Inhibition of Infection and Transmission of HIV-1 and Lack of Significant

Total Page:16

File Type:pdf, Size:1020Kb

Inhibition of Infection and Transmission of HIV-1 and Lack of Significant J Antimicrob Chemother 2013; 68: 2026–2037 doi:10.1093/jac/dkt152 Advance Access publication 2 May 2013 Inhibition of infection and transmission of HIV-1 and lack of significant impact on the vaginal commensal lactobacilli by carbohydrate-binding agents Mariya I. Petrova1,2†, Leen Mathys3†, Sarah Lebeer1,2, Sam Noppen3, Els J. M. Van Damme4, Haruo Tanaka5, Yasuhiro Igarashi6, Mario Vaneechoutte7, Jos Vanderleyden1 and Jan Balzarini3* Downloaded from https://academic.oup.com/jac/article/68/9/2026/782524 by guest on 27 September 2021 1Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, bus 2460, B-3001 Leuven, Belgium; 2Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium; 3Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium; 4Laboratory of Biochemistry and Glycobiology, Department of Molecular Biotechnology, Ghent University, Coupure links 653, B-9000 Ghent, Belgium; 5Faculty of Pharmacy and College of Science and Engineering, Iwaki Meisei University, Iwaki, Fukushima 970-8551, Japan; 6Biotechnology Research Center, Toyama Prefectural University, Toyama 939-0398, Japan; 7Laboratory of Bacteriology Research, Ghent University, De Pintelaan 185, B-9000 Ghent, Belgium *Corresponding author. Tel: +32-16-337367; Fax: +32-16-337340; E-mail: [email protected] †These authors contributed equally to this work. Received 12 November 2012; returned 4 February 2013; revised 13 March 2013; accepted 25 March 2013 Objectives: A selection of carbohydrate-binding agents (CBAs) with different glycan specificities were evaluated for their inhibitory effect against HIV infection and transmission, and their interaction with vaginal commensal bacteria. Methods: Several assays were used for the antiviral evaluation: (i) cell-free virus infection of human CD4+ T lymphocyte C8166 cells; (ii) syncytium formation in co-cultures of persistently HIV-1-infected HUT-78/HIV-1 and non-infected CD4+ SupT1 cells; (iii) DC-SIGN-directed capture of HIV-1 particles; and (iv) transmission of DC-SIGN-captured HIV-1 particles to uninfected CD4+ C8166 cells. CBAs were also examined for their interaction with vaginal commensal lactobacilli using several viability, proliferation and adhesion assays. Results: The CBAs showed efficient inhibitory activity in the nanomolar to low-micromolar range against four events that play a crucial role in HIV-1 infection and transmission: cell-free virus infection, fusion between HIV- 1-infected and non-infected cells, HIV-1 capture by DC-SIGN and transmission of DC-SIGN-captured virus to T cells. As candidate microbicides should not interfere with the normal human microbiota, we examined the effect of CBAs against Lactobacillus strains, including a variety of vaginal strains, a gastrointestinal strain and several non-human isolates. None of the CBAs included in our studies inhibited the growth of these bacteria in several media, affected their viability or had any significant impact on their adhesion to HeLa cell monolayers. Conclusions: The CBAs in this study were inhibitory to HIV-1 in several in vitro infection and transmission models, and may therefore qualify as potential microbicide candidates. The lack of significant impact on commensal vaginal lactobacilli is an important property of these CBAs in view of their potential microbicidal use. Keywords: adhesion, HIV/AIDS, antimicrobial agents, antiretroviral therapy, bacterial biofilms, lactic acid bacteria, microbicides Introduction will result in the exposure of previously hidden immunogenic epi- Carbohydrate-binding agents (CBAs) comprise a broad and struc- topes to the immune system.1 A variety of CBAs derived from turally diverse functional class of agents, which may become the several organisms other than mammals have been