Lesson 16: Communications Systems, EM Spectrum, and Signals

Total Page:16

File Type:pdf, Size:1020Kb

Lesson 16: Communications Systems, EM Spectrum, and Signals Lesson 16: Communications Systems, EM Spectrum, and Signals Objectives: (a) Describe the four components of a communications system and the impact on security of using free space as a communication medium. (b) Identify communication applications for various bands of the electromagnetic spectrum ranging from extremely low frequency (ELF) to extremely high frequency (EHF). (c) Explain the basic properties of a sinusoidal electromagnetic signal (period, frequency, wavelength, phase, and amplitude) and describe their mathematical relationship. (d) Define and calculate bandwidth of transmitted signals. (e) Plot simple (sinusoidal) electromagnetic signals in the time and frequency domains; interpret time- and frequency-domain plots to determine the associated signals. Connection to Cyber Security This chapter marks the beginning of the third part of EC312. In Part I: The Host, we examined how data are stored and accessed in memory at the machine level and examined the resulting threats against a specific computer, focusing on the buffer overflow attack. In Part II: Networks, we concentrated on understanding how the Controller Area Network ( CAN) works and how networks are just as important and vulnerable as the individual host computers that reside on them. In Part III: Wireless, we will gain an appreciation for communicating in an environment without physical connections to every computer, router, etc. in the network, leading up to how wireless communication systems can be hacked. 1. Communication Systems The purpose of a communications system is to transmit information over a distance. This “information” could be audio (such as speech or music), video, sensor data (temperature, pressure), or other data (e.g., text, stock prices, photos, etc.). “Over a distance” may mean from here to the other side of the world via a satellite, or from one computer to another in a network, or from your computer’s CPU to its RAM. Any communications system consists of the following basic components, which are shown in the following figure. There are four main components: • Transmitter – converts information into an electronic form suitable for the channel • Channel – the physical medium through which an electronic signal travels o e.g., wire, fiber-optic cable, free space (i.e., air), water (sonar) • Receiver – converts the received signal back to a usable form • Noise – undesired, random corrupting energy The information is passed to the transmitter which in turn transmits it into the communication channel. The receiver produces a “recovered” information signal, which may not be the same signal that was transmitted. This is because a significant, though undesired, occurrence in all communication systems is noise, which is random energy that enters the system and interferes with (corrupts) the transmitted message. If the noise is strong enough, the information signal may not get through at all. You’ve all heard what noise sounds like, for example on a telephone (we sometimes refer to it as static). If the static is very powerful you will only hear a small portion (or none) of the words that are spoken to you. This relationship between the useful signal and corrupting noise that impacts it will be formalized in lesson 19. Noise can be divided into two broad categories: • External noise is noise introduced into the transmission channel from outside sources. Examples include: o Industrial noise arising from man-made electrical sources (e.g., motors, generators, switches) o Atmospheric noise due to naturally occurring disturbances in earth’s atmosphere (e.g., lightning) o Extraterrestrial noise due to solar and cosmic activity. • Internal noise is noise introduced by the electronics inside the receiver itself. Examples include: o Thermal noise o Semiconductor noise For the third block of this course, we will focus on communications systems in which our channel or medium is free space. Free space can refer to a perfect vacuum (as you might recall from physics), or to the atmosphere (as opposed to transmission through a wire or other material). Signals that propagate in free space are often referred to as “wireless” or “over-the-air” signals, and all signals in free space are part of the electromagnetic spectrum. With wireless routers and satellites part of almost every network, especially in military applications, understanding the electromagnetic spectrum is critical to cyber security. 2. Data Flow Communications systems range from the very simple to the complex. And with complexity comes cost. Systems which have a requirement to both transmit and receive may have a transceiver which is capable of both. In designing a communications system, it is important to consider the data flow required between devices so that they include the correct components, but are not unnecessarily complex. Communication between two devices will be in one of three modes: simplex, half duplex, or full duplex. 