. Rosenbergb,f, and Sanford M. Simona,1 aLaboratory of Cellular Biophysics, The Rockefeller University, New York, NY 10065; bPresidential Fellows Laboratory, The Rockefeller University, New York, NY 10065; cDivision of Pediatric Surgery, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY 10065; dProteomics Resource Center, The Rockefeller University, New York, NY 10065; ePathology Core Facility, Memorial Sloan-Kettering Cancer Center, New York, NY 10065; and fJohn C. Whitehead Presidential Fellows Program, The Rockefeller University, New York, NY 10065 Edited by Susan S. Taylor, University of California, San Diego, La Jolla, CA, and approved September 22, 2015 (received for review December 29, 2014) Fibrolamellar hepatocellular carcinoma (FLHCC) tumors all carry a exon of DNAJB1 and all but the first exon of PRKACA. This deletion of ∼400 kb in chromosome 19, resulting in a fusion of the produced a chimeric RNA transcript and a translated chimeric genes for the heat shock protein, DNAJ (Hsp40) homolog, subfam- protein that retains the full catalytic activity of wild-type PKA. ily B, member 1, DNAJB1, and the catalytic subunit of protein ki- This chimeric protein was found in 15 of 15 FLHCC patients nase A, PRKACA. The resulting chimeric transcript produces a (21) in the absence of any other recurrent mutations in the DNA fusion protein that retains kinase activity.
    [Show full text]
  • Synonymous Single Nucleotide Polymorphisms in Human Cytochrome
    DMD Fast Forward. Published on February 9, 2009 as doi:10.1124/dmd.108.026047 DMD #26047 TITLE PAGE: A BIOINFORMATICS APPROACH FOR THE PHENOTYPE PREDICTION OF NON- SYNONYMOUS SINGLE NUCLEOTIDE POLYMORPHISMS IN HUMAN CYTOCHROME P450S LIN-LIN WANG, YONG LI, SHU-FENG ZHOU Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, P. R. China (LL Wang & Y Li) Discipline of Chinese Medicine, School of Health Sciences, RMIT University, Bundoora, Victoria 3083, Australia (LL Wang & SF Zhou). 1 Copyright 2009 by the American Society for Pharmacology and Experimental Therapeutics. DMD #26047 RUNNING TITLE PAGE: a) Running title: Prediction of phenotype of human CYPs. b) Author for correspondence: A/Prof. Shu-Feng Zhou, MD, PhD Discipline of Chinese Medicine, School of Health Sciences, RMIT University, WHO Collaborating Center for Traditional Medicine, Bundoora, Victoria 3083, Australia. Tel: + 61 3 9925 7794; fax: +61 3 9925 7178. Email: [email protected] c) Number of text pages: 21 Number of tables: 10 Number of figures: 2 Number of references: 40 Number of words in Abstract: 249 Number of words in Introduction: 749 Number of words in Discussion: 1459 d) Non-standard abbreviations: CYP, cytochrome P450; nsSNP, non-synonymous single nucleotide polymorphism. 2 DMD #26047 ABSTRACT Non-synonymous single nucleotide polymorphisms (nsSNPs) in coding regions that can lead to amino acid changes may cause alteration of protein function and account for susceptivity to disease. Identification of deleterious nsSNPs from tolerant nsSNPs is important for characterizing the genetic basis of human disease, assessing individual susceptibility to disease, understanding the pathogenesis of disease, identifying molecular targets for drug treatment and conducting individualized pharmacotherapy.