described to first chemotherapeutics with a dual mechanism of antiviral be endowed with anti-HIV activity (for an overview, see Franc¸ois action: first, through direct antiviral activity by binding the and Balzarini2). Such CBAs include plant, invertebrate and prokary- glycans of the virus envelope and blocking virus entry, and otic lectins. The CBAs may qualify as potential microbicidal agents second, through indirect antiviral action by exerting pressure on since several among them have the intrinsic potential not only to the virus to select for deletions in the envelope glycan shield that inhibit virus infection and interaction between (gp120-expressing) # The Author 2013. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: [email protected] 2026 Lack of toxicity of anti-HIV CBAs against vaginal lactobacilli JAC virus-infected cells and uninfected cells, but also to prevent the Test compounds used in this study capture of virus particles by dendritic cell-specific intercellular ad- The CBAs used in the study are shown in Table 1 together with their carbo- hesion molecule-3 grabbing non-integrin (DC-SIGN)-expressing hydrate specificities.11 – 16 The plant lectins derived from Galanthus nivalis + cells and subsequent transmission to uninfected CD4 T lympho- (GNA), Hippeastrum hybrid (HHA) and Urtica dioica agglutinin (UDA) were 1,2 cytes. However, when introducing these molecules as microbi- kindly provided by E. J. M. Van Damme (Ghent, Belgium).17,18 Actinohivin cides in complex hosts for prevention and/or therapy of viral (AH) prepared from a cultured broth of an actinomycete, Longispora infections, the CBAs will also come into contact with the normal albida K97-0003T was provided by H. Tanaka (Fukushima, Japan).19 Pradi- microbiota, which are important for the health of the host and micin A (PRM-A)20 and pradimicin S (PRM-S)21,22 were obtained from Profes- which should preferentially not be affected by the CBAs. Lactoba- sor T. Oki and Professor Y. Igarashi (Toyama, Japan). The monoclonal cilli are important beneficial members of the human vaginal and antibody 2G12 was purchased from Polymun Scientific (Vienna, Austria). gastrointestinal microbiota.3 It has been previously reported that lactobacilli have various carbohydrate-containing macromole- Downloaded from https://academic.oup.com/jac/article/68/9/2026/782524 by guest on 27 September 2021 4 –6 Viruses cules on their surface that might be possible targets for CBAs. The aim of this study was to evaluate and confirm the potential HIV-1NL4.3 was producedbythe simultaneoustransfection of HEK 293Tcells of several distinct CBAs to inhibit both infection and transmission of with a DNA construct encoding recombinant gp160 and XbaI-digested pNL4.3_DEnv_eGFP, which led to homologous recombination, thereby HIV in cell culture, and to investigate whether CBAs with promising 23 antiviral potential affect the growth, survival and adhesion cap- inserting the gp160 gene in the pNL4.3_eGFP backbone. As a result, acity of a broad variety of relevant (human) Lactobacillus strains. infected cells express enhanced green fluorescent protein (eGFP). The con- struct pNL4.3_DEnv_eGFP was kindly provided by Dr M. E. Quin˜ones-Mateu This study is therefore focusing on vaginal Lactobacillus species, (Lerner Research Institute, Cleveland, OH, USA).24 The produced wild-type since the vagina is the most important port of entry for HIV and virus was used to infect U87.CD4.CXCR4.CCR5, leading to an increased lactobacilli create a natural protection barrier in the human viral yield. vagina.6 –8 HIV-1IIIB was provided by R. C. Gallo and M. Popovic (Institute of Human Virology, University of Maryland, Baltimore, MD, at that time at the NIH, Materials and methods Bethesda, MD). Cell lines Bacteria Human CD4+ T lymphocytic C8166 and SupT1 cells were obtained from The bacterial strains, their origin and reference/source are shown in the ATCC (Manassas, VA, USA). HIV-1 -persistently infected Hut-78 cells IIIB Table 2.25 – 35 (Hut-78/HIV-1) were obtained after exposure of Hut-78 cells to wild-type HIV-1IIIB for 3–4 weeks. Human B-lymphocytic Raji/DC-SIGN cells, expres- sing DC-SIGN, were constructed by Geijtenbeek et al.9 and kindly provided by Dr L. Burleigh (Institut Pasteur, Paris, France). These cell lines were Antiretrovirus assays grownin RPMI-1640 medium(Invitrogen,Merelbeke, Belgium), supplemen- C8166 cells were grown in fresh culture medium (200 mL) in 96-well plates ted with 10% fetal calf serum (FCS) (Sigma, Bornem, Belgium), 2 mM at a density of 30000 cells/well. The appropriate concentrations of the test L-glutamine and 2% gentamicin (Invitrogen). compounds were added in 5-fold serial dilutions ranging between 20 mg/ Human embryonic kidney cells (HEK 293T) were obtained from the mL and 0.006 mg/mL. For flow cytometric analysis, wild-type HIV-1NL4.3 ATCC. U87.CD4.CCR5.CXCR4 cells were provided by Professor D. Schols was added at viral loads able to result in a 10% infection after 72 h. For (KU Leuven, Belgium) and their construction and characterization have scoring of the cytopathogenic effect (CPE), cells were infected with a viral 10 been described previously. Both cell lines were grown in Dulbecco’s load of 5-fold the CCID50, resulting in abundant giant cell formation after modified Eagle medium (DMEM) (Invitrogen), supplemented with 10% 72 h in the absence of the compounds. FCS (Sigma), 75 mM NaHCO3 and 2% gentamicin (Invitrogen). For the After 72 h of incubation at 378C, the cells were either microscopically U87.CD4.CXCR4.CCR5 cells, 1% puromycin (Invitrogen) and 0.02% geneti- examined for giant cell formation (CPE) or fixed in 3% formaldehyde for cin (Invitrogen) were added. flowcytometric analysis. The 50% effective concentration (EC50) wascalcu- Human cervix carcinoma HeLa cells were obtained from the ATCC. The lated asthe concentration of an agent required to suppress viral infection by cells were cultured at 378C in a 5% CO2/95% air atmosphere in DMEM 50%. Mutant HIV-1IIIB strains that had previously been isolated under CBA supplemented with 10% FCS. For the adhesion experiments, HeLa cells escalating selection conditions36,37 were also administered to C8166 cell were used at confluence, i.e. 4 days after seeding.
Recommended publications
  • Lactobacillus Crispatus
    WHAT 2nd Microbiome workshop WHEN 17 & 18 November 2016 WHERE Masur Auditorium at NIH Campus, Bethesda MD Modulating the Vaginal Microbiome to Prevent HIV Infection Laurel Lagenaur For more information: www.virology-education.com Conflict of Interest I work for Osel Inc., a microbiome company developing live biotherapeutic products to prevent diseases in women The Vaginal Microbiome and HIV Infection What’s normal /healthy/ optimal and what’s not? • Ravel Community Groups • Lactobacillus dominant vs. dysbiosis Why are Lactobacilli important for HIV prevention? • Dysbiosis = Inflammation = Increased risk of HIV acquisition • Efficacy of Pre-Exposure Prophylaxis decreased Modulation of the vaginal microbiome • LACTIN-V, live biotherapeutic-Lactobacillus crispatus • Ongoing clinical trials How we can use Lactobacilli and go a step further • Genetically modified Lactobacillus to prevent HIV acquisition HIV is Transmitted Across Mucosal Surfaces • HIV infection in women occurs in the mucosa of the vagina and cervix vagina cervix • Infection of underlying target cells All mucosal surfaces are continuously exposed to a Herrera and Shattock, community of microorganisms Curr Top Microbiol Immunol 2013 Vaginal Microbiome: Ravel Community Groups Vaginal microbiomes clustered into 5 groups: Group V L. jensenii Group II L. gasseri 4 were dominated by Group I L. crispatus Lactobacillus, Group III L. iners whereas the 5th had lower proportions of lactic acid bacteria and Group 4 Diversity higher proportions of Prevotella, strictly anaerobic Sneathia,