2.1 Simplex Signals transmitted in one direction. Only one of two devices on a link can transmit. Examples of simplex devices are keyboards and televisions. Remember that a keyboard is an example of an input device. It cannot accept any outputs. Similarly, your television (before smart TV!) does not transmit any information back to the cable company. The simplex mode can used the entire capacity of a communications channel to send data in one direction. 2.2 Half Duplex Both stations may transmit, but not at the same time. Military Radios are an example of duplex devices. Half duplex mode works in cases where there is no need for communication at the same time and the entire capacity of the channel can be used in one direction at a time. 2.3 Full Duplex In full duplex mode, both stations can transmit and receive simultaneously. One common example of full duplex communication is the telephones network. Both users can talk and listen at the same time however the capacity of the channel but must be divided in the two directions. 3. Electromagnetic Spectrum The electromagnetic spectrum is the range of all possible frequencies of electromagnetic waves. The spectrum is broken into regions/ranges and classified by frequency and/or wavelength. The frequency (f ) of an electromagnetic wave is a measure of how rapidly it oscillates. Frequency is measured in Hertz (1 Hz = 1 cycle/sec). The period (T) of an electromagnetic wave is the length of time required to complete one cycle. The period is measured in seconds, and is the reciprocal of the frequency in Hz (T = 1/f). Wavelength (λ) is the physical distance between the peaks of one cycle of a transmitted wave as it moves through the medium, and is measured in meters (m). The following plots show an EM wave’s voltage as a function of time (left plot), and as a function of distance (right plot). For electromagnetic waves traveling in air (or vacuum), we will assume that they travel at the speed of light (c) which is roughly 3 x 108 m/s. The wavelength is inversely proportional to the frequency, and is related to the speed of light by: = Practice Problem 17.1 What is the wavelength of an FM radio station whose broadcast frequency is 101.1 MHz? Solution: Practice Problem 17.2 What is the frequency of a signal whose wavelength is 8 cm? Solution: 3.1 Frequency Bands The specific bands of frequencies in the EM spectrum is shown in the following figure. In this course, we are concerned with communications in the frequency ranges from ELF to EHF. To transmit signals effectively, the characteristics of the transmission medium and the EM wave behavior in the frequency bands are considered and matched. For example, a communication system transmitting to a submarine will have water as the transmission medium. Lower frequency, longer wave length waves from VLF band do not attenuate as quickly in water as higher frequency bands, so the transmission frequency will be selected from the VLF band. You should be familiar with the frequency ranges for communications from ELF to EHF. • Extremely low frequency (ELF) 30 Hz to 300 Hz. Power line frequencies and low end of human audio. • Voice frequency (VF) 300 Hz to 3000 Hz. Typical range associated with human voice. • Human hearing 20 Hz to 20 kHz. (You may try a demo at https://www.youtube.com/watch?v=qNf9nzvnd1k) • Very low frequency (VLF) 3 kHz to 30 kHz. Used for communications with submerged submarines. • Low frequency (LF) 30 kHz to 300 kHz. Long range radio navigation. • Medium frequency (MF) 300 kHz to 3000 kHz. AM radio and long range communication. • High frequency (HF) 3 MHz to 30 MHz. Known as “short wave”, used by two-way radio. • Very high frequency (VHF) 30 MHz to 300 MHz. Radio communications and FM radio. • Ultra high frequency (UHF) 300 MHz to 3000 MHz. TV, military and cell phones. • Super high frequency (SHF) 3 GHz to 30 GHz. Microwave. Satellite communications and radar. • Extremely high frequency (EHF) 30 GHz to 300 GHz. Satellite communications. 3.2 Bandwidth The range of frequencies contained in a signal is its bandwidth. Bandwidth is the amount of the frequency spectrum occupied by a signal regardless of where it is in the spectrum. It is the difference between the upper and lower frequency limits of the signal. If a signal occupies the range of frequencies between approximately 300 Hz and 3000 Hz. The following figure demonstrates that for that signal, it’s bandwidth would be 2700 Hz. 3.3 Federal Communications Commission (FCC) The electromagnetic spectrum is crowded; everyone wants some bandwidth. The FCC was established by the Communications Act of 1934 to regulate interstate and foreign communication. The FCC: • Allocates bands of frequencies for specific uses • Sets limitations on broadcast power • Monitors broadcasts to detect unlicensed operations and technical violations • Auctions spectrum usage The FCC controls which portions of the EM spectrum are used for various purposes (e.g.