    [Show full text]
  • Hepatic Gene Expression of Bile Acid Synthesis Genes from Wild-Type and Fxr−/− Mice
    A 2.0 Acox2 B 2.0 Akr1c14 C 2.0 Akr1d1 D 2.0 Amacr ** 1.5 1.5 1.5 1.5 1.0 1.0 1.0 1.0 0.5 0.5 0.5 0.5 mRNA (Fold Change) mRNA mRNA (Fold Change) mRNA mRNA (Fold Change) mRNA mRNA (Fold Change) mRNA 0.0 0.0 0.0 0.0 GSK − 30’ 1h 2h − 30’ 1h 2h GSK − 30’ 1h 2h − 30’ 1h 2h GSK − 30’ 1h 2h − 30’ 1h 2h GSK − 30’ 1h 2h − 30’ 1h 2h FXR WT Fxr−/− FXR WT Fxr−/− FXR WT Fxr−/− FXR WT Fxr−/− E F 2.0 Cyp7b1 2.0 Cyp27a1 G 2.0 Cyp39a1 H 2.0 Hsd3b7 1.5 1.5 1.5 1.5 * 1.0 1.0 1.0 1.0 0.5 0.5 0.5 0.5 mRNA (Fold Change) mRNA mRNA (Fold Change) mRNA mRNA (Fold Change) mRNA mRNA (Fold Change) mRNA 0.0 0.0 0.0 0.0 GSK − 30’ 1h 2h − 30’ 1h 2h GSK − 30’ 1h 2h − 30’ 1h 2h GSK − 30’ 1h 2h − 30’ 1h 2h GSK − 30’ 1h 2h − 30’ 1h 2h FXR WT Fxr−/− FXR WT Fxr−/− FXR WT Fxr−/− FXR WT Fxr−/− I J K 2.0 Hsd17b4 2.0 Scp2 2.0 Slc27a5 L Fxr Cyp7a1 Cyp8b1 1.0 1.5 1.5 1.5 * 1.0 1.0 1.0 0.5 *** *** 0.5 0.5 0.5 mRNA (Fold Change) mRNA mRNA (Fold Change) mRNA mRNA (Fold Change) mRNA mRNA (Fold Change) mRNA *** *** *** 0.0 0.0 0.0 0.0 *** GSK − 30’ 1h 2h − 30’ 1h 2h GSK − 30’ 1h 2h − 30’ 1h 2h GSK − 30’ 1h 2h − 30’ 1h 2h Time (h) 0 4 16 0 4 16 0 4 16 FXR WT Fxr−/− FXR WT Fxr−/− FXR WT Fxr−/− post plating M N CYP7A1 CYP8B1 Supplementary Figure 1 – FXR activation leads to rapid changes in gene expression 1.0 1.0 (A-K) Hepatic gene expression of bile acid synthesis genes from wild-type and Fxr−/− mice.
    [Show full text]
  • TRANSLATIONALLY by AMPK a Dissertation
    CHOLESTEROL 7 ALPHA-HYDROXYLASE IS REGULATED POST- TRANSLATIONALLY BY AMPK A dissertation submitted to Kent State University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy By Mauris E.C. Nnamani May 2009 Dissertation written by Mauris E. C. Nnamani B.S, Kent State University, 2006 Ph.D., Kent State University, 2009 Approved by Diane Stroup Advisor Gail Fraizer Members, Doctoral Dissertation Committee S. Vijayaraghavan Arne Gericke Jennifer Marcinkiewicz Accepted by Robert Dorman , Director, School of Biomedical Science John Stalvey , Dean, Collage of Arts and Sciences ii TABLE OF CONTENTS LIST OF FIGURES……………………………………………………………..vi ACKNOWLEDGMENTS……………………………………………………..viii CHAPTER I: INTRODUCTION……………………………………….…........1 a. Bile Acid Synthesis…………………………………………….……….2 i. Importance of Bile Acid Synthesis Pathway………………….….....2 ii. Bile Acid Transport..…………………………………...…...………...3 iii. Bile Acid Synthesis Pathway………………………………………...…4 iv. Classical Bile Acid Synthesis Pathway…..……………………..…..8 Cholesterol 7 -hydroxylase (CYP7A1)……..........………….....8 Transcriptional Regulation of Cholesterol 7 -hydroxylase by Bile Acid-activated FXR…………………………….....…10 CYP7A1 Transcriptional Repression by SHP-dependant Mechanism…………………………………………………...10 CYP7A1 Transcriptional Repression by SHP-independent Mechanism……………………………………..…………….…….11 CYP7A1 Transcriptional Repression by Activated Cellular Kinase…….…………………………...…………………….……12 v. Alternative/ Acidic Bile Acid Synthesis Pathway…………......…….12 Sterol 27-hydroxylase (CYP27A1)……………….…………….12
    [Show full text]
  • Polyclonal Antibody to CYP7B1 (C-Term) - Aff - Purified
    OriGene Technologies, Inc. OriGene Technologies GmbH 9620 Medical Center Drive, Ste 200 Schillerstr. 5 Rockville, MD 20850 32052 Herford UNITED STATES GERMANY Phone: +1-888-267-4436 Phone: +49-5221-34606-0 Fax: +1-301-340-8606 Fax: +49-5221-34606-11 [email protected] [email protected] AP20144PU-N Polyclonal Antibody to CYP7B1 (C-term) - Aff - Purified Alternate names: 25-hydroxycholesterol 7-alpha-hydroxylase, Cytochrome P450 7B1, Oxysterol 7-alpha- hydroxylase Quantity: 0.1 mg Concentration: 0.5 mg/ml Background: P450 enzymes constitute a family of monooxygenase enzymes that are involved in the metabolism of a wide array of endogenous and xenobiotic compounds including cholesterol. CYP8B1 moderates the ratio of cholic acid over chenodeoxycholic acid to control the solubility of cholesterol. P450 cholesterol 7-hydroxylase, CYP7A1, is the rate limiting enzyme of bile acid synthesis in the liver, and its expression is mediated by the bile acid receptor FXR. CYP27A1 catalyzes vitamin D3 25-hydroxylation and is localized to the mitochondria in kidney and liver. CYP7B1 (oxysterol 7-α-hydroxylase) functions as an enzyme in the alternate bile acid synthesis pathway. Specifically, CYP7B1 metabolizes 25-and 27-hydroxycholesterol. The gene encoding human CYP7B1 maps to chromosome 8q21.3. Mutations in the CYP7B1 gene may cause a metabolic defect in bile acid synthesis characterized by elevated urinary bile acid excretion, severe cholestasis, cirrhosis and liver synthetic failure. Uniprot ID: O75881 NCBI: NP_004811 GeneID: 9420 Host: Goat Immunogen: Peptide with sequence C-YPDSDVLFRYKVKS, from the C Terminus of the protein sequence according to NP_004811.1. Format: State: Liquid purified IgG fraction.