    [Show full text]
  • A Taxonomic Note on the Genus Lactobacillus
    Taxonomic Description template 1 A taxonomic note on the genus Lactobacillus: 2 Description of 23 novel genera, emended description 3 of the genus Lactobacillus Beijerinck 1901, and union 4 of Lactobacillaceae and Leuconostocaceae 5 Jinshui Zheng1, $, Stijn Wittouck2, $, Elisa Salvetti3, $, Charles M.A.P. Franz4, Hugh M.B. Harris5, Paola 6 Mattarelli6, Paul W. O’Toole5, Bruno Pot7, Peter Vandamme8, Jens Walter9, 10, Koichi Watanabe11, 12, 7 Sander Wuyts2, Giovanna E. Felis3, #*, Michael G. Gänzle9, 13#*, Sarah Lebeer2 # 8 '© [Jinshui Zheng, Stijn Wittouck, Elisa Salvetti, Charles M.A.P. Franz, Hugh M.B. Harris, Paola 9 Mattarelli, Paul W. O’Toole, Bruno Pot, Peter Vandamme, Jens Walter, Koichi Watanabe, Sander 10 Wuyts, Giovanna E. Felis, Michael G. Gänzle, Sarah Lebeer]. 11 The definitive peer reviewed, edited version of this article is published in International Journal of 12 Systematic and Evolutionary Microbiology, https://doi.org/10.1099/ijsem.0.004107 13 1Huazhong Agricultural University, State Key Laboratory of Agricultural Microbiology, Hubei Key 14 Laboratory of Agricultural Bioinformatics, Wuhan, Hubei, P.R. China. 15 2Research Group Environmental Ecology and Applied Microbiology, Department of Bioscience 16 Engineering, University of Antwerp, Antwerp, Belgium 17 3 Dept. of Biotechnology, University of Verona, Verona, Italy 18 4 Max Rubner‐Institut, Department of Microbiology and Biotechnology, Kiel, Germany 19 5 School of Microbiology & APC Microbiome Ireland, University College Cork, Co. Cork, Ireland 20 6 University of Bologna, Dept. of Agricultural and Food Sciences, Bologna, Italy 21 7 Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Vrije Universiteit 22 Brussel, Brussels, Belgium 23 8 Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, 24 Belgium 25 9 Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Canada 26 10 Department of Biological Sciences, University of Alberta, Edmonton, Canada 27 11 National Taiwan University, Dept.
    [Show full text]
  • Vaginal Probiotic Lactobacillus Crispatus Seems to Inhibit Sperm Activity and Subsequently Reduces Pregnancies in Rat
    fcell-09-705690 August 11, 2021 Time: 11:32 # 1 ORIGINAL RESEARCH published: 13 August 2021 doi: 10.3389/fcell.2021.705690 Vaginal Probiotic Lactobacillus crispatus Seems to Inhibit Sperm Activity and Subsequently Reduces Pregnancies in Rat Ping Li1, Kehong Wei1, Xia He2, Lu Zhang1, Zhaoxia Liu3, Jing Wei1, Xiaomei Chen1, Hong Wei4* and Tingtao Chen1* 1 School of Life Sciences, Institute of Translational Medicine, Nanchang University, Nanchang, China, 2 Department of Obstetrics and Gynecology, The Ninth Hospital of Nanchang, Nanchang, China, 3 Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China, 4 Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China Background: The vaginal microbiota is associated with the health of the female reproductive system and the offspring. Lactobacillus crispatus belongs to one of the most important vaginal probiotics, while its role in the agglutination and immobilization Edited by: of human sperm, fertility, and offspring health is unclear. Bechan Sharma, University of Allahabad, India Methods: Adherence assays, sperm motility assays, and Ca2C-detecting assays were Reviewed by: used to analyze the adherence properties and sperm motility of L. crispatus Lcr-MH175, António Machado, Universidad San Francisco de Quito, attenuated Salmonella typhimurium VNP20009, engineered S. typhimurium VNP20009 Ecuador DNase I, and Escherichia coli O157:H7 in vitro. The rat reproductive model was further Margarita Aguilera, University of Granada, Spain developed to study the role of L. crispatus on reproduction and offspring health, using *Correspondence: high-throughput sequencing, real-time PCR, and molecular biology techniques. Tingtao Chen Our results indicated that L.