Recommended publications
  • 7400.2D Procedures for Handling • Airspace Matters •
    U.S. Department of Transportation Federal Aviation • Administration 7400.2D Procedures for Handling • Airspace Matters • ·'" ..... "", • Distribution: ZAT-740 (ALL); September 16, 1993 Initiated by ATP-200 RECORD OF CHANGES DIRECTIVE NO. 7400.2D CHANGE SUPPLEMENTS CH,oNGE SUPPLEMENTS TO OPTIONAL TO OPTIONAL BASIC BASIC • .. .. • 1---. • FAA Form 132~5 (6-80) USE PREVIOUS EDITION 9/16/93 7400.2D • PROCEDURES FOR HANDLING AIRSPACE MATTERS 7400.2D FOREWORD • This Order shall be used by all personnel in the joint administration of the airspace program. The guidance and procedures herein incorporate into one publication as many orders, notices and di­ rectives of the affected services as possible. This order consists of 8 parts and incorporates all re­ quired changes due to the Airspace Reclassification Rule effective September 16, 1993. • ~l~£~ Associate Administrator for Air Traffic :u..~ Anthony J. erick (AVR) \UAiIAmWd Associat~ Administrator for AssociDt~ Administrator Regulation & Certification for Airway Facilities • 9/16/93 7400.2D TABLE OF CONTENTS • [Bracketed numbers represent the numbering system in Order 7400.2C] PART I. GENERALPROCEDURES Chapter 1. GENERAL Section 1. INTRODUCTION Page 1-1 Purpose/Application {1 000] . 1-1-1 1-2 Effective Date {1001] . 1-1-1 1-3 Cancellation {1002] . 1-1-1 1-4 Change Authority {1003] .. 1-1-1 1-5 Other Responsibilities {1004] . 1-1-1 1-6 Structural Format {1 005] . 1-1-1 1-7 Policy {1006] .. 1-1-1 1-8 Authority and Applicability {1007] . 1-1-1 1-9 FAR References {1008] . 1-1-1 1-10 Executive Order 10854 {1009] . 1-1-2 1-11 Word Usage {1010] .
    [Show full text]
  • Chapter 4, Current Status, Knowledge Gaps, and Research Needs Pertaining to Firefighter Radio Communication Systems
    NIOSH Firefighter Radio Communications CHAPTER IV: STRUCTURE COMMUNICATIONS ISSUES Buildings and other structures pose difficult problems for wireless (radio) communications. Whether communication is via hand-held radio or personal cellular phone, communications to, from, and within structures can degrade depending on a variety of factors. These factors include multipath effects, reflection from coated exterior glass, non-line-of-sight path loss, and signal absorption in the building construction materials, among others. The communications problems may be compounded by lack of a repeater to amplify and retransmit the signal or by poor placement of the repeater. RF propagation in structures can be so poor that there may be areas where the signal is virtually nonexistent, rendering radio communication impossible. Those who design and select firefighter communications systems cannot dictate what building materials or methods are used in structures, but they can conduct research and select the radio system designs and deployments that provide significantly improved radio communications in this extremely difficult environment.4 Communication Problems Inherent in Structures MULTIPATH Multipath fading and noise is a major cause of poor radio performance. Multipath is a phenomenon that results from the fact that a transmitted signal does not arrive at the receiver solely from a single straight line-of-sight path. Because there are obstacles in the path of a transmitted radio signal, the signal may be reflected multiple times and in multiple paths, and arrive at the receiver from various directions along various paths, with various signal strengths per path. In fact, a radio signal received by a firefighter within a building is rarely a signal that traveled directly by line of sight from the transmitter.