    [Show full text]
  • Metabolic Activation and Toxicological Evaluation of Polychlorinated Biphenyls in Drosophila Melanogaster T
    www.nature.com/scientificreports OPEN Metabolic activation and toxicological evaluation of polychlorinated biphenyls in Drosophila melanogaster T. Idda1,7, C. Bonas1,7, J. Hofmann1, J. Bertram1, N. Quinete1,2, T. Schettgen1, K. Fietkau3, A. Esser1, M. B. Stope4, M. M. Leijs3, J. M. Baron3, T. Kraus1, A. Voigt5,6 & P. Ziegler1* Degradation of polychlorinated biphenyls (PCBs) is initiated by cytochrome P450 (CYP) enzymes and includes PCB oxidation to OH-metabolites, which often display a higher toxicity than their parental compounds. In search of an animal model refecting PCB metabolism and toxicity, we tested Drosophila melanogaster, a well-known model system for genetics and human disease. Feeding Drosophila with lower chlorinated (LC) PCB congeners 28, 52 or 101 resulted in the detection of a human-like pattern of respective OH-metabolites in fy lysates. Feeding fies high PCB 28 concentrations caused lethality. Thus we silenced selected CYPs via RNA interference and analyzed the efect on PCB 28-derived metabolite formation by assaying 3-OH-2′,4,4′-trichlorobiphenyl (3-OHCB 28) and 3′-OH-4′,4,6′-trichlorobiphenyl (3′-OHCB 28) in fy lysates. We identifed several drosophila CYPs (dCYPs) whose knockdown reduced PCB 28-derived OH-metabolites and suppressed PCB 28 induced lethality including dCYP1A2. Following in vitro analysis using a liver-like CYP-cocktail, containing human orthologues of dCYP1A2, we confrm human CYP1A2 as a PCB 28 metabolizing enzyme. PCB 28-induced mortality in fies was accompanied by locomotor impairment, a common phenotype of neurodegenerative disorders. Along this line, we show PCB 28-initiated caspase activation in diferentiated fy neurons.
    [Show full text]
  • Alteration of the Steroidogenesis in Boys with Autism Spectrum Disorders
    Janšáková et al. Translational Psychiatry (2020) 10:340 https://doi.org/10.1038/s41398-020-01017-8 Translational Psychiatry ARTICLE Open Access Alteration of the steroidogenesis in boys with autism spectrum disorders Katarína Janšáková 1, Martin Hill 2,DianaČelárová1,HanaCelušáková1,GabrielaRepiská1,MarieBičíková2, Ludmila Máčová2 and Daniela Ostatníková1 Abstract The etiology of autism spectrum disorders (ASD) remains unknown, but associations between prenatal hormonal changes and ASD risk were found. The consequences of these changes on the steroidogenesis during a postnatal development are not yet well known. The aim of this study was to analyze the steroid metabolic pathway in prepubertal ASD and neurotypical boys. Plasma samples were collected from 62 prepubertal ASD boys and 24 age and sex-matched controls (CTRL). Eighty-two biomarkers of steroidogenesis were detected using gas-chromatography tandem-mass spectrometry. We observed changes across the whole alternative backdoor pathway of androgens synthesis toward lower level in ASD group. Our data indicate suppressed production of pregnenolone sulfate at augmented activities of CYP17A1 and SULT2A1 and reduced HSD3B2 activity in ASD group which is partly consistent with the results reported in older children, in whom the adrenal zona reticularis significantly influences the steroid levels. Furthermore, we detected the suppressed activity of CYP7B1 enzyme readily metabolizing the precursors of sex hormones on one hand but increased anti-glucocorticoid effect of 7α-hydroxy-DHEA via competition with cortisone for HSD11B1 on the other. The multivariate model found significant correlations between behavioral indices and circulating steroids. From dependent variables, the best correlation was found for the social interaction (28.5%). Observed changes give a space for their utilization as biomarkers while reveal the etiopathogenesis of ASD.