    [Show full text]
  • Lactobacillus Crispatus Protects Against Bacterial Vaginosis
    Lactobacillus crispatus protects against bacterial vaginosis M.O. Almeida1, F.L.R. do Carmo1, A. Gala-García1, R. Kato1, A.C. Gomide1, R.M.N. Drummond2, M.M. Drumond3, P.M. Agresti1, D. Barh4, B. Brening5, P. Ghosh6, A. Silva7, V. Azevedo1 and 1,7 M.V.C. Viana 1 Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil 2 Departamento de Microbiologia, Ecologia e Evolução, , Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil 3 Departamento de Ciências Biológicas, Centro Federal de Educação Tecnologica de Minas Gerais, Belo Horizonte, MG, Brasil 4 Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur, West Bengal, India 5 Institute of Veterinary Medicine, University of Göttingen, Göttingen, Germany 6 Department of Computer Science, Virginia Commonwealth University, Richmond, Virginia, USA 7 Departamento de Genética, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brasil Corresponding author: V. Azevedo E-mail: [email protected] Genet. Mol. Res. 18 (4): gmr18475 Received August 16, 2019 Accepted October 23, 2019 Published November 30, 2019 DOI http://dx.doi.org/10.4238/gmr18475 ABSTRACT. In medicine, the 20th century was marked by one of the most important revolutions in infectious-disease management, the discovery and increasing use of antibiotics. However, their indiscriminate use has led to the emergence of multidrug-resistant (MDR) bacteria. Drug resistance and other factors, such as the production of bacterial biofilms, have resulted in high recurrence rates of bacterial diseases. Bacterial vaginosis (BV) syndrome is the most prevalent vaginal condition in women of reproductive age, Genetics and Molecular Research 18 (4): gmr18475 ©FUNPEC-RP www.funpecrp.com.br M.O.
    [Show full text]
  • Impact of Oral Administration of Four Lactobacillus Strains on Nugent Score – Systematic Review and Meta-Analysis
    Wageningen Academic Beneficial Microbes, 2019; 10(5): 483-496 Publishers Impact of oral administration of four Lactobacillus strains on Nugent score – systematic review and meta-analysis M. de Vrese1#, C. Laue2, E. Papazova2, L. Petricevic3 and J. Schrezenmeir2,4* 1Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Department of Microbiology and Biotechnology; Hermann-Weigmann-Straβe 1, 24117 Kiel, Germany; 2Clinical Research Center, Schauenburgerstraβe 116, 24118 Kiel, Germany; 3Department of Obstetrics and Fetomaternal Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; 4University Medicine, Langenbeckstraβe 1, 55131 Mainz, Germany; [email protected]; #retired Received: 28 September 2018 / Accepted: 9 February 2019 © 2019 Wageningen Academic Publishers RESEARCH ARTICLE OPEN ACCESS Abstract We aimed at assessing the evidence for an effect on vaginal dysbiosis by oral administration of a mixture of Lactobacillus strains isolated from vaginal microbiota. For this purpose, we systematically reviewed the literature for randomised clinical trials (RCTs) in which the effect of oral administration of a mixture of four Lactobacillus strains (Lactobacillus crispatus LbV 88 (DSM 22566), Lactobacillus gasseri LbV 150N (DSM 22583), Lactobacillus jensenii LbV 116 (DSM 22567) and Lactobacillus rhamnosus LbV96 (DSM 22560)) on vaginal dysbiosis was examined based on Nugent score. Four RCTs were identified: a double-blind (DB)-RCT in 60 male-to-female transsexual women with neovagina; an open label RCT in 60 pregnant women with herpes virus infection; a DB-RCT in 36 women with bacterial vaginosis; a DB-RCT in 22 postmenopausal breast cancer patients receiving chemotherapy. Only in the three DB-RCTs Nugent score was assessed.