    [Show full text]
  • EHC 238 Front Pages Final.Fm
    This report contains the collective views of an international group of experts and does not necessarily represent the decisions or the stated policy of the International Commission of Non- Ionizing Radiation Protection, the International Labour Organization, or the World Health Organization. Environmental Health Criteria 238 EXTREMELY LOW FREQUENCY FIELDS Published under the joint sponsorship of the International Labour Organization, the International Commission on Non-Ionizing Radiation Protection, and the World Health Organization. WHO Library Cataloguing-in-Publication Data Extremely low frequency fields. (Environmental health criteria ; 238) 1.Electromagnetic fields. 2.Radiation effects. 3.Risk assessment. 4.Envi- ronmental exposure. I.World Health Organization. II.Inter-Organization Programme for the Sound Management of Chemicals. III.Series. ISBN 978 92 4 157238 5 (NLM classification: QT 34) ISSN 0250-863X © World Health Organization 2007 All rights reserved. Publications of the World Health Organization can be obtained from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e- mail: [email protected]). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to WHO Press, at the above address (fax: +41 22 791 4806; e-mail: [email protected]). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]
  • Applied Engineering Using Schumann Resonance for Earthquakes Monitoring
    applied sciences Article Applied Engineering Using Schumann Resonance for Earthquakes Monitoring Jose A. Gazquez 1,2, Rosa M. Garcia 1,2, Nuria N. Castellano 1,2 ID , Manuel Fernandez-Ros 1,2 ID , Alberto-Jesus Perea-Moreno 3 ID and Francisco Manzano-Agugliaro 1,* ID 1 Department Engineering, University of Almeria, CEIA3, 04120 Almeria, Spain; [email protected] (J.A.G.); [email protected] (R.M.G.); [email protected] (N.N.C.); [email protected] (M.F.-R.) 2 Research Group of Electronic Communications and Telemedicine TIC-019, 04120 Almeria, Spain 3 Department of Applied Physics, University of Cordoba, CEIA3, Campus de Rabanales, 14071 Córdoba, Spain; [email protected] * Correspondence: [email protected]; Tel.: +34-950-015396; Fax: +34-950-015491 Received: 14 September 2017; Accepted: 25 October 2017; Published: 27 October 2017 Abstract: For populations that may be affected, the risks of earthquakes and tsunamis are a major concern worldwide. Therefore, early detection of an event of this type in good time is of the highest priority. The observatories that are capable of detecting Extremely Low Frequency (ELF) waves (<300 Hz) today represent a breakthrough in the early detection and study of such phenomena. In this work, all earthquakes with tsunami associated in history and all existing ELF wave observatories currently located worldwide are represented. It was also noticed how the southern hemisphere lacks coverage in this matter. In this work, the most suitable locations are proposed to cover these geographical areas. Also, ELF data processed obtained from the observatory of the University of Almeria in Calar Alto, Spain are shown.
    [Show full text]
  • Spectrum and the Technological Transformation of the Satellite Industry Prepared by Strand Consulting on Behalf of the Satellite Industry Association1
    Spectrum & the Technological Transformation of the Satellite Industry Spectrum and the Technological Transformation of the Satellite Industry Prepared by Strand Consulting on behalf of the Satellite Industry Association1 1 AT&T, a member of SIA, does not necessarily endorse all conclusions of this study. Page 1 of 75 Spectrum & the Technological Transformation of the Satellite Industry 1. Table of Contents 1. Table of Contents ................................................................................................ 1 2. Executive Summary ............................................................................................. 4 2.1. What the satellite industry does for the U.S. today ............................................... 4 2.2. What the satellite industry offers going forward ................................................... 4 2.3. Innovation in the satellite industry ........................................................................ 5 3. Introduction ......................................................................................................... 7 3.1. Overview .................................................................................................................. 7 3.2. Spectrum Basics ...................................................................................................... 8 3.3. Satellite Industry Segments .................................................................................... 9 3.3.1. Satellite Communications ..............................................................................
    [Show full text]
  • En 300 720 V2.1.0 (2015-12)
    Draft ETSI EN 300 720 V2.1.0 (2015-12) HARMONISED EUROPEAN STANDARD Ultra-High Frequency (UHF) on-board vessels communications systems and equipment; Harmonised Standard covering the essential requirements of article 3.2 of the Directive 2014/53/EU 2 Draft ETSI EN 300 720 V2.1.0 (2015-12) Reference REN/ERM-TG26-136 Keywords Harmonised Standard, maritime, radio, UHF ETSI 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 Important notice The present document can be downloaded from: http://www.etsi.org/standards-search The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the only prevailing document is the print of the Portable Document Format (PDF) version kept on a specific network drive within ETSI Secretariat. Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp If you find errors in the present document, please send your comment to one of the following services: https://portal.etsi.org/People/CommiteeSupportStaff.aspx Copyright Notification No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm except as authorized by written permission of ETSI.
    [Show full text]
  • Cisco Broadband Data Book
    Broadband Data Book © 2020 Cisco and/or its affiliates. All rights reserved. THE BROADBAND DATABOOK Cable Access Business Unit Systems Engineering Revision 21 August 2019 © 2020 Cisco and/or its affiliates. All rights reserved. 1 Table of Contents Section 1: INTRODUCTION ................................................................................................. 4 Section 2: FREQUENCY CHARTS ........................................................................................ 6 Section 3: RF CHARACTERISTICS OF BROADCAST TV SIGNALS ..................................... 28 Section 4: AMPLIFIER OUTPUT TILT ................................................................................. 37 Section 5: RF TAPS and PASSIVES CHARACTERISTICS ................................................... 42 Section 6: COAXIAL CABLE CHARACTERISTICS .............................................................. 64 Section 7: STANDARD HFC GRAPHIC SYMBOLS ............................................................. 72 Section 8: DTV STANDARDS WORLDWIDE ....................................................................... 80 Section 9: DIGITAL SIGNALS ............................................................................................ 90 Section 10: STANDARD DIGITAL INTERFACES ............................................................... 100 Section 11: DOCSIS SIGNAL CHARACTERISTICS ........................................................... 108 Section 12: FIBER CABLE CHARACTERISTICS ...............................................................