    [Show full text]
  • Novel Copy-Number Variations in Pharmacogenes Contribute to Interindividual Differences in Drug Pharmacokinetics
    ORIGINAL RESEARCH ARTICLE © American College of Medical Genetics and Genomics Novel copy-number variations in pharmacogenes contribute to interindividual differences in drug pharmacokinetics María Santos, MSc1, Mikko Niemi, PhD2, Masahiro Hiratsuka, PhD3, Masaki Kumondai, BSc3, Magnus Ingelman-Sundberg, PhD4, Volker M. Lauschke, PhD4 and Cristina Rodríguez-Antona, PhD1,5 Purpose: Variability in pharmacokinetics and drug response is of the genes studied. We experimentally confirmed novel deletions shaped by single-nucleotide variants (SNVs) as well as copy- in CYP2C19, CYP4F2, and SLCO1B3 by Sanger sequencing and number variants (CNVs) in genes with importance for drug validated their allelic frequencies in selected populations. absorption, distribution, metabolism, and excretion (ADME). Conclusion: CNVs are an additional source of pharmacogenetic While SNVs have been extensively studied, a systematic assessment variability with important implications for drug response and of the CNV landscape in ADME genes is lacking. personalized therapy. This, together with the important contribu- Methods: We integrated data from 2,504 whole genomes from the tion of rare alleles to the variability of pharmacogenes, emphasizes 1000 Genomes Project and 59,898 exomes from the Exome the necessity of comprehensive next-generation sequencing–based Aggregation Consortium to identify CNVs in 208 relevant genotype identification for an accurate prediction of the genetic pharmacogenes. variability of drug pharmacokinetics. Results: We describe novel exonic deletions
    [Show full text]
  • Vitamin D Receptor (VDR) and Cholesterol Homeostasis: Interplay of VDR Enzyme Targets and Vitamin D Deficiency
    Vitamin D Receptor (VDR) and Cholesterol Homeostasis: Interplay of VDR Enzyme Targets and Vitamin D Deficiency by Holly P. Quach A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Department of Pharmaceutical Sciences University of Toronto © Copyright by Holly P. Quach, 2016 Vitamin D Receptor (VDR) and Cholesterol Homeostasis: Interplay of VDR Enzyme Targets and Vitamin D Deficiency Holly P. Quach Doctor of Philosophy Department of Pharmaceutical Sciences University of Toronto 2016 Abstract Vitamin D deficiency is speculated to play a role in hypercholesterolemia. However, there has been little molecular evidence to link the two until recent evidence identified the vitamin D receptor (VDR) and its natural ligand, 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3], as key regulators of cholesterol metabolism. In the liver, 1,25(OH)2D3-liganded VDR directly inhibited the small heterodimer partner (Shp) to increase expression of cholesterol 7α-hydroxylase (Cyp7a1), the rate-limiting enzyme for cholesterol metabolism to bile acids, a mechanism independent of the farnesoid X receptor. Vitamin D deficiency was established in mice after 8 weeks of the D-deficient diet, which resulted in decreased levels of plasma and liver 1,25(OH)2D3, downregulation of hepatic Vdr and Cyp7a1, and elevation of Shp. Consequently, higher plasma and liver cholesterol levels were observed. Intervention with 1,25(OH)2D3 or vitamin D3 reversed the altered expression of these cholesterol-regulating genes and lowered cholesterol levels back to baseline levels. The correlations between liver cholesterol vs. liver 1,25(OH)2D3 and Cyp7a1 expression in mice were also found in human liver tissue, suggesting that the VDR could be a ii potential therapeutic target for cholesterol lowering.
    [Show full text]
  • Widespread Signals of Convergent Adaptation to High Altitude in Asia and America
    bioRxiv preprint doi: https://doi.org/10.1101/002816; this version posted September 26, 2014. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Widespread signals of convergent adaptation to high altitude in Asia and America Matthieu Foll 1,2,3,*, Oscar E. Gaggiotti 4,5, Josephine T. Daub 1,2, Alexandra Vatsiou 5 and Laurent Excoffier 1,2 1 CMPG, Institute oF Ecology and Evolution, University oF Berne, Berne, 3012, Switzerland 2 Swiss Institute oF BioinFormatics, Lausanne, 1015, Switzerland 3 Present address: School oF LiFe Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland 4 School oF Biology, Scottish Oceans Institute, University oF St Andrews, St Andrews, FiFe, KY16 8LB, UK 5 Laboratoire d'Ecologie Alpine (LECA), UMR 5553 CNRS-Université de Grenoble, Grenoble, France * Corresponding author: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/002816; this version posted September 26, 2014. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract Living at high-altitude is one oF the most diFFicult challenges that humans had to cope with during their evolution. Whereas several genomic studies have revealed some oF the genetic bases oF adaptations in Tibetan, Andean and Ethiopian populations, relatively little evidence oF convergent evolution to altitude in diFFerent continents has accumulated.
    [Show full text]