    [Show full text]
  • A Taxonomic Note on the Genus Lactobacillus
    TAXONOMIC DESCRIPTION Zheng et al., Int. J. Syst. Evol. Microbiol. DOI 10.1099/ijsem.0.004107 A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae Jinshui Zheng1†, Stijn Wittouck2†, Elisa Salvetti3†, Charles M.A.P. Franz4, Hugh M.B. Harris5, Paola Mattarelli6, Paul W. O’Toole5, Bruno Pot7, Peter Vandamme8, Jens Walter9,10, Koichi Watanabe11,12, Sander Wuyts2, Giovanna E. Felis3,*,†, Michael G. Gänzle9,13,*,† and Sarah Lebeer2† Abstract The genus Lactobacillus comprises 261 species (at March 2020) that are extremely diverse at phenotypic, ecological and gen- otypic levels. This study evaluated the taxonomy of Lactobacillaceae and Leuconostocaceae on the basis of whole genome sequences. Parameters that were evaluated included core genome phylogeny, (conserved) pairwise average amino acid identity, clade- specific signature genes, physiological criteria and the ecology of the organisms. Based on this polyphasic approach, we propose reclassification of the genus Lactobacillus into 25 genera including the emended genus Lactobacillus, which includes host- adapted organisms that have been referred to as the Lactobacillus delbrueckii group, Paralactobacillus and 23 novel genera for which the names Holzapfelia, Amylolactobacillus, Bombilactobacillus, Companilactobacillus, Lapidilactobacillus, Agrilactobacil- lus, Schleiferilactobacillus, Loigolactobacilus, Lacticaseibacillus, Latilactobacillus, Dellaglioa,
    [Show full text]
  • Lactobacillus Species Isolated from Vaginal Secretions of Healthy and Bacterial Vaginosis-Intermediate Mexican Women
    Martínez-Peña et al. BMC Infectious Diseases 2013, 13:189 http://www.biomedcentral.com/1471-2334/13/189 RESEARCH ARTICLE Open Access Lactobacillus species isolated from vaginal secretions of healthy and bacterial vaginosis-intermediate Mexican women: a prospective study Marcos Daniel Martínez-Peña1,2, Graciela Castro-Escarpulli1 and Ma Guadalupe Aguilera-Arreola1* Abstract Background: Lactobacillus jensenii, L. iners, L. crispatus and L. gasseri are the most frequently occurring lactobacilli in the vagina. However, the native species vary widely according to the studied population. The present study was performed to genetically determine the identity of Lactobacillus strains present in the vaginal discharge of healthy and bacterial vaginosis (BV) intermediate Mexican women. Methods: In a prospective study, 31 strains preliminarily identified as Lactobacillus species were isolated from 21 samples collected from 105 non-pregnant Mexican women. The samples were classified into groups according to the Nugent score criteria proposed for detection of BV: normal (N), intermediate (I) and bacterial vaginosis (BV). We examined the isolates using culture-based methods as well as molecular analysis of the V1–V3 regions of the 16S rRNA gene. Enterobacterial repetitive intergenic consensus (ERIC) sequence analysis was performed to reject clones. Results: Clinical isolates (25/31) were classified into four groups based on sequencing and analysis of the 16S rRNA gene: L. acidophilus (14/25), L. reuteri (6/25), L. casei (4/25) and L. buchneri (1/25). The remaining six isolates were presumptively identified as Enterococcus species. Within the L. acidophilus group, L. gasseri was the most frequently isolated species, followed by L. jensenii and L.
    [Show full text]
  • Lactobacillus Crispatus Or Lactobacillus Jensenii After Treatment for Bacterial Vaginosis: a Cohort Study
    Hindawi Publishing Corporation Infectious Diseases in Obstetrics and Gynecology Volume 2012, Article ID 706540, 6 pages doi:10.1155/2012/706540 Research Article Behavioral Predictors of Colonization with Lactobacillus crispatus or Lactobacillus jensenii after Treatment for Bacterial Vaginosis: A Cohort Study Caroline Mitchell,1 Lisa E. Manhart,2 Kathy Thomas,3 Tina Fiedler,4 David N. Fredricks,3, 4 and Jeanne Marrazzo3 1 Harborview Women’s Clinic, Department of Obstetrics & Gynecology, University of Washington, 325 9th Avenue, Seattle, WA 98105, USA 2 Department of Epidemiology, University of Washington, Seattle, WA 98195, USA 3 Department of Medicine, University of Washington, Seattle, WA 98195, USA 4 Fred Hutchinson Cancer Research Center, USA Correspondence should be addressed to Caroline Mitchell, [email protected] Received 12 February 2012; Accepted 5 April 2012 Academic Editor: Bryan Larsen Copyright © 2012 Caroline Mitchell et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Objective: Evaluate predictors of vaginal colonization with lactobacilli after treatment for bacterial vaginosis (BV). Methods. Vaginal fluid specimens from women with BV underwent qPCR for Lactobacillus crispatus, L. jensenii,andL. iners pre- and posttreatment. Results. Few women with BV were colonized with L. crispatus (4/44, 9%) or L. jensenii (1/44, 2%), though all had L. iners. One month posttreatment 12/44 (27%) had L. crispatus, 12/44 (27%) L. jensenii, and 43/44 (98%) L. iners. Presence of L. jensenii posttreatment was associated with cure (Risk Ratio (RR) 1.67; 95% CI 1.09–2.56); L.