    [Show full text]
  • Frequency Modulation
    Unguided Media and Matched Filter After this lecture, you will be able to – describe the physical and transmission characteristics of various unguided media Example ? B.1 Unguided media Guided to unguided – Transmission • the signal is guided to an antenna via a guided medium • antenna radiates electromagnetic energy into the medium – Reception • antenna picks up electromagnetic waves from the surrounding medium. – Example • a voice signal from a telephone network is guided via a twisted pair to a base station of mobile telephone network • the antennas of the base station radiates electromagnetic energy into the air • the antenna of the mobile phone handset picks up electromagnetic waves B.2 Directional and Omnidirectional Directional – the transmitting antennaHow puts to out focus a focused an electromagnetic beam electromagnetic wave ? – the transmitting and receiving antennas must be aligned – Example • Satellite communication systems • For a satellite located at 35784km above the ground, a 1° beam covers 1962km2 B.3 Directional and Omnidirectional Omnidirectional – the transmitted signal spreads out in all directions and can be received by many antennas. – In general, the higher the frequency of a signal, the more it is possible to focus it into a directional beam – Example • mobile communication systems • radio broadcasting B.4 Operating freqeuncies Microwave – Frequencies in the range of about 30 MHz to 40 GHz are referred to as microwave frequencies – 2 GHz to 40 GHz • wavelength in air is 0.75cm to 15cm ¾wavelength = velocity / frequency • highly directional beams are possible • suitable for point-to-point transmission – 30 MHz to 1 GHz • suitable for omnidirectional applications B.5 Operating freqeuncies B.6 Terrestrial Microwave Physical description – limited to line-of-sight transmission.
    [Show full text]
  • Low Frequency Converter.Pdf
    Find out whatk happening below the A M-broadcast band with our low-frequency converter: WILLIAM SHEETS AND RUDOLF F. GRAF simply adding 1 MHz to all received signals. Connect our converter to any communications receiver, or AM-broad- cast radio for that matter, and bingo--you have a longwave receiver. Radio calibration is unnecessary because signals are received at the AM-radio's dial setting, plus 1 MHz. A 100-kHz signal is received at 1100 kHz, a 335-kHz signal at 1335 kHz, etc., just drop the first digit to read the longwave frequency. THE FREQUENCY RANGE JUST BELOW THE AM-BROAD- One problem at low frequencies is man-made noise; cast band (from 10 kHz to 550 kHz) has been clearly many of our everyday devices and appliances are notorious omitted from most communication receivers. How come? in that regard. Motors, fluorescent lighting, light dim- It appears that the extra coil sets, increased assembly mers, computes, TV-receiver sweep radiation, and many costs, and additional RF circuitry has not justified the small household digital devices generate "hash" in the inclusion of the low-frequency band. But that doesn't have spectrum below 550 kHz. Fortunately, most noise is car- to stop you from sneaking a peek at the band "down- ried chiefly on power lines, and doesn't radiate very far. under." Among the signals you'll find below 550 kHz are One misconception is that tremendous antennas are maritime mobile, distress, radio beacons, aircraft weather, needed for longwave reception. It's easy to understand European longwave-AM broadcast, and point-to-point why someone night think that way.