    [Show full text]
  • Microbial Function and Genital Inflammation in Young South African Women at High Risk of HIV
    bioRxiv preprint doi: https://doi.org/10.1101/2020.03.10.986646; this version posted September 27, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Microbial function and genital inflammation in young South African women at high risk of HIV 2 infection 3 4 Arghavan Alisoltani1,2, Monalisa T. Manhanzva1, Matthys Potgieter3,4, Christina Balle5, Liam Bell6, 5 Elizabeth Ross6, Arash Iranzadeh3, Michelle du Plessis6, Nina Radzey1, Zac McDonald6, Bridget 6 Calder4, Imane Allali3,7, Nicola Mulder3,8,9, Smritee Dabee1,10, Shaun Barnabas1, Hoyam Gamieldien1, 7 Adam Godzik2, Jonathan M. Blackburn4,8, David L. Tabb8,11,12, Linda-Gail Bekker8,13, Heather B. 8 Jaspan5,8,10, Jo-Ann S. Passmore1,8,14,15, Lindi Masson1,8,14,16, 17* 9 10 1Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town 7925, South 11 Africa; 2Division of Biomedical Sciences, University of California Riverside School of Medicine, Riverside, CA 12 92521, USA; 3Computational Biology Division, Department of Integrative Biomedical Sciences, University of Cape 13 Town, Cape Town 7925, South Africa; 4Division of Chemical and Systems Biology, Department of Integrative 14 Biomedical Sciences, University of Cape Town, Cape Town 7925, South Africa. 5Division of Immunology, 15 Department of Pathology, University of Cape Town, Cape Town 7925, South Africa; 6Centre for Proteomic and 16 Genomic Research, Cape Town 7925, South Africa; 7Laboratory
    [Show full text]
  • Introducing Lu-1, a Novel Lactobacillus Jensenii Phage Abundant in the Urogenital Tract
    Loyola University Chicago Loyola eCommons Faculty Publications and Other Works by Bioinformatics Faculty Publications Department 6-11-2020 Introducing Lu-1, a Novel Lactobacillus jensenii Phage Abundant in the Urogenital Tract Taylor Miller-Ensminger Loyola University Chicago Rita Mormando Loyola University Chicago Laura Maskeri Loyola University Chicago Jason W. Shapiro Loyola University Chicago, [email protected] Alan J. Wolfe Loyola University Chicago, [email protected] SeeFollow next this page and for additional additional works authors at: https:/ /ecommons.luc.edu/bioinformatics_facpub Part of the Bioinformatics Commons, and the Biology Commons Recommended Citation Miller-Ensminger, Taylor; Mormando, Rita; Maskeri, Laura; Shapiro, Jason W.; Wolfe, Alan J.; and Putonti, Catherine. Introducing Lu-1, a Novel Lactobacillus jensenii Phage Abundant in the Urogenital Tract. PLoS ONE, 15, 6: , 2020. Retrieved from Loyola eCommons, Bioinformatics Faculty Publications, http://dx.doi.org/10.1371/journal.pone.0234159 This Article is brought to you for free and open access by the Faculty Publications and Other Works by Department at Loyola eCommons. It has been accepted for inclusion in Bioinformatics Faculty Publications by an authorized administrator of Loyola eCommons. For more information, please contact [email protected]. This work is licensed under a Creative Commons Attribution 4.0 License. © Miller-Ensminger et al., 2020. Authors Taylor Miller-Ensminger, Rita Mormando, Laura Maskeri, Jason W. Shapiro, Alan J. Wolfe, and Catherine Putonti This article is available at Loyola eCommons: https://ecommons.luc.edu/bioinformatics_facpub/57 PLOS ONE RESEARCH ARTICLE Introducing Lu-1, a Novel Lactobacillus jensenii Phage Abundant in the Urogenital Tract Taylor Miller-Ensminger1, Rita Mormando1, Laura Maskeri1, Jason W.