    [Show full text]
  • Through-The-Earth Electromagnetic Trapped Miner Location Systems. a Review
    Open File Report: 127-85 THROUGH-THE-EARTH ELECTROMAGNETIC TRAPPED MINER LOCATION SYSTEMS. A REVIEW By Walter E. Pittman, Jr., Ronald H. Church, and J. T. McLendon Tuscaloosa Research Center, Tuscaloosa, Ala. UNITED STATES DEPARTMENT OF THE INTERIOR BUREAU OF MINES Research at the Tuscaloosa Research Center is carried out under a memorandum of agreement between the Bureau of Mines, U. S. Department of the Interior, and the University of Alabama. CONTENTS .Page List of abbreviations ............................................. 3 Abstract .......................................................... 4 Introduction ...................................................... 4 Early efforts at through-the-earth communications ................. 5 Background studies of earth electrical phenomena .................. 8 ~ationalAcademy of Engineering recommendations ................... 10 Theoretical studies of through-the-earth transmissions ............ 11 Electromagnetic noise studies .................................... 13 Westinghouse - Bureau of Mines system ............................ 16 First phase development and testing ............................. 16 Second phase development and testing ............................ 17 Frequency-shift keying (FSK) beacon signaler .................... 19 Anomalous effects ................................................ 20 Field testing and hardware evolution .............................. 22 Research in communication techniques .............................. 24 In-mine communication systems ....................................
    [Show full text]
  • The H3K9 Methylation Writer SETDB1 and Its Reader MPP8 Cooperate to Silence Satellite DNA Repeats in Mouse Embryonic Stem Cells
    G C A T T A C G G C A T genes Article The H3K9 Methylation Writer SETDB1 and Its Reader MPP8 Cooperate to Silence Satellite DNA Repeats in Mouse Embryonic Stem Cells 1,2,3,4 1 1, 1 Paola Cruz-Tapias , Philippe Robin , Julien Pontis y, Laurence Del Maestro and Slimane Ait-Si-Ali 1,* 1 Epigenetics and Cell Fate (EDC), Centre National de la Recherche Scientifique (CNRS), Université de Paris, Université Paris Diderot, F-75013 Paris, France; [email protected] (P.C.-T.); [email protected] (P.R.); julien.pontis@epfl.ch (J.P.); [email protected] (L.D.M.) 2 Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Bogotá 111221, Colombia 3 School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia 4 Doctoral Program in Biomedical and Biological Sciences, Universidad del Rosario, Bogotá 111221, Colombia * Correspondence: [email protected]; Tel.: +33-(0)1-5727-8919 Current: Ecole Polytechnique Fédérale de Lausanne (EPFL), SV LVG Station 19, 1015 Lausanne, Switzerland. y Received: 25 August 2019; Accepted: 24 September 2019; Published: 25 September 2019 Abstract: SETDB1 (SET Domain Bifurcated histone lysine methyltransferase 1) is a key lysine methyltransferase (KMT) required in embryonic stem cells (ESCs), where it silences transposable elements and DNA repeats via histone H3 lysine 9 tri-methylation (H3K9me3), independently of DNA methylation. The H3K9 methylation reader M-Phase Phosphoprotein 8 (MPP8) is highly expressed in ESCs and germline cells. Although evidence of a cooperation between H3K9 KMTs and MPP8 in committed cells has emerged, the interplay between H3K9 methylation writers and MPP8 in ESCs remains elusive.
    [Show full text]
  • UNIT -1 Microwave Spectrum and Bands-Characteristics Of
    UNIT -1 Microwave spectrum and bands-characteristics of microwaves-a typical microwave system. Traditional, industrial and biomedical applications of microwaves. Microwave hazards.S-matrix – significance, formulation and properties.S-matrix representation of a multi port network, S-matrix of a two port network with mismatched load. 1.1 INTRODUCTION Microwaves are electromagnetic waves (EM) with wavelengths ranging from 10cm to 1mm. The corresponding frequency range is 30Ghz (=109 Hz) to 300Ghz (=1011 Hz) . This means microwave frequencies are upto infrared and visible-light regions. The microwaves frequencies span the following three major bands at the highest end of RF spectrum. i) Ultra high frequency (UHF) 0.3 to 3 Ghz ii) Super high frequency (SHF) 3 to 30 Ghz iii) Extra high frequency (EHF) 30 to 300 Ghz Most application of microwave technology make use of frequencies in the 1 to 40 Ghz range. During world war II , microwave engineering became a very essential consideration for the development of high resolution radars capable of detecting and locating enemy planes and ships through a Narrow beam of EM energy. The common characteristics of microwave device are the negative resistance that can be used for microwave oscillation and amplification. Fig 1.1 Electromagnetic spectrum 1.2 MICROWAVE SYSTEM A microwave system normally consists of a transmitter subsystems, including a microwave oscillator, wave guides and a transmitting antenna, and a receiver subsystem that includes a receiving antenna, transmission line or wave guide, a microwave amplifier, and a receiver. Reflex Klystron, gunn diode, Traveling wave tube, and magnetron are used as a microwave sources.
    [Show full text]