    [Show full text]
  • Laurel Lagenaur Guest Researcher NIH HIV Infection in Women Around the Globe
    Modifying the vaginal microbiome to protect against HIV Laurel Lagenaur Guest Researcher NIH HIV Infection in Women Around the Globe • Need for HIV prevention strategies for women • In 2013, almost 60% of all new HIV infections occurred among women, particularly young women and adolescent girls aged 15–24. Women Age 24 – 50% HIV+ Men Age 24 – 6% HIV+ HIV is Transmitted Across Mucosal Surfaces • HIV infection in women occurs in the epithelium of the vagina and cervix • Infection of underlying target cells (mostly CD4+ T cells) From Tom Hope Mucosal Surfaces are a Living Community • All mucosal surfaces are continuously exposed to a community of microorganisms Lactobacilli • Vagina and Cervix Vaginal Lactobacillus sp. are Epithelial Cell found in 51-90 % women H2O2-Colonization • L. crispatus, L. jensenii, D-lactic acid producers L. gasseri (and L. iners) L-lactic acid Vaginal Microbiota is Relevant to Human Health Healthy Vagina Dysbiosis Bacterial Diversity H2O2-producing Lactobacillus Low Diversity High Diversity Lactobacillus = Defense against Increased risk of infections (BV, rUTI) urogenital pathogens Increased risk of preterm birth, other Contribute to low vaginal pH OB/GYN complications Produce antibacterial substances Increased inflammation and risk of HIV Block pathogen binding, i.e. competitive exclusion Cervicovaginal Bacteria are a Major Modulator of the Host Inflammatory Responses • A recent paper by Anahtar et al. (senior authors Walker, Fichorova, Kwon, Immunity 2015 studied a cohort of South African women • A majority of these women had low abundance of Lactobacillus • Low Lactobacillus abundance together with high ecological diversity strongly correlated with genital pro- inflammatory cytokine concentration Four community types • Community types – Group 1, L.
    [Show full text]
  • Product Information Sheet for HM-372
    Product Information Sheet for HM-372 Lactobacillus jensenii, Strain Growth Conditions: EX849587VC03 Media: Lactobacilli MRS broth and/or agar (ATCC medium 416) Incubation: Catalog No. HM-372 Temperature: 35°C to 37°C Atmosphere: Aerobic or Microaerophilic (CO2 is not required For research use only. Not for human use. for growth) Propagation: Contributor: 1. Keep vial frozen until ready for use, then thaw. Professor Gregory A. Buck, Director, Center for the Study of 2. Transfer the entire thawed aliquot into a single tube of Biological Complexity, Department of Microbiology and broth. Immunology, Virginia Commonwealth University Medical 3. Use several drops of the suspension to inoculate an agar Center, Richmond, Virginia slant and/or plate. 4. Incubate the tubes and plate at 37°C for 24 hours. Manufacturer: BEI Resources Citation: Acknowledgment for publications should read “The following Product Description: reagent was obtained through BEI Resources, NIAID, NIH as part of the Human Microbiome Project: Lactobacillus jensenii, Bacteria Classification: Lactobacillaceae, Lactobacillus Strain EX849587VC03, HM-372.” Species: Lactobacillus jensenii Strain: EX849587VC03 Original Source: Lactobacillus jensenii (L. jensenii), strain Biosafety Level: 1 EX849587VC03 was isolated from a human mid-vaginal Appropriate safety procedures should always be used with wall in March, 2010 in Richmond, Virginia.1,2 this material. Laboratory safety is discussed in the following Comments: L. jensenii, strain EX849587VC03 is a reference publication: U.S. Department of Health and Human Services, genome for The Human Microbiome Project (HMP). HMP Public Health Service, Centers for Disease Control and is an initiative to identify and characterize human microbial Prevention, and National Institutes of Health.
    [Show full text]